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ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AND STEVE SMALE

The problem of learning is arguably at the

very core of the problem of intelligence�

both biological and arti�cial�

T� Poggio and C�R� Shelton

Introduction

���A main theme of this report is the relationship of approximation to learning and
the primary role of sampling �inductive inference�� We try to emphasize relations
of the theory of learning to the mainstream of mathematics� In particular� there
are large roles for probability theory� for algorithms such as least squares� and for
tools and ideas from linear algebra and linear analysis� An advantage of doing this
is that communication is facilitated and the power of core mathematics is more
easily brought to bear�

We illustrate what we mean by learning theory by giving some instances�

�a� The understanding of language acquisition by children or the emergence of
languages in early human cultures�

�b� In Manufacturing Engineering� the design of a new wave of machines is an�
ticipated which uses sensors to sample properties of objects before� during�
and after treatment� The information gathered from these samples is to be
analyzed by the machine to decide how to better deal with new input objects
�see ��	
��

�c� Pattern recognition of objects ranging from handwritten letters of the alpha�
bet to pictures of animals� to the human voice�

Understanding the laws of learning plays a large role in disciplines such as �Cog�
nitive� Psychology� Animal Behavior� Economic Decision Making� all branches of
Engineering� Computer Science� and especially the study of human thought pro�
cesses �how the brain works��

Mathematics has already played a big role towards the goal of giving a univer�
sal foundation of studies in these disciplines� We mention as examples the theory
of Neural Networks going back to McCulloch and Pitts ���
 and Minsky and Pa�
pert ��

� the PAC learning of Valiant ���
� Statistical Learning Theory as devel�
oped by Vapnik ���
� and the use of reproducing kernels as in ��

 among many
other mathematical developments� We are heavily indebted to these developments�
Recent discussions with a number of mathematicians have also been helpful� In
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particular this includes Gregorio Malajovich� Massimiliano Pontil� Yuan Yao� and
especially Ding�Xuan Zhou�

���We now describe some cases of learning where we have simpli�ed to the extreme�

Case �� A classical example of learning is that of learning a physical law by curve
�tting to data� Assume that the law at hand� an unknown function f � R� R� has a
speci�c form and that the space of all functions having this form can be parameter�
ized by N real numbers� For instance� if f is assumed to be a polynomial of degree
d� then N � d�� and the parameters are the unknown coe�cients w�� � � � � wd of f �
In this case� �nding the best �t by the least squares method estimates the unknown
f from a set of pairs �x�� y��� � � � � �xm� ym�� If the measurements generating this set
were exact� then f�xi� would be equal to yi� But in general one expects the values
yi to be a�ected by noise� One computes the vector of coe�cients w such that the
value

mX
i��

�fw�xi�� yi�
�� with fw�x� �

dX
j��

wjx
j

is minimized where� typically�m � N � In general� the value above is not minimized
at �� The least squares technique� going back to Gauss and Legendre� which is com�
putationally e�cient and relies on numerical linear algebra� solves this minimization
problem�

In some contexts the xi� rather than being chosen� are also generated by a
probability measure� Thus� one might take as a starting point� instead of the
unknown f � a probability measure on R varying with x � R� Then yi is a sample
for a given xi� The starting point could be even a single measure on R�R from
which the pairs �xi� yi� are randomly drawn� The latter is the point of view taken
here�

A more general form of the functions in our approximating class could be given
by

fw�x� �
NX
i��

wi�i�x�

where the �i are part of a �preconditioning step�� This is reminiscent of neural
nets where the wi are the weights to be adjusted by �training��

Case �� A standard example of pattern recognition is that of recognizing hand�
written characters� Consider the problem of classifying handwritten letters of the
English alphabet� Here� elements in our space X could be matrices with entries in
the interval ��� �
 �each entry representing a pixel in a certain grey scale of a photo
of the handwritten letter or some features extracted from the letters� We may take
Y to be

Y �

�
y � R�� j y �

��X
i��

�iei s�t�
��X
i��

�i � �

�
�

Here ei is the ith coordinate vector in R�� �each coordinate corresponding to a
letter�� If � � Y is the set of points y as above such that � � �i � �� for
i � �� � � � � ��� one can interpret a point in � as a probability measure on the set
fA�B�C�� � ��X�Y�Zg� The problem is to learn the ideal function f � X � Y which
associates� to a given handwritten letter x� the point fProbfx �Ag� Probfx �Bg�� � � �
Probfx �Zgg� Non�ambiguous letters are mapped into a coordinate vector� and in
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the �pure� classi�cation problem f takes values on these ei� �Learning f� means
to �nd a su�ciently good approximation of f within a given prescribed class�

The approximation of f is constructed from a set of samples of handwritten
letters� each of them with a label in Y � The set f�x�� y��� � � � � �xm� ym�g of these
m samples is randomly drawn from X � Y according to a measure � on X � Y �
and the function f to be learned is the regression function f� of �� That is� f��x�
is the average of the y values of fxg � Y �we will be more precise about � and the
regression function in Section � in the next chapter��

Case 	 �Monte Carlo integration�� An early instance of randomization used in al�
gorithms is for computing integrals� Let f � ��� �
n � R� A way of approximat�
ing the integral

R
x������n f�x�dx consists of randomly drawing points x�� � � � � xm �

��� �
n and computing

Im�f� �
�

m

mX
i��

f�xi��

Under mild conditions on f � Im�f� � R
f with probability �� i�e�� for all � � ��

lim
m��

Prob
x����� �xm

�����Im�f� �
Z

f

���� � �

�
� ��

We �nd again the theme of learning an object �here a single real number� al�
though de�ned in a non�trivial way through f� from a sample� In this case the
measure governing the sample is known �the measure in ��� �
n inherited from the
standard Lebesgue measure on Rn�� but the same idea can be used for an unknown
measure� If �X is a probability measure on X � Rn� a domain or manifold� Im�f�
will approximate

R
x�X f�x�d�X � for large m with high probability� as long as the

points x�� � � � � xm are drawn from X according to the measure �X �

Case �� The approximation of characteristic �or indicator� functions of sets is
known as PAC learning �from Probably Approximately Correct�� Let T �the target
concept� be a subset of Rn and �X be a probability measure on Rn which we as�
sume is not known in advance� Intuitively� a set S � Rn approximates T when the
symmetric di�erence S�T � �S � T � � �T � S� is small� i�e� has a small measure�
Note that if fS and fT denote the characteristic functions of S and T respectively�
this measure� called the error of S� is

R
Rn

�fS � fT �
�d�X �

Let C be a class of subsets of Rn and assume that T � C� A strategy to con�
struct an approximation of T is the following� First� draw points x�� � � � � xm � Rn
according to �X and label each of them with � or � according to whether or not
they belong to T � Secondly� compute any function fS � Rn� f�� �g� fS � C� which
coincides with the labeling above over fx�� � � � � xmg� Such a function will provide
a good approximation S of T as long as m is large enough and C is not too wild�
Thus the measure �X is used in both capacities� governing the sample drawing and
measuring the error set S�T �

A major goal in PAC learning is to estimate as a function of � and 	 how large
m needs to be to obtain an � approximation of T with probability at least �� 	�

A common characteristic of the cases above is the existence of both an �un�
known� function f � X � Y and a probability measure allowing one to randomly
draw points in X � Y � That measure can be on X �Cases 	 and ��� on Y varying
with x � X �Case ��� or on the product X �Y �Case ��� It can be known �Case 	�
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or unknown� The only requirement it satis�es is that� if for x � X a point y � Y
can be randomly drawn� then the expected value of y is f�x��

The development in this paper� for reasons of unity and generality� will be based
upon a single measure on X � Y � Yet� one should keep in mind the distinction
between �inputs� x � X and �outputs� y � Y �

In the sequel� we will try to give a rigorous development of what we have found
to be the central ideas of learning theory� However� learning theory in its various
forms is vast� and we don�t even touch on important parts such as �unsupervised
learning�� relations with dynamics� with neural nets� and so on� �Classi�cation� is
not covered directly� However� this report could be of use in further foundational
studies in these areas�

Since the readers will have diverse mathematical backgrounds� we sketch the
proofs of some standard theorems� with references to the literature for fuller ac�
counts� When the result is new� we are more complete�

Practical results are not the goal of this paper� Understanding is� We try to write
in the spirit of H� Weyl and J� von Neumann�s contributions to the foundations of
quantum mechanics�

Chapter I� Sample Error

�� A formal setting� The probability measure on the product space

and the error

Since we want to study learning from random sampling� the primary object in
our development is a probability measure � governing the sampling and which is
not known in advance �however� the goal is not to reveal ���

Let X be a compact domain or a manifold in Euclidean space and Y � Rk� For
convenience we will take k � � for the time being� Let � be a Borel probability
measure on Z � X � Y whose regularity properties will be assumed as needed� In
the following we try to utilize concepts formed naturally and solely from X�Y and
��

