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This paper concerns conditions for the approximation of functions in
certain general spaces using radial-basis-function networks. It has
been shown in recent papers that certain classes of radial-basis-function
networks are broad enough for universal approximation. In this paper
these results are considerably extended and sharpened.

1 Introduction

This paper concerns the approximation capabilities of radial-basis-func-
tion (RBF) networks. It has been shown in recent papers that certain
classes of RBFF networks are broad enough for universal approximation
(Park and Sandberg 1991; Cybenko 1989). In this paper thesce results are
considerably extended and sharpened.

Throughout this paper, we use the following definitions and notation,
in which A and R denote the natural numbers and the set of real num-
bers, respectively, and, for any positive inleger r, 'R denotes the normed
lincar space of real r-vectors with norm || - {|. (-,-) denotes the standard
inner product in R LA, L2(R7), and C(N7), respectively, denote the
usual spaces of N-valued maps [ defined on W such that f is pth power
integrable, essentially bounded, and continuous with compact support.
With W C 9", C(W} denoles the space of continuous R-valued maps de-
fined on W. The usual LY and uniform norms are denoted by |- |}, and
- I~ , respectively. The characteristic function of a Lebesgue measurable
subset A of N is denoted by 14. The convolution operation is denoted
by “+,” ard the Fourier transform (Slqin and Weiss 1971) of a Fourier-
transformable function { is written as f. By a cone in " we mean a set
C C W such that x € C implies that ax € C for all o > 0. By a proper cone
we mean a cone that is neither empty nor the singleton {0}.

The block diagram of a typical RBF network with one hidden layer is
shownu in Figure [. Fach unitin the hidden layer of this RBF network has
its own centroid, and for cach input x = (x;. x5, ... .. Y,}, it computes the
distance between x and its centroid. Its output (the output signal at one
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Keruel
Nodes

Figure 1: A radial-basis-function network.

of the kernel nodes) is some nonlinear function of that distance. Thus,
each kernel node in the RBF network computes an output that depends
on a radially symmetric function, and usually the strongest output is
obtained when the input is at the centroid of the node. Each output
node gives a weighted summation of the outputs of kernel nodes.

We first consider RBF networks represented by functions g : 3" — I
of the form

M x—z
q(x) = %w, -K <¥)

a

where M € A is the number of kernel nodes in the hidden layer, w; €
N is the weight from the ith kernel node to the output node, x is an
input vector (an element of %), and K is the common radially symmetric
kerniel function of the units in the hidden layer. Fere z; € #" and o > 0
atre the centroid and smoothing factor (or width) of the ith kernel node,
respectively. We call this family Sg(K). Note that the networks in this
family have the same positive smoothing factor in each kernel node.
Families with a translation-invariant vector space structure are also
often important. For example, networks are widely used in which the
smoothing factors are positive real numbers as in So(K), but can have
different valucs across kernel nodes. This family is the smallest vector
space among those containing S¢(K} as a subset. We call this vector space
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51(K). Hs general element g : 3" - R is represented by

M
g(x) = > w,-K <x~—~ Z')
-1 7
where Mc N, 0, >0, we RN, and z;e R fori=1,2,... M.

For the sake of clarity and convenience, we consider only a one-
dimensional output space instead of outputs represented by mualtiple
nodes as in Figure 1. 'The extension of our results to multidimensional
output spaces is trivial. Notice that the kernel function K characterizes
the families So(K) and S\(K), and that cach kernel node has its output
derived from K indexed by two parameters (the centroid and smoothing
factor), one for position and the other for scale. Ordinarily K is radially
symmetric with respect to the norm || - || in the sense that {|x]] = ||yl
implies K(x) = K(y). However, as we shall see in the next section, radial
symmetry of the kernel function K : % — R is needed in the develop-
ment of only one of the approximation results in this study. Except where
indicated to the contrary, radial symmetry of the kernel function K is not
assumed.

In Park and Sandberg (1991) it is shown that 5¢(K) is dense in LF(R),
p € [1,00} if K is an integrable bounded function such that K is continuous
almost everywhere and [g K(x)dx # 0. In Cybenko (1989} it is pointed
out thal a consequence of a generalization of a theorem due to Wicner
is that the clements of a vector space related to $,(K) are capable of
approximating functions in L;(R"). The purpose of this paper is to report
on a substantial sharpening of the results in Park and Sandberg (1991)
and Cybenko (1989).

