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ABSTRACT

I wish to propose a quite speculative new version of the grandmother cell theory to
explain how the brain, or parts of it, may work. In particular, I discuss how the visual
system may learn to recognize 3D objects. The model would apply directly to the cortical
cells involved in visual face recognition. I will also outline the relation of our theory to
existing models of the cerebellum and of motor control. Specific biophysical mechanisms can
be readily suggested as part of a basic type of neural circuitry that can learn to approximate
multidimensional input-output mappings from sets of examples and that is expected to be
replicated in different regions of the brain and across modalities. The main points of the
theory are:

e the brain uses modules for multivariate function approximation as basic components of
several of its information processing subsystems.

e these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b).

e HyperBF networks can be implemented in terms of biologically plausible mechanisms
and circuitry. -

The theory predicts a specific type of population coding that represents an extension of
schemes such as look-up tables. I will conclude with some speculations about the trade-off
between memory and computation and the evolution of intelligence.
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1 The Grandmother Neuron Theory

A classical theme in the neurophysiological literature at least since the
work of Hubel and Wiesel (1962) is the idea of information processing in
the brain as leading to “grandmother” neurons responding selectively to
the precise combination of visual features that are associated with one’s
grandmother. Even when not explicitily stated, this notion seems to cap-
ture how many neuroscientists believe that the brain works. The “grand-
mother” neuron theory is of course not restricted to vision and applies as
well to other sensory modalities and even to motor control under the form
of cells corresponding to elemental movements. Why is this idea so attrac-
tive? The idea is attractive because of its simplicity: it replaces complex
information processing with the superficially simpler task of accessing a
memory. The problem of recognition and motor control would be solved
by simply accessing look-up tables containing appropriate descriptions of
objects and of motor actions. The human brain can probably exploit a
vast amount of memory with its 10’ or so synapses, making attractive
any scheme that replaces computation with memory. In the case of vision
the apparent simplicity of this solution hides the difficult problems of an
appropriate representation of an object and of how to extract it from com-
plex images. But even assuming that these problems of representation,
feature extraction and segmentation could be solved by other mechanisms,
a fundamental difficulty seems to be intrinsic to the “grandmother” cell
idea. The difficulty consists of the combinatorial explosion in the number
of cells that any scheme of the look-up table type would reasonably require
for either vision or motor control. In the case of 3D object recognition, for
instance, there should be for each object as many entries in the look-up
table as there are 2-D views of the object, in principle an infinite number.
The difficulty of a combinatorial explosion lies at the heart of theories

of intelligence that attempt to replace information processing with look-
up tables of precomputed results. In this paper we suggest a scheme that
avoids the combinatorial problem, while retaining the attractive features of
the look-up table. The basic idea is to use only a few entries and interpolate
or approximate among them. A mathematical theory based on this idea
leads to a powerful scheme of learning from examples that is equivalent
to a parallel network of simple processing elements. The scheme has an
intriguingly simple implementation in terms of plausible biophysical mech-
anisms. We will discuss in particular the case of 3D object recognition
but will propose that the scheme is possibly used by the brain for several
different information processing tasks. Many information processing prob-



lems can be represented as the composition of one or more multivariate
functions that map an input signal into an output signal in a smooth way.
These modules could be synthesized from a sufficient set of input-output
pairs — the examples - by the scheme described here. Because of the power
and general applicability of this mechanism, we speculate that a part of
the machinery of the brain - including perhaps some of the cortical cir-
cuitry which is somewhat similar across the different modalities - may be
dedicated to the task of function approximation.

2 How to synthesize through Learning the
basic Approximation Module: Regular-
ization Networks

This section describes a technique for synthesizing the approximation mod-
ules discussed above through learning from examples. I first explain how
to rephrase the problem of learning from examples as a problem of ap-
proximating a multivariate function. The material in this section is from
Poggio and Girosi (1989, 1990a, 1990b), where more details can be found.

Toillustrate the connection, let us draw an analogy between learning an
input-output mapping and a standard approximation problem, 2-D surface
reconstruction from sparse data points. Learning simply means collecting
the ezamples, i.e., the input coordinates z;, y; and the corresponding output
values at those locations, the heights of the surface d;. Generalization
means estimating d at locations z,y where there are no examples, i.e. no
data. This requires interpolating or, more generally, approximating the
surface (i.e. the function) between the data points (interpolation is the
limit of approximation when there is no noise in the data). In this sense,
learning is a problem of hypersurface reconstruction (Poggio et al., 1988,
1989; Omohundro, 1987).

