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Notes on the paper by Park and Sandberg:

Page 305, bottom:   The convolution operation * for two functions f(x) and g(x) on  is an‘r

operation on the two functions which yields a third function h(x), defined by

   h(x) = (f*g)(x) = f(x - y) g(y) dy.'
‘r 

The Fourier transform of a function f(x) of r variables x = (x ,x , ,x ) is denoted by1 2 rá

   f( )  f ( ) = (2 ) f(x) e  dx,^Y 0 0 1´ -r/2 i x
 

'
‘

0
r

†

where .0 ‘− r

 By  is meant the middle layer of neurons.  The reference to the centroid of ahidden layer
unit of the hidden layer is made clear later.  Specifically, suppose that x  is the activation leveli
of the i  neuron in the bottom (input) layer.  Letth

     x = (x ,x , ,x ).1 2 rá

 Then the i  neuron in the middle (hidden, or kernel node) layer computes the functionth

K(x - z ), where z  is a fixed vector which depends on i, and K(x) is a single predefinedi i
function (usually a function in the shape of a “bump" near the origin).  The value of this
function becomes the “activation level" of this neuron.  The vector z  is called the ofi centroid 
the i  neuron.  Generally, the function K depends on x - z  only through the value of |x - z |,th

i i
which is the distance between the two vectors (i.e., K is really just a function of this distance).

Page 306, middle:
 “  some nonlinear function of that distance "á á
The distance referred to is x - z , and the nonlinear function of it is K(x - z ), which is ai i
radially symmetric function about the point z  if it only depends on |x - z |, as is assumed here.i i

 “  the strongest output is obtained when the input is at the centroid of the node."á
 That is, the output of the i  neuron in the middle (kernel node) layer is K(x - z ), whichth

i
is largest when x is at z  (the centroid), since we assume generally that K has its maximumi
near the origin, i.e., when its argument x - z  is near 0.i

 “Each output node gives a weighted summation of the outputs of kernel nodes."
 This paper assumes (without any real loss of generality) that there is only one output
node (contrary to the diagram).  The output of this node depends on the activations of the
nodes in the hidden layer.  Recall from that the activation of the i  node of the hidden layer isth

K(x - z ).  The output node is assumed to have an activation level given byi

(1)     q(x) = w K (x - z ),!M
i=1

i i†
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(here we will have  = 1, so we omit it), which is the weighted summation of outputs of kernel5
nodes referred to.  Note that each kernel node has an output K(x - z ).i

Page 306, bottom:
 The reference to  as a smoothing factor just means that for large values of the constant5
5 5, the function K  is “wider", and hence “smoother."  Again, we may fix  to be 1 forˆ ‰x - zi

5

our purposes.

 “we call this family S (K) "0 á
 The family referred to is the set of all functions in the form (1), with arbitrary choices of
w  and z  .i i as well as 5

Page 307, top:
 Note that the general function q(x) of this form differs from the previous one in that the
scalings  of the function K are allowed to vary inside the sum of the translates K(x - z ).5i i
 The one-dimensional output space which is referred to means that there is only one
output neuron, and that its activation q(x) is given by (1).

Page 307, middle:
 Recall that by a function K(x) being  we mean that the function canradially symmetric
be written K(x) = H(|x|), where H is a function defined on the real numbers.
 Note also that this paper uses x  to denote the Euclidean norm of the vector x; we² ²
will denote this by |x|.

Page 307, bottom:
 Note that our goal is to show that the output function q(x) given in (1) for the neural
network can approximate any other desired input-output function f(x).  The first theorem tries
to prove that if the desired function f is in L  (i.e., is integrable), then it can be approximated1

arbitrarily well by functions of the form q(x) in (1), in the L  norm.  Equivalently, the goal of1

the theorem is to show that functions of the form q(x) in (1) are dense in the space of all L1

functions, in using the L  norm.1

 “Since C ( ) is dense in L ( ) "c
r 1 r‘ ‘ á

The proof of this fact (referred to in the analysis book of Rudin) is very similar to the proof of
exercise 18 in Chapter 1 of Reed and Simon.