2 Approximation Results

As mentioned above, in Park and Sandberg (1991) it is shown that S(K)
is dense in L'("), p € [1,00) if K is an integrable bounded function such
that K is continuous almost everywhere and [y K(x)dx # 0. Our first
theorem concerns the p = 1 case; a necessary and sufficient condition is
given for approximation with Sg(K).

Theorent 1. Assuming that K : R — R is integrable, So(K) is dense in L'(R")
if and only 1 [ K(x)dx 7/ O.

Proof. Suppose first that [, K(x)dx # 0, and define | = | fp K(x) dx]|.
Let f € L'(W) and ¢ > 0 be given. Since C(%") is dense in L'(%7) (Rudin
1987), we can choose a nonzero f. € C.(R") such that

Il < /4 1
Since f. has a compact support, there exists a positive T such that

supp fc C [-T, 1T
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Choose a function K. € C () such that

!

S 2)
ViR ”/2]

K — Kl < min [

Note that 2 implies

]/ r)dx‘ > 1/2
because
1[N’Kc(x)dx] - ‘/ dr—/ (K(x )] dx
2 | ool e s
> J-IIK=Kcll>]/2

Define ¢ : " - Nand ¢, : N — RN for 0 > 0 by

1

Fo Ky <)

¢(x) =
and
1 X
#ex) = 6 (%)
By Lemma 1 (in the appendix), we have
”}’c—rf)a *fc“l — 0 as g—0
Choose ¢ > 0 such that

Ilf(_¢a *fc“l <¢/4 3)

Note that ¢, (a — -)f(-) is Riemann integrable on [T, T}", since ¢, and f.
are each continuous and bounded.
Define v, : " — R by

U,,((l) = i‘ﬁa(“ - n’l)f((().l) (E>

g n

where the set {a; € R :i=1,2,...,n"} consists of all points in [T, T|"

of lhe form

r . . .
. ], iy, 02,4, =1,2,....n

Note that v,(¢v) is a Riemann sum for fi_; gy Pa(ar — X)fe(x) dx, and that

(e * f)(a) = A ha (@ — X)fc(x) dx = /lfm b (v — X)fe(x) dx

Approximation and Radial-Basis-Function Networks 309

Thus, for any a & %',
() o {oha * fe) (1) as n— oo

Since (4, ¢/, ) and the v, are dominated by an integrable bounded function
with compact support, by the dominated convergence theorem

/ [(dhe ¥ [ )(0) = vu(¥)|der — O as 1" — oo
Jn
Thus, there is an N ¢ NV for which
flbo + fc = onlly < /4 4
Note that

I'N(f)) T

N r oy
1o~ Slon@T)" 1 (i‘__._.’,'_)
N' oy Ly Ko (n)dn a a

1oy b,
K () - ( —)“ = lIKe = Ky
[ a a a }

y N7 — 93¢ defined by

_ f( a)(2T) 1 ( ,,,’.)
onle) - N'L_ K( dnn'K a

has the praperty that

3(31)}U!£_[]§;;K Kl < 1(1 (5)

Since

llow = onlh
By equations 1, 3, 4, and 5,

If = onlly <«

Since tn(-) = TN wi - K= € Sp(K) with

1 2T\ 1
Wi ;;[C(” ) < ) f‘] (” d(r

Su(K) is dense in L'(R1).

To show the “only if” part, we provc the contrapositive: Assume that
Jy K(x)dx = 0. Then for any f € L'(R") such that fy, f(x)dx 2 ] > 0, there
is no ¢ € So(K) satisfying ||f — glli < ]/2 because

I =gl = [ 000 = gl = [ plods =]

for ¢ € So(K). Thus S4(K) is now not dense in L'(R"), which completes
the proof. 0

Since the family S4(K) is a proper subscet of $((K), the “if” part of this
theorem holds also with §y(K) replaced by §(K). A family similar to
51{K) is considered in Cybenko (1989) with rogard to lhc nppmxmmhnn
of functions in L'(N7); it is noted there that if K € LY(M7) and [, K(v)dy #
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r

0, then the family S;(K) consisting of functions q : " -+ R of the following

form is dense in L'(R"):

M
q(X) = Zwi - K(tix + _l/,')
i=1

where M e N, L, e R, and y; € N fori=1,...,M. The proof of this
follows immmediately from a generalization (Rudin 1973, Theorem 9.4)
of a theorem due to Wiener. For the readers’ convenience we state the
theorem in the appendix. Here we make some pertinent observations:

1. Si(K) defined above is a proper subset of Sz(K), and even S((K) is
dense in L'(R") under the condition [y K(x)dx # 0. This can be
easily shown: Assume to get a contradiction that there is an sy € 9"
such that f(sy) = 0 for all f € $,(K). Then K(gsg) = 0 for all 5 > 0,
since

[K (;)] (s0) = 0" exp(—2ni(z, s0))K(050)
Since K is continuous, the above implies that
K(©) = [ Kx)dx=0
"

whicl contradicts the nonzero-integral condition. The main differ-
ence between S,(K) and $;(K) is the set from which the smoothing
factors are drawn. In this connection, it is easy lo see that our con-
clusion here, and also in Theorem 1, can be strengthened in that
they hold if our o; > 0 and ¢ > 0 conditions are replaced by the
conditions that o; € S and o € S, where S is any subset of (0, 00)
such that zero is a cluster point of S. Also, note that the denseness
of Si{K) in L'(") is a corollary of Theorem 1.

2. When K : R — R is integrable, $,(K) is densc in L'(%V") only if
S K(x)dx # 0. The “only if” part of the proofl of Theorem 1 shows
this.

The above observations give the following theorem:

Theorem 2. Assumiing that K : R — R is integrable, S\ (K) is dense in L'(R")
if and ouly if [ K(x)dx # 0.

Up to this point our results concern the approximation of functions
in L'(®") under the condition that [y K(x)dx # 0. As shown above, this
condition is necessary for approximation with So(K) or 5;(K). A natural
question that arises is whether the nonzero-integral condition is nccessary
for approximation in L"(R"), p € (1,00). We will see below that it is not
necessary for p = 2.
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In the following theorem, attention is focused on kernel functions
K: " — N with the property that for all M C R" with positive measure
there is a 7 > 0 such that k(rr-) # 00 almost everywhere on some positive
measure subset of M. We call such K pointable. We shall use the fact
that the negation of this condition on K js that for some M of positive
measure, K(o-) = 0 almost everywhere on M for all o > 0.

Theorem 3. Assuming that K : ™ — R is a square inlegralle function, S;(K)
is dense in LACRY if and only if K is pointable.

Proof. We make use of the following characterization of closed translation-
invariant subspaces of L?(R"), which is an easy modification of (Rudin,
1987, Theorem 9.17). ]

Lemma 2. Associale to each measurable set E C R the linear space Mg of all
[ € LA(R") such that f = 0 almost everywhere on E. Then each Mg is a closed
translation-invariant subspace of LA(R"), and cvery closed translation-invariant
subspace of LA (W) is Mg for some E.

Consider any K satisfying the indicated conditions, and suppose that
the closure of §;(K) is not L2 (). Then, since this closure is translation-
invariant, by Lemma 2 there is a measurable subset E of R having posi-
tive measure such that

f =0 almost everywhere on E
for any f in the closure of S,(K). In particular,

o exp(—2wi(z, ))K(o-) = 0 almost everywhere on £

for any z € " and o > 0. Thus, K(o-) = 0 almost everywhere on E for
all o > 0, which contradicts our supposition.

To show the “only if” part, we prove the contrapositive: Assume that
there is a measurable set M C R with positive measure such that

K(o) =0 almost everywhere on M

for all @ >~ 0. Then for any f € L2(R") with | 2 ||i1M||2 > 0,' there is no
£ € Si(K) satisfying ||f — gll2 < J/2, because

f-sex(2)

”i _ Zu;,-rr{cxp(~ ZHf(Z,', ))K(“v)

2 2

I\

1l =)

This completes the proof. 0
"Here we use || - [}, o denote also the usual norm on the space of comple-valued
squarc-integrable [unclionals.
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A large class of kernel functions satisfies the conditions of pointability.
For example, kernel functions K such that K # 0 almost everywhere
on some ball centered at the origin are pointable. Note that this class
includes functions K with [y, K(x)dx = 0.

A result for the general L'(R") case along the lines of the “if part” of
Theorem 2 is:

Proposition 1. With p € (1,00), let K: " — R be an integrable function such
that

/ K(x)dx # 0
aqd
/ [K(x)" dx < oo
Ja
Then S5,(K) is dense in L' (R").