From this point of view, learning a smooth mapping from examples is
clearly ill-posed, in the sense that the information in the data is not suf-
ficient to reconstruct uniquely the mapping at places where data are not
available. In addition, the data are usually noisy. A prior: assumptions
about the mapping are needed to make the problem well-posed. One of
the simplest assumptions is that the mapping is smooth: small changes in
the inputs cause a small change in the output. Techniques that exploit
smoothness constraints in order to transform an ill-posed problem into a
well-posed one are well known under the term of regularization theory, and



have interesting Bayesian applications (Tikhonov and Arsenin, 1977; Pog-
gio, Torre and Koch, 1983; Bertero, Poggio and Torre, 1988). We have
recently shown that that the solution to the approximation problem given
by regularization theory can be expressed in terms of a class of multilayer
networks that we call regularization networks or Hyper Basis Functions
(see Fig. 1). Our main result (Poggio and Girosi, 1989) is that the regu-
larization approach is equivalent to an expansion of the solution in terms
of a certain class of functions:

N
760 = 3 eiG(xi &) + p(x) (1)

=1
where G(x) is one such function and the coefficients ¢; satisfy a linear
system of equations that depend on the N “examples”, i.e. the data to
be approximated. The term p(x) is a polynomial that depends on the
smoothness assumptions. In many cases it is convenient to include up
to the constant and linear terms. Under relatively broad assumptions,
the Green’s function G is radial and therefore the approximating function
becomes:

N
7x) = 3 eiGlx = &%) + p(x), (2)
i=1
which is a sum of radial functions, each with its center §; on a distinct
data point and of constant and linear terms (from the polynomial, when
restricted to be of degree one). The number of radial functions, and corre-
sponding centers, is the same as the number of examples.

Our derivation shows that the type of basis functions depends on the
specific a priori assumption of smoothness. Depending on it we obtain the
Gaussian G(r) = e~(8)°, the well known “thin plate spline” G(r) = r?lnr,
and other specific functions, radial and not. As observed by Broomhead
and Lowe (1989) in the radial case, a superposition of functions like Eq. 1 is
equivalent to a network of the type shown in Fig. 1b. The interpretation of
Eq. 2 is simple: in the 2D case, for instance, the surface is approximated by
the superposition of, say, several two dimensional Gaussian distributions,
each centered on one of the data points.

The network associated with Eq. 2 can be made more general in terms
of the following extension

£7(x) = 3 eaGllx = ta)lfy) + p() 3



where the parameters t,, that we call “centers”, and the coefficients ¢, are
unknown, and are in general much fewer than the data points (n < N).
The norm is a weighted norm

% = ta)llfy = (x = ta)TWTW(x ~ t,) (4)

where W is an unknown square matrix and the superscript T indicates the
transpose. In the simple case of diagonal W the diagonal elements w; assign
a specific weight to each input coordinate, determining in fact the units of
measure and the importance of each feature (the matrix W is especially
important in cases in which the input features are of a different type and
their relative importance is unknown). Equation 3 can be implemented by
the network of Fig. 1. Notice that a sigmoid function at the output may
sometimes be useful without increasing the complexity of the system (see
Poggio and Girosi, 1989). Notice also that there could be more than one
set of Green's functions, for instance a set of multiquadrics and a set of
Gaussians, each with its own W. Notice that two or more sets of Gaussians,
each with a diagonal W, are equivalent to sets of Gaussians with their own
os.

2.1 Learning

Iterative methods can be used to find the optimal values of the various sets
of parameters, the ¢,, the w; and the t,, that minimize an error functional
on the set of examples. Steepest descent is the standard approach that
requires calculations of derivatives. An even simpler method that does not
require calculation of derivatives (suggested and found surprisingly efficient
in preliminary work by Caprile and Girosi, personal communication) is to
look for random changes (controlled in appropriate ways) in the parameter
values that reduce the error. We define the error functional - also called
energy ~ as

H[f'] ctW Z

=1

with
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In the first method the values of ¢,, t, and W that minimize H[f*]
are regarded as the coordinates of the stable fixed point of the following
dynamical system:
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where w is a parameter. The derivatives are rather complex (see Poggio
and Girosi, 1990a and Notes section).