 Note that the notation supp f  denotes the support of the function f , i.e., the set ofc c
points where f  is not equal to 0.c
 
 “Since f  has compact support "c á
 Recall that compact support for f means that the set of points where f does not vanish is
a bounded set in .‘r

 

 “supp f  = [-T,T]  "c
r
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 The set [-T, T] = (x ,x , ,x ) |  -T x T    i .  Since the support of f is bounded,Ö á Ÿ Ÿ a ×1 2 r i
we can make T large enough so that the support is contained in [-T,T] .r

Page 308, top:
 Equation (2):  Note that since K L , it can be approximated by a continuous− 1

compactly supported function K  arbitrarily well.c

Page 308, bottom:
 Note that the notation (  - ) f ( ) simply refers to the function (  - x) f (x).9 ! 9 !5 5† †c c
Here  is another variable to be varied later on.!
 Recall the Riemann integral:  Given a function g(x ,x , , x ) = g(x)  defined for x in1 2 ná

[-T,T]  = x| -T x T for all i , r
iÖ Ÿ Ÿ ×

the Riemann integral consists of dividing the domain (consisting of the set [-T,T] ) into a finiter

number of pieces V   of small measure, finding a point  in each piece V  and formingÖ ×i i ii=1
m !

the sum

(2)     g( ) V ,!m
i=1

i i! ?

where V  denotes the volume of the piece V .  We then take the limit as the number of pieces? i i
?V  becomes infinite and the sizes of the volumes goes to 0, and define that as the Riemanni
integral:

   lim  g( ) V   g(x) dx.
V 0?

! ?
p

´! 'm

i=1
i i V 

Recall this is a slightly different way of defining an integral than the Lebesgue integral, but it
works as well if the function g being integrated is continuous.
 Here, the r-dimensional cube [-T,T] is divided into n smaller cubes along each of its r
directions (imagine this in r = 3 dimensions if you like), and so the total cube is sliced evenly
into n  cubes, whose sides are 1/n the length of the original cube.  Here the smaller cubesr

overlap on their boundaries, but it is not important to correct this since the boundary of a cube
has measure 0.  One can check that if we consider the set of points given in the paper:

(3)  x = [x ,x ,x , , x ] = -T+ , -T+ , -T+ , , -T+  ,1 2 3 r
2i T 2i T

n n n n
2i T 2i Tá á ‘" 2 r3

where the values i ,i , i , , i  are allowed to take all combinations of integer values from 1 to1 2 3 rá
n, then this set of n  points contains one point in each of the smaller n  cubes mentioned above.r r

Therefore if in the definition of the Riemann integral given above we choose the volumes to
be the above cubes (so m = n ), and the points to be as in (3), the function integrated is g(x) =r

9 ! !5(  - x)f (x) then the sum (2) becomes (plugging in the points  for x, which is the variablec i
we are integrating over):
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(4)  (  - )f ( ) V  =  (  - )f ( ) ,! ! ˆ ‰n n

i=1 i=1
i c i i i c i

2T
n

r 
r r

9 ! ! ! ? 9 ! ! !5 5

since the sides of each of the small cubes are 2T/n, and thus their volumes are V  = .? i
2T
n

r ˆ ‰
Call this sum (which depends on the parameter ) v ( ).  In the limit this sum takes the value! !n
of the integral, so we know

(5)       lim v ( ) =    lim    (  - )f ( )  =  (  - x) f (x) dx,n np_ p_n i c i c
n

i=1

2T
n

r 
[-T,T]  ! 9 ! ! ! 9 !! ˆ ‰ 'r

r 5 5

    = ( *f)( )9 !5

where the last quantity is just the integral over the original cube [-T,T] .r

 Note finally that the convolution operation on the bottom of the page is defined earlier
in these notes.  Note that in the last equality on page 308, since f  is equal to 0 outside thec
cube [-T,T] , we can reduce the integration over all of  to an integration over only this cube.r r‘

Page 309, top:
 The statement v ( )    ( *f )( ) is just a restatement of the fact that the Riemannnn c! 9 !Äp_ 5

sums (4) converge to the Riemann integral (5), renaming the Riemann sums as v  and then
integral as the convolution, according to definitions.