Proof. Suppose that 5{(K) is not dense in L"(R"). Then by the Hahn-
Banach theorem (Rudin 1987), there exists a bounded linear functional A
on L'(N") such that

Althe closure of $(K)] = {0} (6}
but
ALP(R") # {0}

By the Riesz representation theorem (Rudin 1987), A : L'(R") — N can be
represented by

= [ 1(x)ga(x)dx

for some function g, in L1(R"),? where q is the conjugate exponent of p
defined by 1/p +1/q = 1. In particular, from equation 6

[ Tk (‘Y—lz) ga(x)dx =0
Sy
foranyze R and ¢ > 0.
Define K : %" — R and K — 3§t for o >0 by

1

T

and

o = 16 (2)

1

'The strategy of using the Hahn-Banach theorem together with representations of
linear functionals was first used in the neural-networks literature in Cybenko (1989).
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Note that for any o > 0 and z in ",

: 1 1 xX—-2z -
(K, *ga)(z) = T{E(JE/»ZK( )3/\( X)dx =0 (7)

Since K € L'(R") and Jo K(x)dx =1, by Lemima 1 (in the appendix),
1Ko+ ga ~ gally — 0 as a—0 (8)

By 7 and 8, we conclude that g, is zero almost everywhere. This implies
that A is the zero functional, which contradicts our supposition.

Our focus has been on L approximation. We next give a theorem con-
cerning the uniform approximation of continuous functions on compact
subsets of R".

Theorem 4. Let KR — R bean m{cqmblc[lmch(m stuch that K is conlinuous
and such that K Y(0) includes no proper cone.® Then Si(K) is dense in C(W) with
respect ta the norm || - |, for any compact subset W of R".

Proof. Consider any compact subset W of R". Suppose that S;(K) is not
dense in C(W). Then proceeding as in the proof of Proposition 1, we see
that there is a nonzero finite signed measure ;. that is concentrated on W
and that satisfies

/‘v K (rr%) di(x) = /WK (x ~ Z) dp(x) =0 ©)

for any z € R and o > Q.

With z € ', o > 0, and any function i € L'(R") N L=(R") whose
Fourier transform has no zeros! (e.g., the gaussian function exp(—al| - ||2)
with o > 0), consider the integral

/T / (IH—Y )h(.\')dxd/:(y)

Note that

Jo fo (5 Yt i) < o Kl 7 = o

where |p] is the total variation of .
By equation 9 and Fubini’s theorem (see, e.g., Rudin 1962}, we have

0

|
~
=~
=2
N

;‘x)} d//.(y)} h(x) dx

/,,,, [/?K (H:, )"( )df] dn(y) (1)

1éunu: K( w) equals the conjupate of K(.(') for any e in N, this condition can be
stated in terms of subspaces instead of cones.
“Iere we use a strategy along the lines of {lornick (1991, proof of Thearem ).




g Jooyoang Park and Irwin W. Sandbery,

By the change of variable x4-y — x and Theorem 1:4.5 of Petersen (1983),
equation 10 is equivaleut to

(5o
| x ("; Z) UR h(x - ) d,,,(y)] dx

-2

/!R K (XT) (h + j)(x) dx. an

0

i

Note that /1 + s is integrable (by Theorem 1:4.5 of Petersen 1983). It is also
essentially bounded, because

IA

(U@ < [ e = pldld(y)

ool el (R)

IA

for almost all x € R".

Consider the closed translation-invariant subspace I of L'(R") defined
as the L'-closure of §;(K). By equation 11 and the essential boundedness
of It # 11, it easily follows that

[ £« )y dx = 0 "

for any f in 1. Following the notation in Rudin (1962), define the zero sct
Z{1) of I to be the set of w where the Fourier transforms of all functions in
1 vanish. We claim that a nonzero element in #” cannot be a member of
Z(I) when K~'(0) includes no proper cone. Assume to get a contradiction
that w # 0 and w € Z(I). Then, using the definition of Z(I),

K ( > Z) (w) = o exp(~2mi(z, w))K(ow) = 0

a

for any z € " and ¢ > 0. This implies that
K(ow)=0 forallo >0

Since K is continuous, this means that K=}(0) includes the cone {ow €
R o > 0}, which contradicts the cone condition. Thus, Z(I) is either
the empty set or {0}. In either case, by Theorems 7.1.2 and 7.2.4 of
Rudin (1962), any integrable function from R to & with zcro integral is
a member of I. Thus, equation 12 gives