The second method is simpler: random changes in the parameters are
made and accepted if H[f*] decreases. Occasionally, changes that increase
H{[f*] may also be accepted (similarly to the Metropolis algorithm).

2.2 Interpretation of the network

The interpretation of the network of Fig. 1 is the following. After learn-
ing, the centers of the basis functions are similar to prototypes, since they
are points in the multidimensional input space. Each unit computes a
(weighted) distance of the inputs from its center, that is a measure of their
similarity, and applies to it the radial function. In the case of the Gaussian,
a unit will have maximum activity when the new input exactly matches
its center. The output of the network is the linear superposition of the
activities of all the basis functions in the network, plus direct, weighted
connections from the inputs (the linear terms of p(x)) and from a con-
stant input (the constant term). Notice that in the limit case of the basis
functions approximating delta functions, the system becomes equivalent to
a look-up table. During learning the weights ¢ are found by minimizing
a measure of the error between the network’s prediction and each of the
examples. At the same time, the centers of the radial functions and the
weights in the norm are also updated during learning. Moving the centers
is equivalent to modifying the corresponding prototypes and corresponds
to task-dependent clustering. Finding the optimal weights W for the norm
1s equivalent to transforming appropriately, for instance scaling, the input
coordinates and corresponds to task-dependent dimensionality reduction.

Regularization networks—- of which HyperBFs are the most general and
powerful version - represent a general framework for learning smooth map-
pings that rigorously connects approximation theory, generalized splines
and regularization with feedforward multilayer networks. They also con-
tain as special cases the Radial Basis Functions technique (Micchelli, 1986;



Powell, 1987; Broomhead and Lowe, 1988) and several well-known algo-
rithms, especially in the pattern recognition literature.

3 A Proposal for a Biological Implementa-
tion

In this section we point out some remarkable properties of Gaussian Hy-
perBF, that may have implications for neurobiology.

3.1 Faétorizable Radial Basis Functions

The synthesis of (weighted) radial basis functions in high dimensions may
be easier if they are factorizable. It is easily seen that the only radial
basis function which ts factorizable is the Gaussian (with diagonal W ). A
multidimensional Gaussian function can be represented as the product of
lower dimensional Gaussians. For instance a 2D Gaussian radial function
centered in t can be written as:
)2 (y=ty)?

Gllx = tlfy) = et = 7 RE T (5)
with o = 1/w, and o, = 1/w,, where wy and w, are the elements of the
matrix W assumed, in this section, to be diagonal.

This dimensionality factorization is especially attractive from the phys-
iological point of view, since it is difficult to imagine how neurons could
compute G(|[x — t4|*). The scheme of figure 2, on the other hand, is
physiologically plausible. Gaussian radial functions in one, two and pos-
sibly three dimensions can be implemented as receptive fields by weighted
connections from the sensor arrays (or some retinotopic array of units rep-
resenting with their activity the position of features). Gaussians in higher
dimensions can then be synthesized as products of one and two dimensional
receptive fields. '

This scheme has three additional interesting features:

1. the multidimensional radial functions are synthesized directly by ap-
propriately weighted connections from the sensor arrays, without any
need of an explicit computation of the norm and the exponential.

2. 2D Gaussians operating on the sensor array or on a retinotopic array
of features extracted by some preprocessing transduce the implicit
position of features in the array into a number (the activity of the
unit).



3. 2D Gaussians acting on a retinotopic map can be regarded each as
representing one 2D “feature”..e. a component of the input vec-
tor, while each center represents the “template”, resulting from the
conjunction of those lower-dimensional features. Notice that in this
analogy the radial basis function is the AND of several features and
could also include the negation of certain features, that is the AND
NOT of them. W weights the importance of the different features.

3.2 Biophysical Mechanisms
3.2.1 The network

The multiplication operation required by the previous interpretation of
Gaussian GRBF's to perform the “conjunction” of Gaussian receptive fields
is not too implausible from a biophysical point of view. It could be per-
formed by several biophysical mechanisms (see Koch and Poggio, 1987).
Here we mention three mechanisms: '

1. inhibition of the silent type and related circuitry (see Torre and Pog-
gio, 1978; Poggio and Torre, 1978)

2. the AND-like mechanism of NMDA receptors

3. a logarithmic transformation, followed by summation, followed by
exponentiation. The logarithmic and exponential characteristic could
be implemented in appropriate ranges by the sigmoid-like pre-to-
postsynaptic voltage transduction of many synapses.