 “Since ( *f ) and the v  are dominated by an integrable bounded function with95 c n
compact support "á
 Note that the function ( *f )( ), viewed , has bounded support.9 !5 c as a function of !
Indeed, notice that the functions (x) and f (x) by their definitions have bounded support95 c
(i.e., are 0 for x outside of some fixed bounded set).  To be precise, assume that there is a
constant A such that (x) and f (x) are both equal to 0 if |x|>A (i.e., outside of a ball of radius95 c
A about the origin in r dimensional space).  Then notice that for fixed  (  - x) vanishes if! 9 !5

|  - x|>A, and f (x) vanishes if |x|>A.  Therefore, it is easy to check that when the (for now! c
fixed) point  satisfies | |>2A, then every point x in  satisfies either |  - x|>A  or |x|>A (i.e.,! ! ‘ !r

every point is a distance greater than A from either the point  or from the origin.  Thus if!
| |>2A, then for each point x, either the function (  - x) or the function f (x) is 0, so that the! 9 !5 c
product (  - x) f (x) is zero for .  Thus the integral defining ( *f )( ) is 0 for | |>2A.9 ! 9 ! !5 5c call x
Therefore the function ( *f )( ) is zero for  outside of a bounded set (now viewing the9 ! !5 c
function as depending on ).!
 In addition, it is easy to check from the definition that since the functions ( -x) and9 !5

f (x) are both bounded as functions of x, and have bounded (compact) support as functions ofc
x, the integral

  ( *f )( ) =   (  - x) f (x) dx9 ! 9 !5 5c c[-T,T]  
' r 
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is also bounded for all  (simply replace the integrand by its maximum possible value to show!
that the full integral cannot be larger than some fixed constant, so that ( *f)( ) is bounded9 !5

for all ).  Since we have established that as a function of , ( *f)( ) is bounded and has! ! 9 !5

bounded support (i.e. is zero outside of a bounded set), it is clear that ( *f)( ), as a function9 !5

of , is bounded by an integrable function (such a function could just be chosen to be the!
maximum value of ( *f)( ) on the set where it is non-zero, and zero elsewhere).9 !5

 Similarly, we can show that v ( ) ( are all bounded by the samen ! as functions of ) !
integrable function of  (when we say bounded by an integrable function, we always mean!
that the absolute value |v ( )| is what's bounded; the term “dominated by" is synonymous withn !
“bounded by" here).  To show this, notice that if B is larger than the maximum values of both
the functions  and f , then95 c

 |v ( )|=    (  - )f ( ) n i c i
n

i=1

2T
n

r
! 9 ! ! !º º! ˆ ‰r

5

       B  Ÿ º º! ˆ ‰n

i=1

2 2T
n

r
r

    =  B n  (2T/n)2 r r

   =  B /(2T)2 r

(since the last sum is just a sum of constants), which is certainly bounded.  Furthermore, all of
the functions v ( ) are 0 for | |>2A, for the same reason as the integral above was.  Therefore,n ! !
for the same reasons as above, all of the functions v ( ) are bounded by a single integrablen !
function (the function equal to B /(2T)  on the ball | | 2A).  Thus by the dominated2 r ! Ÿ
convergence theorem and (5) above, we have that

    |( *f )( ) - v ( )|d     0,n'
‘ 5r c n9 ! ! ! Äp_

as desired.

Page 309, middle:
 Note that

 K  - K    K  - K  dx² ² ´" " " "† †
5 5 5 5 5 5 5 5

! ! ! !
r r r r

i i i i
c c c c

- - x- x- ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰' ¹ ¹

          K (x ) - K (x )  dx ,´ ' ¹ ¹c c
w w w
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as follows from the change of variables x  = (x - )/  (note that dx  =  dx, since there are rw w! 5 5i
r

variables of integration).  This gives the second equation after (4).
 To obtain equation (5), just plug in the definition of v  and v , and replace f  by itsN N c

µ

maximum value f  (recall the second equation after (2), which gives  lower bound on² ²c _' K (x) dx).c
 Now since we have shown that an arbitrary function f L  can be approximated by aa− 1

function v S  arbitrarily well, we conclude that S  is dense in L .µ −n 0 0
1