1

[ f s e dx =0 (13

for any f in LY(R") wth [y f(x)dx = 0.
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Note that the property 13 can hold only for Ir+ o in the class of almost
everywhere constant functions. Bul since hv gy € L'(W') and zero is the
only constant function in L'(R"), we have

Ihs g =0 almost everywhere. (14)

Since 1 has no zeros, by Theorem 2:2.2 of Petersen (1983) and Theo-
rem 1.3.6 of Rudin (1962), equation 14 implies ;- 0. This conlradicls
our supposition, and thus proves the theorem. ]

A corollary of this theorem is that §;(K) is dense in C(W) for any com-
pact subset W of 3" when the kernel K : %" — R is integrable, continuous
and satisfies [y K(x)dx # 0.

Finally, when K @ " — X is inlegrable and radially symmelric with
respect to the Luclidean norm, K is also radially symmelric with respect
to the Euclidean norm (Bochner and Chandrasekharan 1949, p. 69). In
this setting, every K not equivalent to the zero element of L' (1) salisfics
the cone condition of Theorem 4. This observation gives the following:

Theorem 5. Let K @ R — R be a nonzere integrable function such that K is
continuons and radially symmetric with respect to the Cuclidean norm. Then
S\(K) is dense in C(W) with respect to the nornt || - |~ for any compact subsct W

of N,

3 Concluding Remarks -

The resulls in this paper significantly improve previous resulls. In par-
licular, we have given sharp conditions on the kernel function under
which radial-basis-function networks having one hidden layer are capa-
ble of universal approximation on i’ or on compact subsets of ®'. A
related result concerning uniform approximation using the elements of
Su(K) with integrable K is given in Park and Sandberg (1991, p. 254).

The resulls in Section 2 concern the approximation of real-valued func-
tions. Approximations for complex-valued functions are also of interest.
In this connection, it is a straightforward exercise to verify that Theo-
rems [-5 and Proposition 1 remain true if “K: R = R” is replaced with
the condition thal K maps " into the set C of complex numbers, (")
denotes instead the corresponding space of C-valued functions, the ele-
ments of C(W) are taken to be C-valued, and Sy(K) and S1(K) refer instead
to the corresponding sets in which the weights w; are drawn from C.

An important problein we have not addressed is that of determining
the network parameters so that a prescribed degree of approximation is
achieved.
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Appendix -

Lemma 1. S Let f € L"(R"), p € [1.0o), and let ¢ : N" — N be an integrable
frenction such that

/ d(x)dx =1
Define ¢, : R — R by
be(x) = (1/)p(x/e)
Jore > 0. Then ||pe+f ~fllp — Oase — 0.

Theorem 9.4 of Rudin (1973).  If Y isa closed translation-invariant subspace
of LYW, and if

2(1) = Myer{s € 72 f(5) = 0}
is empty, then Y = LY(R").
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A Polynomial Time Algorithm for Generating Neural
Networks for Pattern Classification: Its Stability Properties
and Some Test Results
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Polynomial time training and network design are two major issues
for the neural network community. A new algorithm has been devel-
oped that can learn in polynomial time and also design an appropriate
network. The algorithm is for classification problems and uses linear
programiming models to design and train the network. This paper sum-
marizes the new algorithm, proves its stability properties, and provides
some computational results to demonstrate its potential,

1 Introduction o

One of the critical issues in the field of neural networks is the develop-
ment of polynomial time algorithms for neural network training. With
the advent of polynomial time methods (Karmarkar 1984; Khachian 1979
and others), linear programming has drawn increased attention for its
potential for training neural networks in polynomial time (Glover 1990;
Mangasarian ctal. 1990; Bennett etal. 1992; Roy and Mukhopadhyay 1991;
Roy et al. 1992). This paper presents the method of Roy and Mukhopad-
hyay (1991) and Roy et al. (1992) in summary form and proves its stability
properties under translation and rotation of data points. Application of
the method to some well-known learning, problems is also shown.

2 A Linear Programming Method for Neural Network Generation __

The following nolation is used henceforth. An input pattern is repre-
sented by the N-dimensional vector x.x = (X). X5.. ... Xn). The pattern
space, which is the set of all possible values that ¥ may assume, is repre-
sented by §2,. K denotes the total number of classes. The method is for
supervised learning where the training set xj.x;.... . x,, is a set of sample
patterns with known classification.
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