If the first or the second mechanism is used, the product of figure 3
can be performed directly on the dendritic tree of the neuron representing
the corresponding radial function (alternatively, each dendritic tree may
perform pairwise products only, in which case a logarithmic number of
cells would be required). The scheme also requires a certain amount of
memory per basis unit, in order to store the center vector. In the case of
Gaussian receptive fields used to synthesize Gaussian radial basis functions,
the center vector is effectively stored in the position of the 2D (or 1D)
receptive fields and in their connections to the product umit(s). This is
plausible physiologically.

The linear terms (the direct connections from the inputs to the output
in figure 1) can be realized directly as inputs to the output neuron that
summates linearly its synaptic inputs (an output nonlinearity is allowed
and will not change the basic form of the model, see Poggio and Girosi,
1989). They may also be realized through intermediate linear units.
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3.2.2 Mechanisms for learning

Do the update schemes have a physiologically plausible implementation?
Consider first the steepest descent methods, which require derivatives.
Equation (6) or a somewhat similar, quasi-hebbian scheme is not too un-
likely and may require only a small amount of neural circuitry. Equation
(7) seems more difficult to implement for a network of real neurons.

Methods such as the random descent method, which do not require
calculation of derivatives are biologically much more plausible and seem
to perform very well in preliminary experiments. In the Gaussian case,
with basis functions synthesized through the product of Gaussian receptive
fields, moving the centers means establishing or erasing connections to the
product unit. A similar argument can be made also about the learning of
the matrix W. Notice that in the diagonal Gaussian case the parameters
to be changed are exactly the o of the Gaussians, i.e. the spread of the
associated receptive fields. Notice also that the ¢ for all centers on one
particular dimension is the same, suggesting that the learning of w; may
involve the modification of the scale factor in the input arrays rather than
a change in the dendritic spread of the postsynaptic neurons.

In all these schemes the real problem consists in how to provide the
“teacher” input (but see figure 3).

4 Visual Recognition of 3D Objects and
Face sensitive Neurones

We have recently suggested and demonstrated how to use a HyperBF net-
work to learn to recognize a 3D object. This section reviews very briefly
this work (Poggio and Edelman, 1990) and then suggests that the brain
may use a similar strategy. Face sensitive neurons are discussed as a specific
instance.

4.1 HyperBF networks for recognizing 3D objects

A 3D object gives rise to an infinite variety of 2D images or views, because
of the infinite number of possible poses relative to the viewer, and because
of arbitrarily different illumination conditions. Is it possible to synthesize
a module that can recognize an object from any viewpoint, after it learns
its 3D structure from a small set of perspective views? We have have
recently shown (Poggio and Edelman, 1990) that the HyperBF scheme
may provide a solution to the problem provided that relatively stable and
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uniquely identifiable features (that we will call “labeled” features) can be
extracted from the image.

In our scheme a view is represented as a 2V vector 21, ¥1, 22, Y2, - - » TN, UN
of the coordinates on the image plane of NV labeled and visible feature points
on the object. We assume that a view of an object is a vector of this type
(instead of position in the image of feature points we have also used angles
between corners and length of segments or both), in general augmented by
components that represent other properties of the object not necessarily
related to its geometric shape, such as color or texture. We also assume
that the function that maps the views into 0,1 (0 if the view is of another
object, 1 if the view is of the correct object) can be approximated by a
smooth function (if this were false, one could approximate the mapping
from the view to a “standard” view and then apply a radial function to
the result, see Poggio and Edelman, 1990).

The network used for this task is shown in Figure 3 (see also Figure
4). In the simplest version (fixed centers) the centers correspond to some
of the examples, i.e. some views of the object. Updating the centers is
equivalent to modifying the corresponding “prototypical views”. Updating
the weights of the matrix W corresponds to changing the relative impor-
tance of the various features that define the views of an object. This is
important in the case in which these features are of a completely different
type: a large w indicates a larger weight in the feature in the measure of
similarity and is equivalent to a small ¢ in the Gaussian function. Features
with a small role have a very large o: their exact position or value does
not matter much.

An interesting conclusion of this work consists of the small number
of views that is required to recognize an object from the infinite number
of possible views. The results clearly show that the scheme avoids the
main problem of look-up table schemes, the explosion in the number of
entries. Furthermore, the performance of the HyperBF recognition scheme
resembles human performance in a related task. As discussed in Poggio
and Edelman (1990), the number of training views necessary to achieve
an acceptable recognition rate on novel views, 80-100 for the full viewing
sphere, is broadly compatible with the finding that people have trouble
recognizing a novel wire-frame object previously seen from one viewpoint
if it is rotated away from that viewpoint by about 30° (it takes 72 30° x 30°
patches to cover the viewing sphere).

Recently, Buelthoff and Edelman (1990) have obtained interesting psy-
chophysical results that support this model for human recognition of a
certain class of 3D objects against other possible models. In general, the
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experimental results fit closely the prediction of theories of the 2D inter-
polation variety and appear to contradict theories that involve 3D models.

4.2 Face sensitive neurones

The HyperBF recognition scheme we have outlined has suggestive simi-
larities with some of the data about visual neurons responding to faces
obtained by Perrett and coworkers recording from the temporal associa-
tion cortex (see Perrett et al., 1987 and references therein, Poggio and
Edelman, 1990). Let us consider the network of figure 3 as the skeleton for
a model of the circuitry involved in the recognition of faces. One expects
different modules one for each different object of the type of the network of
Figure 3. One also expects hyerarchical organizations: for instance a net-
work of the HyperBF type may be used to recognize certain types of eyes
and then may serve as input to another network involved in recognizing a
certain class of faces, which may be itself one of the inputs to a network for
a specific face. Different types of cells may then be expected. The overall
output of a network for a specific face may be identified with the behavioral
responses associated with recognition and may or may not coincide with an
individual neuron. There should be cells or parts of cells corresponding to
the centers, i.e. to the prototypes used by the networks. The response of
these neurons should be a Gaussian function of the distance of the input to
the template. These units would be somewhat similar to “grandmother”
filters with a graded response, rather than binary detectors, each repre-
senting a prototype. They would be synthesized as the conjunction of, for
instance, two-dimensional Gaussian receptive fields looking at a retinotopic
map of features. During learning, the weights of the various prototypes in
the network output are modified to find the optimal values that minimize
the overall error. The prototypes themselves are slowly changed to find op-
timal prototypes for the task. The weights of the different input features
is also modified to perform task-dependent dimensionality reduction.
Some of these expectations are consistent with the experimental find-
ings of Perret et al. (1987). Some of the neurons described have several
of the properties expected from the units of a HyperBF network with a
center, i.e. a prototype that corresponds to a view of a specific face.

Some of the main data (from Perret et al., 1987 and references therein)
e The majority of cells responsive to faces are sensitive to the general

characteristics of the face and they are somewhat invariant to its
exact position and attitude.
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o Presenting parts of the face in isolation revealed that some of the
cells responded to different subsets of features: some cells are more
sensitive to parts of the face such as eves or mouth.

o There are cells selective for a particular view of the head. Some
cells were maximally sensitive to the front view of a face, and their
response fell off as the head was rotated into the profile view, and
others were sensitive to the profile view with no response to the front
view of the face.

o There are cells that are specific to the views of one individual. It
seems that for each known person there would be a set of ’face recog-
nition units’. Our model applies most directly to these neurons.

5 Theories of the Cerebellum and of Motor
Control

5.1 Marr’s and Albus models of the Cerebellum

The cerebellum is a part of the brain that is important in the coordination
of complex muscle movements. The neural organization of the cerebellum
is highly regular and well known (see Figure 5). Marr (1969) and Albus
(1972) modeled the cerebellum as a look-up table. The critical part of
their theories is the assumption that the synapses between the parallel
fibers and the Purkinje cells are modified as a function of the Purkinje cell
activity and the climbing fibres input. I suggest (see figure 5) that the
cerebellum is a HyperBF network or set of networks (one for each Purkinje
cell). Instead of a simple look-up table, the cerebellum would be a function
approzimation module (in a sense, “an approximating look-up table”). In
our conjecture, basket and Golgi cells would have different roles from the
roles assumed in the Marr-Albus theory. In particular, the Golgi cells,
which receive inputs from the parallel fibers and whose axons synapse on
the granule cells-mossy fibers clusters, may be used to change the norm
weights W,

Key assumptions

e granule cells correspond to basis units (there may be as many as
200,000 granule cells per Purkinje cell) representing as many "exam-
ples”
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