Throughout this paper� if 
 is a random variable� i�e� a real valued function on
a probability space Z� we will use E�
� to denote the expected value �or average�
or mean� of 
 and ���
� to denote its variance� Thus

E�
� �

Z
Z


 d� and ���
� � E��
 � E�
���� � E�
��� �E�
����

A main concept is the error �or least squares error� of f de�ned by

E�f� � E��f� �
Z
Z

�f�x� � y�� for f � X � Y �

For each input x � X and output y � Y � �f�x� � y�� is the error su�ered from the
use of f as a model for the process producing y from x� By integrating over X �Y
�w�r�t� �� of course� we average out the error over all pairs �x� y�� Hence the word
�error� for E�f��

The problem is posed� What is the f which minimizes the error E�f��
The error E�f� naturally decomposes as a sum� Let us see how�
For every x � X� let ��yjx� be the conditional �w�r�t� x� probability measure on

Y and �X be the marginal probability measure on X� i�e� the measure on X de�ned
by �X �S� � ������S�� where � � X � Y � X is the projection� Notice that ��



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 


��yjx� and �X are related as follows� For every integrable function 
 � X � Y � R
a version of Fubini�s Theorem states thatZ

X�Y


�x� y� d� �

Z
X

�Z
Y


�x� y� d��yjx�
�
d�X �

This �breaking� of � into the measures ��yjx� and �X corresponds to looking at Z
as a product of an input domain X and an output set Y � In what follows� unless
otherwise speci�ed� integrals are to be understood over �� ��yjx� or �X �

De�ne f� � X � Y by

f��x� �

Z
Y

y d��yjx��

The function f� is called the regression function of �� For each x � X� f��x� is the
average of the y coordinate of fxg � Y �in topological terms� the average of y on
the �ber of x�� Regularity hypotheses on � will induce regularity properties on f��

We will assume throughout this paper that f� is bounded�
Fix x � X and consider the function from Y to Rmapping y into �y � f��x���

Since the expected value of this function is �� its variance is

���x� �

Z
Y

�y � f��x��
�d��yjx��

Averaging over X� de�ne

��� �

Z
X

���x� d�X � E�f���

The number ��� is a measure of how well conditioned � is� analogous to the notion
of condition number in numerical linear algebra�

Remark �� �a� It is important to note that� while � and f� are mainly �unknown��
�X is known in some situations and can even be the Lebesgue measure on X
inherited from Euclidean space �as in Case � above��

�b� In the rest of this paper� if formulas do not make sense or � appears� then
the assertions where these formulas occur should be considered vacuous�

Proposition �� For every f � X � Y �

E�f� �
Z
X

�f�x� � f��x��
� � ����

Proposition � has the following consequence�
The �rst term in the right�hand side of Proposition � provides an average �over

X� of the error su�ered from the use of f as a model for f�� In addition� since ���
is independent of f � Proposition � implies that f� has the smallest possible error
among all functions f � X � Y � Thus ��� represents a lower bound on the error E �
and it is due solely to our primary object� the measure ��

Thus� Proposition � supports�

The goal is to �learn� �i�e� to �nd a good approximation of	 f� from
random samples on Z�
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Proof of Proposition 
� We have

E�f� �

Z
Z

�f�x� � f��x� � f��x�� y��

�

Z
X

�f�x� � f��x��
� �

Z
X

Z
Y

�f��x�� y��

��

Z
X

Z
Y

�f�x� � f��x���f��x�� y�

�

Z
X

�f�x� � f��x��
� � ����

We now consider the sampling� Let

z � Zm� z � ��x�� y��� � � � � �xm� ym��

be a sample in Zm� i�e� m examples independently drawn according to �� Here
Zm denotes the m�fold Cartesian product of Z� We de�ne the empirical error of f
�w�r�t� z� to be

Ez�f� � �

m

mX
i��

�f�xi�� yi�
��

If 
 is a random variable on Z� we denote the empirical mean of 
 �w�r�t� z� by
Ez�
�� Thus�

Ez�
� �
�

m

mX
i��


�zi��

For any function f � X � Y we denote by fY the function

fY � X � Y � Y

�x� y� 	� f�x� � y�

With these notations we may write E�f� � E�f�Y � and Ez�f� � Ez�f�Y �� We already
remarked that the expected value of f�Y is �� we now remark that its variance is
����

Remark �� Consider the setting of PAC learning discussed in Case � where X � Rn�
The measure �X described there can be extended to a measure � on Z by de�ning�
for A � Z�

��A� � �X �fx � X j �x� fT �x�� � Ag��
The marginal measure on X of � is our original �X � In addition� ��� � �� the
error above specializes to the error mentioned in that discussion� and the regression
function f� of � coincides with fT except for a set of measure zero in X�

�� Convergence in probability

Toward the proof of our main Theorems B and C we recall some basic inequalities
in probability theory� The �rst one� Chebyshev�s inequality� is classical� For a proof
of the second one� which is an exponential extension of Chebyshev�s inequality for
bounded random variables� see �	�
�
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Proposition �� Let 
 be a random variable on a probability space Z with mean
E�
� � � and variance ���
� � ���

�Chebyshev
 For all � � �

Prob
z�Zm

������ �m
mX
i��


�zi�� �

����� 
 �

�
� ��

m��
�

�Bernstein
 If j
�z�� E�
�j �M for almost all z � Z� then� for all � � ��

Prob
z�Zm

������ �m
mX
i��


�zi�� �

����� 
 �

�
� �e

� m��

����� �
�
M�� �

Remark 	� �i� The inequalities in Proposition � can be seen as quantitative ver�
sions of the law of large numbers�

�ii� Bernstein�s inequality without the absolute value provides a bound without

the �rst �� i�e� e
� m��

����� �
�M�� �see �	�
��

�iii� Another exponential version of Chebyshev�s inequality� due to Hoe�ding� is
often used in the learning literature� With the notations used in the statement
of Proposition �� Hoe�ding�s inequality reads

Prob
z�Zm

������ �m
mX
i��


�zi�� �

����� 
 �

�
� �e�

m��

�M� �

Notice that when we replace �� by its obvious bound M�� the exponent in
Bernstein�s inequality becomes

� m��

�M� � �
�M�

which is slightly worse than Hoe�ding�s� Since we may assume � � M �oth�
erwise the probability in the statement is zero� we have �M� � �

�M� �
�M��� � ��	�� It follows that this exponent is multiplied by a factor of
at most 	��� However� in the other extreme� when �� � �� the exponent in
Bernstein�s inequality becomes

�	m�

�M

which is much better than the exponent in Hoe�ding�s inequality�
We also note that Chebyshev�s inequality yields a better bound than both

Bernstein�s and Hoe�ding�s for small m�

Let f � X � Y � The defect function of f is

Lz�f� � L��z�f� � E�f� � Ez�f��
Notice that the theoretical error E�f� cannot be measured directly while Ez�f� can�
A bound on Lz�f� becomes useful since it allows one to bound the actual error
from an observed quantity�

Our �rst main result� Theorem A� states bounds for ProbfjLz�f�j � �g for a
single function f � X � Y � This bound follows from Proposition � by taking

 � f�Y �
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Theorem A� Let M � � and f � X � Y be such that jf�x� � yj � M almost
everywhere� Then� for all � � ��

Prob
z�Zm

fjLz�f�j � �g 
 �� �e
� m��

����� �
�
M���

where �� is the variance of f�Y �

Remark �� ��� Note that the con�dence �i�e� the right hand side in the inequal�

ity above� is positive when m is larger than
�
��� �

�M
���

�� and approaches �
exponentially fast with m�

��� A case implying the condition jf�x� � yj �M a�e� is the following� De�ne

M� � inf
	
M 
 � j f�x� y� � Z j jy � f��x�j 
Mg has measure zero



�

Then take M � P �M� where P 
 kf � f�k� � sup
x�X

jf�x� � f��x�j�

	� Hypothesis spaces and target functions

Learning processes do not take place in a vacuum� Some structure needs to be
present at the beginning of the process� The nature of this structure in the instance
of language acquisition mentioned in the introduction is a subject of debate among
linguists� In our formal development� we will assume that this structure takes the
form of a class of functions� The goal of the learning process will thus be to �nd
the best approximation of f� within this class� Therefore� we now move the focus
from a function f � X � Y to a family H of such functions�

Let C�X� be the Banach space of continuous functions on X with the norm

kfk� � sup
x�X

jf�x�j�

We consider a compact subset H of C�X� �in the sequel called hypothesis space�
where algorithms will work to �nd� as well as possible� the best approximation for
f�� A main choice in our paper is a compact� in�nite dimensional� subset of C�X��
but we will also consider closed balls in �nite dimensional subspaces of C�X�� It is
important for us to choose H in this way so that the existence of fH and fz �see
below� is guaranteed� Proposition 	 below can be proved� and covering numbers are
�nite �see Section ���

If f� � H� simpli�cations will occur� But in general� we will not even assume
that f� � C�X�� and we will have to consider a target function fH in H�

Let fH be a function minimizing the error E�f� over f � H� i�e� an optimizer of

min
f�H

Z
Z

�f�x� � y���

Notice that� since E�f� � R
X
�f � f��

� � ���� fH is also an optimizer of

min
f�H

Z
X

�f � f��
��

The existence of fH follows from the compactness of H and the continuity of
E � C�X� � R �see Remark 
 below�� It is not necessarily unique� However� we will
see a uniqueness result in Section 
 when H is convex�
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Let z � Zm be a sample� We de�ne the empirical target function fH�z � fz to
be a function minimizing the empirical error Ez�f� over f � H� i�e� an optimizer of

min
f�H

�

m

mX
i��

�f�xi�� yi�
��

Note that while fz is not produced by an algorithm� it is close to algorithmic� It is
�empirical� from its dependence on the sample z� The existence of fz follows from
the compactness of H and the continuity of Ez where the use of k k� is now crucial
�again� see Remark 
 below�� Observe that fz does not depend on �� Note also
that E�fz� and Ez�f� are di�erent objects� as are E�fH� and EH�f� below�

For a given hypothesis space H� the error in H of a function f � H is the
normalized error

EH�f� � E�f�� E�fH��

Note that EH�f� 
 � for all f � H and that EH�fH� � ��
Continuing the discussion after Proposition �� note that it follows from our def�

initions and that proposition that

E�fz� � EH�fz� � E�fH� �

Z
X

�fz � f��
� � �������

Consider the sum EH�fz� � E�fH�� The second term in this sum depends on the
choice of H but is independent of sampling� We will call it the approximation error�
The �rst term� EH�fz�� is called the sample error��

Equation ��� thus breaks our goal �to estimate
R
X
�fz � f��� or� equivalently�

E�fz�� into two di�erent problems corresponding to �nding estimates for the sam�
ple and approximation errors� Note that the �rst problem is posed on the space
H and the second is independent of the sample z� For �xed H the sample error
decreases when the number m of examples increases �as we will see in Theorem C��
Fix m instead� Then� typically� the approximation error will decrease when en�
larging H� but the sample error will increase� This latter feature is sometimes
called the bias�variance trade�o� �see e�g� ��
 and page �� in ���
�� The �bias� is
the approximation error and the �variance� is the sample error� This suggests the
problem of how to choose dimH �or another measure of the size of H� when m is
�xed� We will examine this problem in the next chapter� The focus of this chapter
is on estimating the sample error� We want to estimate how close one may expect
fz and fH to be� depending on the size of the sample and with a given con�dence�
Or� equivalently�

How many examples do we need to draw to assert� with a con�dence
greater than �� 	� that

R
X�fz � fH�� is not more than ��

There have been many results in recent years doing this �cf� ���
� ���
�� Our main
results in this chapter� Theorems C and C� below� give such estimates in a general
and sharp setting�

We now describe some examples of hypothesis spaces� Our development in this
and the next chapter will be accompanied by the development of these examples�

Example � �Homogeneous polynomials�� Let Hd � Hd�Rn��� be the linear space
of homogeneous polynomials of degree d in x�� x�� � � � � xn� Let X � S�Rn���� the

�The sample error is often called estimation error in the literature�

Mark
Highlight
This is the key - the reason why you have to adjust the size of your space to your sample size.

Mark
Highlight

Mark
Highlight
What you do is simple - find the approximation error and the sample error, and minimize the sum.  This is the mathematical quantization and key to the problem of overfitting.
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n�dimensional unit sphere� An element in Hd de�nes a function from X to R and
can be written as

f �
X
j�j�d

w�x
��

Here� � � ���� � � � � �n� � Nn is a �multi�index�� j�j � �� � � � �� �n� and x� �
x��
� � � �x�nn � Thus� Hd is a vector space of dimension

N �

�
n� d
n

�
�

We may consider H � ff � Hd j kfk� � �g as a hypothesis space� Because of the
scaling f��x� � �df�x�� taking the bound kfk� � � causes no loss� The number
N is exponential in n and d� We notice however that in some situations one may
consider a linear space of polynomials with a given monomial structure� i�e� in
which only a prespeci�ed set of monomials may appear�

Example � �Finite dimensional function spaces�� This generalizes the previous
example� Let ��� � � � � �N � C�X� and E be the linear subspace of C�X� spanned by
f��� � � � � �Ng� Here we may take H � ff � E j kfk� � Rg for some R � ��

The next two examples deal with in�nite dimensional linear spaces� In both of
them� the space L���X� of square integrable functions is central�

Let � be a Borel measure on X and L be the linear space of functions f � X � Y
such that the integral Z

X

f��x� d�

exists� The space L���X� is de�ned to be the quotient of L under the equivalence
relation � given by

f � g 
�
Z
X

�f�x� � g�x��� d� � ��

This is a Hilbert space with the scalar product

hf� gi� �

Z
X

f�x�g�x� d��

We will denote by k k� the norm induced by this inner product� In case � � �X we
will write k k� instead of the more cumbersome k k�X �

A linear map J � E � F between the Banach spaces E and F is called compact if
the closure J�B� of J�B� is compact for any bounded set B � E�
Example � �Sobolev spaces�� Let X be a compact domain in Rn with smooth
boundary� Then� the space C��X� of in�nitely di�erentiable functions on X is
well�de�ned� For every s � N we can de�ne an inner product in C��X� by

hf� gis �
Z
X

X
j�j�s

D�fD�g�

Here� � � Nn� D�f is the partial derivative 	�f
	x

��
� ���	x�nn

� and we are integrating

with respect to the Lebesgue measure � on X inherited from Euclidean space� We
will denote by k ks the norm induced by h � is� Notice that when s � �� the inner
product above coincides with that of L�
�X�� In particular� k k� � k k
� We de�ne
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the Sobolev space Hs�X� to be the completion of C��X� with respect to the norm
k ks� The Sobolev Embedding Theorem asserts that� for s � n��� the inclusion

Js � H
s�X� �� C�X�

is well�de�ned and bounded� FromRellich�s Theorem it follows that this embedding
is actually compact� The de�nition of Hs�X� can be extended to s � R� s 
 ��
by using a Fourier transform argument �see also �	�
�� A reference for the above
is �	�
�

Thus� if BR denotes the closed ball of radius R in Hs�X�� we may take HR�s �

H � Js�BR��

Example � �Spaces associated to a kernel�� Let K � X � X � R be continuous
and symmetric� Assume that� in addition� K is positive de�nite� i�e� that for all
�nite sets fx�� � � � � xkg � X the k � k matrix K�x
 whose �i� j� entry is K�xi� xj�
is positive de�nite� We will call such function a Mercer kernel� Let � be any Borel
measure on X� Let LK � L���X� � C�X� be the linear operator given by

�LKf��x� �

Z
K�x� t�f�t�dt�

Then LK is well�de�ned� positive� and compact �cf� Section � of Chapter III��
In Section 	 of Chapter III it is proved that there exists a Hilbert space HK of
continuous functions onX �called reproducing kernel Hilbert space� RKHS for short�

associated to K and X and independent of � such that the linear map L
���
K is a

Hilbert isomorphism between L���X� and HK � Here L
���
K denotes the square root

of LK � i�e� the only linear operator satisfying L���K �L���K � LK � Thus� we have the
following diagram�

L�
�X�
L
���
K�C ��

�

L
���
K ����

���
���

�
C�X�

HK

IK

��

where we write LK�C to emphasize that the target is C�X� and IK denotes the
inclusion� In Section � of Chapter III we will prove that if K is C�� then IK is
compact� For a C� Mercer kernel K we may thus consider IK �BR� as a hypothesis
space� This choice will occupy us in Chapter III� where� in particular� Mercer
kernels are shown to exist�

Remark �� The examples above �t into a general setting which we will refer to in
the sequel� Let E be a Banach space of functions on X and JE � E � C�X� a
compact embedding� We then de�ne� for R � ��

H � HR � HE�R � JE�BR�

where BR denotes the closed ball of radius R in E� Of course our de�nition of
hypothesis space includes some which do not �t into the general setting�

�� Uniform estimates on the defect

Our second main result� Theorem B� extends Theorem A to families of functions�
While Theorem A is an immediate application of Bernstein�s inequality� Theorem B
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is a version of the main uniformity estimate in Statistical Learning Theory as de�
veloped by Vapnik �see e�g� ���
� ���
�� The topology on the family of functions
H� in particular via supposing that H � C�X� and that H is compact as in Sec�
tion 	� enables our statement and proof of the uniformity estimates to become quite
economical�

Let S be a metric space and s � �� We de�ne the covering number N �S� s� to
be the minimal � � N such that there exist � disks in S with radius s covering S�
When S is compact� as in our case� this number is �nite�

Theorem B� Let H be a compact subset of C�X�� Assume that� for all f � H�
jf�x�� yj �M almost everywhere� Then� for all � � ��

Prob
z�Zm

�
sup
f�H

jLz�f�j � �

�

 �� N

�
H� �

�M

�
�e
� m��

������ �
�M

��� �

Here �� � ���H� � sup
f�H

���f�Y ��

Notice the resemblance to Theorem A� The only essential di�erence is the inclu�
sion of the covering number� which takes into account the extension from a single
f to the family H� This has the e�ect of requiring the sample size m to increase
accordingly to achieve the con�dence level of Theorem A�

Let f�� f� � C�X�� We �rst estimate the quantity

jLz�f�� � Lz�f��j
linearly by kf� � f�k� for almost all z � Zm �a Lipshitz estimate��

Proposition �� If jfj�x� � yj � M on a set U � Z of full measure for j � �� ��
then for z � Um

jLz�f��� Lz�f��j � �Mkf� � f�k��
Proof� First note that since

�f��x�� y�� � �f��x�� y�� � �f��x�� f��x���f��x� � f��x�� �y�

we have

jE�f�� � E�f��j �

����
Z

�f��x� � f��x���f��x� � f��x�� �y�

����
� kf� � f�k�

Z
j�f��x�� y� � �f��x�� y�j

� kf� � f�k��M�

Also� for z � Um� we have

jEz�f�� � Ez�f��j �
�

m

�����
mX
i��

�f��xi�� f��xi���f��xi� � f��xi� � �yi�

�����
� kf� � f�k� �

m

mX
i��

j�f��xi�� y� � �f��xi� � yi�j

� kf� � f�k��M�

Thus

jLz�f��� Lz�f��j � jE�f��� Ez�f��� E�f�� � Ez�f��j � kf� � f�k��M�
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Remark �� Notice that for bounding jEz�f��� Ez�f��j in the proof above �in con�
trast with the bound for jE�f��� E�f��j� one crucially needs the use of the k k�
norm� Nothing less would do�

Remark 
� Let H � C�X� such that� for all f � H� jf�x� � yj � M almost every�
where� Then the bounds jE�f��� E�f��j � �Mkf� � f�k� and jEz�f�� � Ez�f��j �
�Mkf� � f�k� imply that E � Ez � H � R are continuous�

Lemma �� Let H � S� � � � �� S� and � � �� Then

Prob
z�Zm

�
sup
f�H

jLz�f�j 
 �

�
�

�X
j��

Prob
z�Zm

�
sup
f�Sj

jLz�f�j 
 �

�
�

Proof� It follows from the equivalence

sup
f�H

jLz�f�j 
 � 
� �j � � s�t� sup
f�Sj

jLz�f�j 
 �

and the fact that the probability of a union of events is bounded by the sum of the
probabilities of these events�

Proof of Theorem B� Let � � N 
H� �
	M

�
and consider f�� � � � � f� such that the

disks Dj centered at fj and with radius �
	M cover H� Let U be a full measure set

on which jf�x� � yj �M � By Proposition 	� for all z � Um and all f � Dj �

jLz�f� � Lz�fj�j � �Mkf � fjk� � �M
�

�M
� ��

Since this holds for all z � Um and all f � Dj we get

sup
f�Dj

jLz�f�j 
 ��� jLz�fj�j 
 ��

We conclude that� for j � �� � � � � ��

Prob
z�Zm

�
sup
f�Dj

jLz�f�j 
 ��

�
� Prob

z�Zm
fjLz�fj�j 
 �g � �e

� m��

�����f�jY �� �
�
M���

with the last estimate using Theorem A� The statement now follows from Lemma �
by replacing � by ����

Remark �� We noted in Remark 	 that Bernstein�s inequality can be seen as a
quantitative instance of the law of large numbers� An �abstract� uniform version
of this law can be extracted from the proof of Theorem B�

Proposition �� Let F be a family of functions from a probability space Z to Rand
d a distance on F � Let U � Z be of full measure such that

�a� j
�z�j � B for all 
 � F and all z � U � and
�b� jLz�
�� � Lz�
��j � L d�
�� 
��� for all 
�� 
� � F and all z � Um

where Lz�f� �

Z
Z


�f� z� � �

m

mX
i��


�f� zi�� Then� for all � � ��

Prob
z�Zm

�
sup

�F

jLz�
�j � �

�

 �� N

�
F � �

�L

�
�e
� m��

������ �
�
B�� �

Here �� � ���F� � sup

�F

���
��
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�� Estimating the sample error

How good can we expect fz to be as an approximation of fH Or� in other
words� how small can we expect the sample error EH�fz� to be The third main
result in this chapter� Theorem C below� gives an answer�

Lemma �� Let H be a compact subset of C�X�� Let � � � and � � 	 � � such that

Prob
z�Zm

�
sup
f�H

jLz�f�j � �

�

 �� 	�

Then
Prob
z�Zm

fEH�fz� � ��g 
 �� 	�

Proof� By hypothesis we have� with probability at least �� 	�

E�fz� � Ez�fz� � �

and

Ez�fH� � E�fH� � ��

Moreover� since fz minimizes Ez on H we have

Ez�fz� � Ez�fH��

Therefore� with probability at least �� 	�

E�fz� � Ez�fz� � � � Ez�fH� � � � E�fH� � ��

and thus� EH�fz� � ���

Replacing � by ��� in Lemma � and using Theorem B� one obtains the following�

Theorem C� Let H be a compact subset of C�X�� Assume that� for all f � H�
jf�x�� yj �M almost everywhere� Let

�� � ���H� � sup
f�H

���f�Y �

where ���f�Y � is the variance of f�Y � Then� for all � � ��

Prob
z�Zm

fEH�fz� � �g 
 ��N
�
H� �

��M

�
�e
� m��

	����� �
�M

��� �

In case H is convex Theorem C� in Section 
 improves the dependence on �� Its
Corollary � estimates directly kfz � fHk� as well�

Remark �� Theorem C helps to deal with the question posed in Section 	� Given
�� 	 � �� to ensure that

Prob
z�Zm

fEH�fz� � �g 
 �� 	

it is su�cient that the number m of examples satis�es

m 
 �


��� � �

�M
��
�

��

�
ln
�
�N

�
H� �

��M

��
� ln

�
�

	

��
����

To prove this� take 	 � N 
H� �
��M

�
�e
� m��

	����� �
�M

��� and solve for m� But note
further that ��� gives a relation between the three basic variables �� 	 and m�
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�� Estimation of covering numbers

As we have seen� the estimates in Theorems B and C have as a factor the covering
numbers N �H� ��� Here we give estimates for this factor in our series of examples�

Our �rst result estimates the covering number of balls in �nite dimensional
Banach spaces� Let E be such a space and denote by BR the closed ball of radius
R centered at the origin� i�e��

BR � fx � E j kxk � Rg�

Proposition 	� Let N � dimE� Then lnN �BR� �� � N ln

�
�R

�

�
�

Proposition � allows one to bound the covering numbers appearing in Example ��
The proof we next give is essentially taken from ��
� We �rst introduce some
numbers occurring in functional analysis�

Let S be a metric space� For k 
 � de�ne

�k�S� � inff� � � j � closed balls D�� � � � � Dk with radius � covering Sg�
Note that

�k�S� � � 
� N �S� �� � k�	�

since both inequalities are equivalent to the existence of a covering of S by k
balls of radius �� Also� note that �k scales well in the sense that� for all R � ��
�k�RS� � R�k�S�� Here RS � fRx j x � Sg�

Also� for k 
 �� de�ne


k�S� � supf	 � � j �x�� � � � � xk�� � S s�t� for i �� j� d�xi� xj� � �	g�
Lemma �� �i� For all k 
 �� 
k�S� � �k�S� � �
k�S��
�ii� Let E be a Banach space of dimension N and B� the unit ball in E� For all

k 
 �� k�
�
N � �k�B�� � ��k � ���

�
N �

Proof� Part �i� is easy to prove� For part �ii�� �rst note that 
k�B�� � � for all
k � N� Let � � 
k�B��� Then there exist x�� � � � � xk�� such that d�xi� xj� � �� for
� � i �� j � k � �� Let Dj � xj � �B�� j � �� � � � � k � �� Clearly� Di �Dj � � if
i �� j� In addition� for all x � Dj � kxk � kx� xjk� kxjk � � � � � �� Therefore�
Dj � B��

As a vector space� E is isomorphic to RN� Any such isomorphism induces on E
a measure � which is invariant under translations and is homogeneous of degree N
with respect to homotheties �i�e� ���B� � �N��B� for every measurable set B��
Using this measure we get

k��X
i��

��Di� � ��B�� �
k��X
i��

�N��B�� � �N��B��

� �k � ���N � �N � � � ��k � ���
�
N �

From here it follows that �k�B�� � ��k � ���
�
N �

For the other inequality in �ii� consider any � � �k�B��� Then there exist closed
balls D�� � � � � Dk of radius � covering B�� and consequently ��B�� � k�N��B��

which implies k�
�
N � ��

Let x � R� We denote by dxe the largest integer smaller than or equal to x�
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Proof of Proposition 
� Let k �

��
�R

�

�N
� �

�
� Then k � � 


�
�R

�

�N

and

��k � ���
�
N � �

R
� �k�B�� � �

R

� �k�BR� � � 
� N �BR� �� � k�

From here the statement follows since k � �	R
�
�N �

To deal with Examples 	 and � we introduce a logarithmic version of �k�S�� For
k 
 � de�ne the kth entropy number of a metric space S to be�

ek�S� � inf f� � � j � closed balls D�� � � � � D�k�� with radius � covering Sg �
If E and F are Banach spaces and T � E � F is a linear map� then we de�ne

ek�T � � ek�T �B����

Lemma �� �a� ek�T � � � 
� N �T �B��� �� � �k � �� and
�b� ek�T �BR�� � Rek�T ��

Proof� For �a� note that� using �	��

ek�T � � � 
� ��k���T �B��� � � 
� N �T �B��� �� � �k � ��

Part �b� is clear�

Example � �continued�� Recall that Hs�X� is a Sobolev space and we are as�
suming that s � n�� from which it follows that the inclusion

Js � H
s�X� �� C�X�

is a compact embedding� Let BR be the closed ball of radius R centered at the
origin in Hs�X� and H � Js�BR� be its image in C�X��

A main result �of a kind going back to the work of Birman and Solomyak ��
�
concerning entropy numbers of Sobolev spaces states that� if X � Rn is a compact
domain with smooth �C�� boundary and s � n��� then� for all k 
 ��

ek�Js� � C

�
�

k

�s�n

����

For a proof� take s� � s� s� � �� p� � �� p� � � in a very general theorem of
Edmunds and Triebel ����
� page ����� Here C is a �constant� independent of
k �which depends though on X and s�� It would be useful to see this constant
bounded explicitly�

Remark ��� In general in this paper� we have tried to estimate the value of the
constants occurring in our bounds� In some cases� however� as with the constant C
above� we have lost control�

Proposition 
� Let BR be the closed ball of radius R centered at the origin in
Hs�X� and H � Js�BR� be its image in C�X�� Then� for all � � ��

lnN �H� �� �
�
RC

�

�n�s
� ��

�Sometimes in the literature �e�g� ���� �k�S� and �k�S� are called inner and outer entropy
numbers respectively� Following ���� we reserve the expression entropy number for ek�S��
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Proof� Let � � R� and k �

��
C

�

�n�s
�
� Then � 
 C

�
�

k

�s�n
� By inequality ���

we thus have ek�Js� � � and therefore� N �Js�B��� �� � �k � �� Hence�

lnN �Js�BR�� R�� � lnN �Js�B��� �� � k �

�
RC

�

�n�s

� ��

In the use of Proposition � we may and will delete the constant � by supposing
C is slightly enlarged� Proposition � can be generalized to other function spaces
via the mentioned result in ���
�

Example � �continued�� Recall that K � X �X � R is a C� Mercer kernel and

IK � HK � C�X�

is the compact embedding de�ned by K� The following result will be proved in
Section � of Chapter III� Let BR be the ball of radius R in HK � Then� for all
h � n� � � �� and R � ��

lnN
�
IK �BR�� �

�
�
�
RCh

�

��n
h

where Ch is a constant independent of � and R�
As a consequence the sample error satis�es that given �� 	 � �� in order to have

Prob
z�Zm

fEH�fz� � �g 
 �� 	

it is enough that the number m of examples satis�es

m 
 �


��� � �

�M
��
�

��

��
��MRCh

�

��n
h

� � � ln

�
�

	

��
�

Remark ��� In the examples above� seen as particular cases of the general setting�
with JE � E � C�X�� we obtain estimates of the entropy numbers for JE of the form

ek�JE� � CE


�
k

��E for some positive constants CE and �E� Actually this estimate
is always true if we allow �E to be zero� so� in what follows� we will assume the
estimate as a part of the general setting�

Note we thus have� for H � HE�R� that lnN �H� �� � 

RCE
�

����E
�

We close this section by noting that the use of entropy numbers in learning theory
has been discussed in ���
� On the other hand� entropy numbers have a strong
history in related contexts �see ���
� ���
� ���
� ���
�� See also ���
 for contributions
to these matters coming from statistics�


� Convex hypothesis spaces

A simple computation shows that in the noise�free case� i�e� when ��� � �� one

has that� for all f � L���X�� ���f�Y � � �� It follows that ��H � � and the exponent in

the bound in Theorem C becomes �m�
�M� � Thus the dependency on � of this exponent

passes from quadratic to linear� In several situations� notably in those covered in
the general setting described in Remark �� the hypothesis space H is convex� In
this case� in Theorem C� below� at the cost of worsening the constant 	�� above�



�� FELIPE CUCKER AND STEVE SMALE

we are able to obtain such a linear dependency on � without assuming ��� � �� In

a related context� �	
� ���
 have shown a similar passage from �� to ��

Theorem C�� Let H be a compact and convex subset of C�X�� Assume that� for
all f � H� jf�x�� yj �M almost everywhere� Then� for all � � ��

Prob
z�Zm

fEH�fz� � �g 
 �� N
�
H� �

��M

�
e�

m�
�		M� �

Theorem C� applies to Examples � to �� Before proceeding with the proof of
Theorem C� we revisit these examples�

Example � �continued�� Let ��� � � � � �N � C�X�� E be the subspace of C�X�
spanned by f��� � � � � �Ng and H � ff � E j kfk� � Rg for some R � �� As in
Remark �� given �� 	 � �� to have

Prob
z�Zm

fEH�fz� � �g 
 �� 	�

it is su�cient that the number m of examples satis�es

m 
 ���M�

�

�
N ln

�
��RM

�

�
� ln

�
�

	

��
�

This follows from Theorem C� together with Proposition ��

Example � �continued�� Recall that Hs�X� is a Sobolev space and that we are
assuming that s � n��� from which it follows that the inclusion

Js � H
s�X� �� C�X�

is a compact embedding� Let BR be the closed ball of radius R centered at the
origin in Hs�X� and H � Js�BR� be its image in C�X��

As above� using Proposition �� given �� 	 � �� to have

Prob
z�Zm

fEH�fz� � �g 
 �� 	

it is su�cient that the number m of examples satis�es

m 
 ���M�

�

��
��CRM

�

�n�s
� ln

�
�

	

��
����

Here C is the constant of ����

Example � �continued�� Recall that IK � HK � C�X� is a compact embedding
de�ned by a C� Mercer kernel K � X �X � R� BR is the ball of radius R in HK

and H � IK �BR�� As above� given �� 	 � �� to have

Prob
z�Zm

fEH�fz� � �g 
 �� 	

it is enough that the number m of examples satis�es

m 
 ���M�

�

��
��MRCh

�

� �n
h

� ln

�
�

	

��
�

Here h � n and Ch are as in Section ��

Remark ��� Note that in the bounds in Examples 	 and � there is no dependency
on the dimension of H �which is now in�nite�� in contrast with the bound shown
in Example �� These results may be said to be �dimension�free�� The parameter
R in Examples 	 and � determines the size of the hypothesis space and is our
replacement for the VC dimension �which is in�nite in these examples��
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Toward the proof of Theorem C� we show an additional property of convex
hypothesis spaces�

From the discussion in Section 	 it follows that fH is a function in H whose
distance in L���X� to f� is minimal� We next prove that� if H is convex� it is
unique�

Lemma 	� Let H be a convex subset of C�X� such that fH exists� Then fH is
unique as an element in L���X� and� for all f � H�Z

X

�fH � f�� � EH�f��

Proof� Let s � fHf be the line segment with extremities fH and f �

Since H is convex� s � H� And� since fH minimizes the distance in L���X� to f�
over H� we have that� for all g � s� kfH � f��k� � kg� f�k�� This implies that the

angle �f�fHf is obtuse� and that implies �note that the squares are crucial�

kfH � fk�� � kf � f�k�� � kfH � f�k���
i�e� Z

X

�fH � f�� � E�f� � E�fH��

This proves the desired inequality� The uniqueness of fH follows by considering the
line segment joining two minimizers f �H and f ��H� Reasoning as above� one shows that

both angles �f�f �Hf
��
H and �f�f ��Hf

�
H are obtuse� This is only possible if f ��H � f �H�

Corollary �� With the hypotheses of Theorem C�� for all � � ��

Prob
z�Zm

�Z
�fz � fH�� � �

�

 �� N

�
H� �

��M

�
e�

m�
�		M� �

Now� in addition to convexity� assume thatH is a compact subset of C�X� so that
the covering numbers N �H� �� make sense and are �nite� Also� assume that there
exists M � � such that� for all f � H� jf�x�� yj �M a�e� The following analogue
of Theorem B is the main steppingstone towards the proof of Theorem C���

For a sample z � Zm� the empirical error in H of f � H is EH�z�f� � Ez�f� �
Ez�fH�� Note that EH�z�fz� � ��

�The writing of the rest of this section bene�tted greatly from discussions with Partha Niyogi
and a remark by Peter Bartlett�
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Proposition �� For all � � � and � � � � ��

Prob
z�Zm

�
sup
f�H

EH�f� � EH�z�f�
EH�f� � �


 	�

�
� N

�
H� ��

�M

�
e�

��m�
	M� �

Before proving Proposition 
 we show how Theorem C� follows from it�

Proof of Theorem C�� Put � � ��� in Proposition 
� By this proposition� with
probability at least

��N
�
H� �

��M

�
e�

m�
�		M�

we have

sup
f�H

EH�f� � EH�z�f�
EH�f� � �

�
�

�
�

and therefore� for all f � H� �
�EH�f� � EH�z�f� � �

��� Take f � fz� Then�
multiplying by ��

EH�fz� � �EH�z�fz� � ��

but EH�z�fz� � � by de�nition of fz from which EH�fz� � � and the theorem
follows�

We now proceed with the proof of Proposition 
� Let ��f� � Z � Y be de�ned
by f�Y � f�H�Y � Thus� E��f� � E�f� � E�fH� � EH�f� and� for z � Zm� Ez��f� �

Ez�f��Ez�fH� � EH�z�f�� In addition� we note that for all f � H� j��f��x� y�j �M�

a�e�
Convexity plays a major role in the following result� Let �� � �����f�� denote

the variance of ��f��

Lemma 
� For all f � H� �� � �M�EH�f��
Proof� Because

�� � E��f�� � E��fH � f���y � f � y � fH��
 � �M�E��fH � f��
�

it is enough to prove that E��fH � f��
 � EH�f�� This is exactly Lemma ��

Our next result is a form of Theorem A for the random variable ��f��

Lemma �� Let f � H� For all �� � � �� � � ��

Prob
z�Zm

�EH�f� � EH�z�f�
EH�f� � �


 �

�
� e�

��m�
	M� �

Proof� Let � � EH�f�� Using the one�sided Bernstein�s inequality �see Remark 	�
applied to ��f� and the fact that j��f��z�j �M� a�e�� we get

Prob
z�Zm

�EH�f� � EH�z�f�
�� �


 �

�
� e

� ���������m

����� �
�M

�������� �

We only need to show that

�

�M�
� ��� ���

�


�� � �

�M
����� ��

�

� �

�M�

�
�� �

�

	
M����� ��

�
� �� � ���


� ���

�M�
�
���

��
�
���

��
� ��� ����
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The second and third terms on the left are respectively bounded by �� and �� since
� � �� The �rst one is smaller than �� since� by Lemma �� �� is bounded by �M���
The result follows since ���� �� � ��� ����

Lemma 
� Let � � � � �� � � �� and f � H such that

EH�f� � EH�z�f�
EH�f� � �

� ��

For all g � H such that kf � gk� � ��
	M

we have

EH�g�� EH�z�g�
EH�g� � �

� 	��

Proof�

EH�g�� EH�z�g�
EH�g� � �

�
E�g�� E�fH� � Ez�g� � Ez�fH�

EH�g� � �
�

Lz�g� � Lz�fH�

EH�g� � �

�
Lz�g� � Lz�f� � Lz�f� � Lz�fH�

EH�g� � �

�
Lz�g� � Lz�f�

EH�g� � �
�
Lz�f� � Lz�fH�

EH�g� � �
�

If the �rst term above is negative� then it is certainly smaller than �� Otherwise
we have

Lz�g�� Lz�f�

EH�g� � �
� Lz�g� � Lz�f�

�
� �M��

�M�
� ��

where the last inequality follows from using kf � gk� � ��
	M in Proposition 	� For

the second term� note that� using the �rst part in the proof of Proposition 	�

E�f� � E�g� � �Mkf � gk� � �M
��

�M
� �

since � � �� This implies that

EH�f� � EH�g� � E�f� � E�g� � � � EH�g� � �

or� equivalently� that EH
f���
EH
g���

� �� But then

Lz�f� � Lz�fH�

EH�g� � �
�
EH�f� � EH�z�f�

EH�g� � �
� �

EH�f� � �

EH�g� � �
� ���

Proposition 
 follows from Lemma � by applying the same argument used to
prove Theorem B from Proposition 	�

Remark �	� Note that� to obtain Theorem C�� we only used convexity to prove
Lemma�� But the inequality proved in this lemmamay hold true in other situations
as well� A case which stands out is when f� � H� In this case fH � f� and the
inequality in Lemma � is trivial�
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�� Final remarks

Remark ��� In this chapter we have assumed that Y � R� They can� however� be
extended to Y � a �nite dimensional inner product space�

Remark ��� The least squares error function E�f� above is only one of the many
used in the learning theory literature� Our view is that it is the central notion
because of mathematical tradition and algorithmic simplicity� However� the least
squares error has its limitations and problems� It would be interesting to analyze
some other error functions in the framework of our paper� See e�g� ���
�

Remark ��� Let us compare what we have done with the more traditional approach
in learning theory� especially inspired by Vapnik� with the use of VC �Vapnik�
Chervonenkis� dimension and its variants �see e�g� ���
� ���
�� As we have remarked�
the hypothesis space H plays a central role in the learning process� The earlier
choice of hypothesis space is a space of functions on X which carries no topology�
The development proceeds with a more combinatorial !avor to achieve results which
cannot be compared directly with our Theorems B� C� and C�� In that setting�
covering numbers usually depend on the sample� and the sample error estimate will
depend on the VC dimension�

Our approach� with its function space H � C�X�� leads quickly to classical
functional analysis� The VC dimension is replaced by the radius R of a ball which
de�nes the hypothesis space in a Sobolev space or in a reproducing kernel Hilbert
space�

Moreover we emphasize the continuous �regression� perspective and are led to
the approximation questions of the next chapter�

Chapter II� Approximation Error

For a given hypothesis space H� the error E�fz� of the empirical target fz decom�
poses as

E�fz� � EH�fz� � E�fH��

The �rst term in this sum� the sample error� has been the focus of Chapter I�
The second term� the approximation error� will be the focus of this chapter� The
approximation error depends only on H and � and� by Proposition �� is equal toR
X �fH � f��� � ���� Note that ��� does not depend on the choice of H� Therefore�

when studying the approximation error we will examine the integral
R
X
�fH � f��

��
Since f� is not known and we have made no assumptions on it besides being
bounded� there are limits on how much one can say about the approximation error�
We note that if f� � H� then fH � f� and the integral above is zero� This chapter
is devoted to estimates of the integral for various H and to the implications for the
bias�variance problem�

�� Fourier series and the approximation error

In this section we give an example of a �nite dimensional hypothesis space �Ex�
ample � below� and an estimate for the corresponding approximation error� To
get this estimate� we will need to estimate the growth of the eigenvalues of a given
operator� Growth of eigenvalues� or the highly related growth of entropy numbers�
is a recurring theme in our report�

On one hand� Fourier series give a link from our problem in learning theory to the
mathematical analysis known to many scientists� On the other hand� the interested
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Figure �� Shape of �� for � large� n � ��

reader will be able to discover the relations �via Greens� functions� to our integral
operators and to entropy numbers �see Appendix A of Chapter III� as well as our
use of Sobolev spaces� which were originally developed to better understand elliptic
operators�

Let S� be the circle� say� described by a real number t mod ��� and X � �S��n

the n�dimensional torus� For each � � ���� � � � � �n� � Zn consider the complex
valued function on X� ��� given by ���x� � �����n��ei
�	x�� Here i �

p��� By
taking the real part from de Moivre�s formula one can obtain a real valued function
on X� Thus we may deal with complex valued functions on X�

Let L�
�X� be the space of square integrable functions on X with respect to the
Lebesgue measure induced on X as a quotient of Rn� Recall that a sequence f�kg
in a Hilbert space H is said to be a complete orthonormal system �or a Hilbert basis�
if the following conditions hold�

�� for all k� q 
 �� h�k� �qi � ��
�� for all k 
 �� k�kk � �� and

	� for all f � H� f �
�X
k��

hf� �ki�k�

The set f��g��Zn forms a Hilbert basis of L�
�X� with respect to the inner product

hf� gi � R
fg� g the complex conjugate of g� Thus� every function f � L�
�X� can

be written as

f �
X
��Zn

c����

But if k�k is large� the function �a oscillates with high frequency� and thus each of
these terms gives a �ne structure� beyond sensitivity of measurement devices� See
Figure ��

This heuristic indicates how� for purposes of the hypothesis space of Section 	
in Chapter I� it makes sense to consider the subspace HN � L�
�X� spanned by
the set f��gk�k��B for some B with the induced structure of Hilbert space� The
dimension N � N �B� of this space is the number of integer lattice points in the
ball of radius B of Rn� Thus� a crude bound is N �B� � ��B�n��� The ball HN�R of
radius R with respect to the norm k k� inHN is a candidate for the H of Chapter I�
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Remark �� Let � � C��X� � C��X� be the Laplace operator�

��f� �
nX
i��

��f

�x�i
�

It is immediate to check that� for all � �Zn� ����� � �k�k���� Therefore� �� is
an eigenvector of �� with eigenvalue k�k��

Since the n�dimensional torus is not a very suitable space for most examples of
learning theory� we extend the setting as suggested by Remark ��

Example 	� Consider now a bounded domain X in Rn with smooth boundary
�X� and a Hilbert basis f�kgk
� of C� functions in L�
�X� satisfying� ���k � �k�k in X� for all k 
 �

�k � � on �X� for all k 
 �

with
� � �� � �� � �� � � � � ��

Here � is the Lebesgue measure on X inherited from Rn� The existence of
f�kgk
�� f�kgk
� as above uses a main theorem in the theory of elliptic di�erential
equations�

For N � N consider HN � the subspace of L�
�X� generated by f��� � � � � �Ng� The
higher frequency justi�cation for the cuto� in the case of Fourier series still applies�
This comes from the Courant Nodal Theorem or the many variables Morse Index
Theorem �see �	�
 for a formal account�� Also� as above� let H � HN�R be the ball
of radius R with respect to the norm k k� in HN and let fH be the corresponding
target function�

Recall we have assumed that f� is bounded on X� Then� f� � L���X� and

f� � L�
�X�� Suppose in addition that R 
 kf�k�� Then R 
 kf�k� and fH is the

orthogonal projection of f� on HN w�r�t� the inner product in L���X�� The main
result of this section bounds the approximation error E�fH��

Let D
� denote the operator norm kJk where J is the identity function

L�
�X�
J� L���X��

We will call D
� the distortion of � �with respect to ��� It measures how much �
distorts the ambient measure �� It is often reasonable to suppose that the distortion
D
� is �nite�

Since � is not known� then D
� is not known in general as well� But our estimate
in Theorem � below gives a relation between the approximation error and D
��
Moreover� the context could lead to some information about D
�� An important
case is the one in which� in spite of � not being known� we do know �X � In this
case D
� may be derived�

For f �
P�

k�� ck�k� let kfkK denote�
�X
k��

c�k�k

����

�

The set of f such that this series is convergent is a linear subspace of L�
�X� on
which k kK is a norm� Motivation for this norm is given in the next section� in
which a similar construction is described for an integral operator given by a Mercer
kernel K �hence the notation��
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Theorem �� Let H and fH be as above� The approximation error satis�es

E�fH� � D�

�

�
Vol�X�

N � �

���n
kf�k�K � ����

Towards the proof of Theorem � �rst note that

kf� � fHk� � d��f��HN � � kJkd
�f��HN ��

Recall that �� is the linear space of all square summable sequences �ak�k
�� It
is a Hilbert space with the inner product

h�ak�� �bk�i �
X
k
�

akbk�

Since f� � L�
�X�� there exists a sequence fakgk
� � �� such that f� �
P

ak�k�
Then

d
�f��HN �� �

�����
�X

k�N��

ak�k

�����
�




�
�X

k�N��

a�k �
�X

k�N��

a�k�k
�

�k

� �

�N��
kf�k�K�

The next lemma deals with the growth of the eigenvalues �k�

Lemma �� For k 
 �� �k 

�

k

Vol�X�

���n
�

Proof� Under the hypothesis described at the beginning of this example� a version
of a result of H� Weyl by Li and Yau ��	
 �pointed out to us by Roderick Wong�
states that� for all k 
 ��

�k 
 n

n� �
���

�
k

BnVol�X�

���n
���

where Bn is the volume of the unit ball in Rn and Vol�X� the volume of X�

Stirling�s inequality�
p
��uu�

�
� e�u � "�u� �see ��
� Chapter �� Section ���� Exer�

cise ��� implies that

"�n��� 
 p
��
�n
�

�n��
�

e�
n
�

and� consequently� since Bn � �
n


���n��

�
n��� � that

Bn � �

n

����
n
� e

n
�

p
��


n
�

�n��
�

�
����

n��
� e

n
�

n
n��
�

�
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Placing this bound in inequality ��� we obtain� for all k � N�

�k 
 n

n� �
���

�
kn

n��
�

Vol�X�����
n��
� e

n
�

���n

�
n

n� �
�

�
k

Vol�X�

���n
����

�
nn

n��
n

e

�
n��

�
n

n � �

�

e

�
k

Vol�X�

���n
����

�
n 


�
k

Vol�X�

���n

since n
�� �

n

n��
�
e ����

�
n 
 � for all n � N�

Proof of Theorem 
� Using Lemma � we obtain

d��f��HN �� � D�

�d
�f��HN ��

� D�

�

�

�N��
kf�k�K

� D�

�

�
Vol�X�

N � �

���n
kf�k�K �

We already remarked that our goal is to minimize E�fz� which equals the sum

EH�fz� �
Z

�fH � f��
� � ����

A form of the bias�variance problem is to minimize this sum over N � N assuming
R�m and 	 are �xed� So� �x m� R � kf�k�� and 	 � �� From Section 
 in Chapter I
it follows that� if

m 
 ���M�

�

�
N ln

�
��RM

�

�
� � � ln

�
�

	

��
�

then� with probability at least �� 	� the sample error is bounded by �� From this
equation it follows that� for given m� 	�R�M and N � with probability at least �� 	�
the sample error is bounded by any quantity � satisfying

�� ���M�

m

�
N ln

�
��RM

�

�
� � � ln

�
�

	

��

 ��

The equation obtained by taking the equality in this inequality has exactly one
positive solution� This is due to the form f�t� � � for this equation with f�t� �
t� c ln�t�� d� c� d � �� Thus f��� � ��� f���� � ��� and f ��t� � �� c

t � which
is always positive� showing that f monotonically increases in ������� We denote
this solution by ��N �� thus emphasizing the functional dependency of ��N � with
respect to N �

From Theorem �� we know that the approximation error is bounded by

A�N � � D�

�

�
Vol�X�

N � �

���n
kf�k�K � ����

The integer N minimizingA�N �� ��N � will thus be a solution of the bias�variance
problem above� While we have no explicit form for the solution of this minimization
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problem� it is easy to numerically deal with it� One may also derive some qualitative
information about N �

This development is valid for the case of any compact submanifoldX of Euclidean
space� A general reference for the material in this section is �		
�

�� Abstract approximation error

A linear operator L � H � H on a Hilbert space H is said to be self�adjoint if�
for all f� g � H� hLf� gi � hf� Lgi� It is said to be positive �resp� strictly positive� if
it is self�adjoint and� for all non�trivial f � H� hLf� fi 
 � �resp� hLf� fi � ���

The next result� the Spectral Theorem for compact operators �see Section ����
of ���
 for a proof�� will be useful in this and the next chapter�

Theorem �� Let L be a compact linear operator on an in�nite dimensional Hilbert
space H� Then there exists in H a complete orthonormal system f��� ��� � � �g con�
sisting of the eigenvectors of L� If �k is the eigenvalue corresponding to �k� then the
set f�kg is either �nite or �k � � when k ��� In addition� maxk
� j�kj � kLk�
The eigenvalues are real if L is self�adjoint� If� in addition� L is positive� then
�k 
 � for all k 
 �� and if L is strictly positive� then �k � � for all k 
 ��

If L is a strictly positive operator� then L� is de�ned� for all � 
 �� by

L�
�X

ak�k

�
�
X

��kak�k�

If � � �� L� is de�ned by the same formula on the subspace

S� �
nX

ak�k j
X

�ak�
�
k�
� is convergent

o
�

For � � �� the expression kL�ak must be understood as � if a �� S� �
Theorems 	 and � in this and the next section are taken from �	�
� where one

can �nd a more substantial development of the approximation error�

Theorem �� Let H be a Hilbert space and A a self�adjoint� strictly positive compact
operator on H� Let s� r � R such that s � r � ��

��� Let � � �� Then� for all a � H

min
b�H


kb� ak� � �kA�sbk�� � �rkA�srak��
��� Let R � �� Then� for all a � H

min
b s�t� kA�sbk�R

kb� ak �
�

�

R

� r
s�r

kA�rak s
s�r �

In both cases the minimizer #b exists and is unique� In addition� in part �
	� #b �
�Id��A��s���a�

Proof� First note that by replacing A by As we can reduce the problem in both
parts ��� and ��� to the case s � ��

Now� for part ���� consider


�b� � kb� ak� � �kA��bk��
If a point #b minimizes 
� then it must be a zero of the derivative D
� That is�
#b satis�es �Id ��A���#b � a� which implies #b � �Id��A�����a� Note that the
operator Id��A�� is invertible since it is the sum of the identity and a positive
operator�
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If �� 
 �� 
 � � � � � denotes the eigenvalues of A�


�#b� � k��Id��A����� � Id�ak� � �kA���Id��A�����ak�

�
�X
k��

��
�

� � ����k
� �

��
� �

�X
k��

�
�

�k�� � ����k �

���
a�k

�
�X
k��

�
����	k � ����k
����k ���k � ����

�
a�k � �

�X
k��

�
�

��k � �

�
a�k

� �

�X
k��

�
��rk

��k � �

�
���rk a�k � �

�
sup
t�R�

tr

t� �

�
kA�rak��

Let ��t� � tr

t�� � Then

���t� �
rtr��

t � �
� tr

�t� ���
� � i� t � #t �

r
�r

�� r
�

Thus

��#t� � �r��rr��� r���r � �r���

We conclude that


�#b� � min
b�H

kb� ak� � �kA��bk� � �rkA�rak�

and hence ����
For part ��� �rst note that if kA��ak � R� then the minimum in the statement

is zero and the theorem is obviously true� Assume from now on that this is not the
case� Then we notice that the point #b minimizing ka� bk in the subset of H given

by kA��bk � R is in the boundary of this subset� i�e� kA��#bk � R�
Now� a well known result in constrained optimization states that there exists

� 
 � �the Lagrange multiplier� such that the point #b is a zero of the Lagrangian

D�kb� ak�� � �D�kA��bk���
But this Lagrangian coincides with D
 of part ���� and we proved in this part that


�#b� � �rkA�rak�� From this inequality we deduce �rstly that

�R� � �rkA�rak�

and secondly� since � 
 �� that

k#b� ak� � �rkA�rak��
From the �rst of these two inequalities it follows that

� �
�

�

R

� �
��r

kA�rak �
��r �

Replacing this bound for � in the second inequality� one gets the statement in part
����

Remark �� In Example 	�A � ����Id����� and s � � as in the proof of Theorem �

below� In Example �� A � L
���
K � s � ��
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Remark 	� The quantity

K�a� �� � min
b�H


kb� ak� � �kA�sbk��
is a modi�cation of the K�functional of interpolation theory ��
� Moreover�

I�a�R� � min
b s�t� kA�sbk�R

kb� ak

is an object of study also in ��
�� The proof of Theorem 	 shows that K�a� �� �

�k�A�s � � Id�����ak�� and� for � � � and R � R��� � kA�s#b�k� I�a�R� �
K�a� �� � �R��

Remark �� We now introduce a general setting in Hilbert space� Let � be a Borel
measure on X and A � L���X� � L���X� a compact strictly positive operator� Fix
s � � and de�ne E � fg � L���X� j kA�sgk� � �g� We can make E a Hilbert
space with the inner product

hg� hiE� hA�sg�A�shi� �
Thus� A�s � L���X� � E is a Hilbert isomorphism� The general setting in Hilbert
space is the setting above together with the assumption that the inclusion E ��
L���X� factors

E

JE ����
��

��
��

�
�� L���X�

C�X�

��

with JE compact� Therefore the hypothesis space H � HE�R is JE�BR� where BR

is the ball of radius R in E� Note that the target fH is the #b of Theorem 	 ���� for
H � L���X�� and we may consider the corresponding approximation error�

As in Section � we consider D��� the distortion of � with respect to �� i�e� the
operator norm of

L���X�
J� L���X��

Theorem �� In the general setting in Hilbert space� for � � r � s� the approxima�
tion error satis�es

E�fH� � kfH � f�k�� � ��� � D�
��

�
�

R

� �r
s�r

kA�rf�k
�s
s�r
� � ����

Proof�

kf� � fHk� � min
g�BR

kf� � gk� � D�� min
g�BR

kf� � gk
 � D��

�
�

R

� r
s�r

kA�rf�k
s

s�r
�

with the last inequality from Theorem 	 ��� with H � L���X� and a � f��

While in Example 	 we always take � � �� the Lebesgue measure� in our most
interesting example �Example �� we will usually suppose � � � so D�� � ��
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	� Approximation error in Sobolev spaces and RKHS

We continue our discussion of Example 	 in the context of the approximation
error� In this section X � Rn is a compact domain with smooth boundary�

Theorem 	� Let s � n�� and r such that � � r � s� Consider R � �� BR the ball

of radius R in Hs�X� and H � Js�BR�� Then the approximation error satis�es

E�fH� � D�

�C

�
�

R

� �r
s�r

�kf�kr� �s
s�r � ���

where C is a constant which depends only on s� r and X�

Proof� Let � � H��X� � L�
�X� denote the Laplacian and A � ����Id������ For

all � 
 �� A� � L�
�X� � H� �X� is a compact linear map with bounded inverse�
There exist C�� C� � � such that� for all g � H� �X��

C�kgk� � kA��gk
 � C�kgk� ��
�

By composing with the inclusion H��X� �� L�
�X� and slightly abusing notation

we may assume A � L�
�X� � L�
�X� and consider the general setting in Hilbert
space�

Let E be the space de�ned in this setting with A � A and s � � � Then the
ball BRC� �E� of radius RC� in E is included in the ball BR�H

s�X�� in Hs�X� and
consequently

E�fH� � min
g�BR
Hs
X��

kf� � gk�� � ��� � min
g�BRC� 
E�

kf� � gk�� � ����

Now� apply Theorem � to obtain

min
g�BRC� 
E�

kf� � gk�� � ��� � D�
��

�
�

RC�

� �r
s�r

kA�rf�k
�s
s�r

 � ����

Apply �nally �
� with � � r to get

kA�rf�k
 � C�kf�kr�
The result follows by taking C � C

��r
s�r

� C
�s
s�r

� �
For the facts about Sobolev spaces mentioned in this proof see �	�
�

Remark �� �i� In Theorem � we have some freedom to choose r� For example if
f� is a characteristic function and � � r � ���� then kf�kr � � �see �	�
�
and we obtain information in the classi�cation problem of learning theory�

�ii� The essence of Theorem �� for the case n � �� appears in ���
�

It is also possible to use Theorem � to derive bounds for the approximation error
in Example ��

Theorem 
� Let K be a Mercer kernel� � a Borel measure on X� R � �� and
H � IK�BR�� The approximation error satis�es� for � � r � ��

E�fH� � D�
��

�
�

R

� �r
��r

kL�r��K f�k
�

��r
� � ����

Proof� Take A � L
���
K and s � � in Theorem �� Then� we will see in Section 	 in

Chapter III that for all f � L���X�� kfkK � kA��fk� � which implies that E is the
reproducing kernel Hilbert space of Example �� Now apply Theorem ��
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�� The bias�variance problem

Consider the general setting in Hilbert space described in Remark �� Fix a
sample size m and a con�dence �� 	 with � � 	 � �� For each R � � a hypothesis
space H � HE�R is determined� and we can consider fH and� for z � Zm� fz�
The bias�variance problem in the general setting consists of �nding the value of R
which minimizes a natural bound for the error E�fz� �with con�dence �� 	�� This
value of R determines a particular hypothesis space in the family of such spaces
parametrized by R� or� using a terminology common in the learning literature� it
selects a model�

Theorem �� For all m � N and 	 � R� � � 	 � �� and all r with � � r � s� there
exists a unique solution R� of the bias�variance problem in the general setting�

Proof� We �rst describe the natural bound we are going to minimize� Recall that
E�fz� equals the sum EH�fz�� E�fH� of the sample and approximation error� The�
orem � bounds the approximation error� for � � r � s� by an expression

��R� � D�
��

�
�

R

� �r
s�r

kA�rf�k
�s
s�r
� � ����

We now want to bound the sample error� To do so let

M � M �R� � kJEkR�M� � kf�k��
Then� almost everywhere� jf�x� � yj �M since

jf�x� � yj � jf�x�j� jyj � jf�x�j� jy � f��x�j� jf��x�j � kJEkR�M� � kf�k��
By Theorem C�� the sample error � with con�dence �� 	 satis�es

N
�
H� �

��M

�
e�

m�
�		M� 
 	�

i�e�
m�

���M�
� ln

�
�

	

�
� ln

�
N
�
H� �

��M

��
� ��

Then� as in Remark �� of Chapter I�

m�

���M�
� ln

�
�

	

�
�
�
��M�CE
kJEk�

����E
� �

where we have also used that RkJEk � M � Write v � �
M� � Then the inequality

above takes the form

c�v � c� � c�v
�d � ����

where c� � m
���� c� � ln



�
�

�
� c� �

�
�	CE
kJEk

����E
� and d � ���E�

If we take the equality in ��� we obtain an equation which� it is easy to see� has
exactly one positive solution for v� Let v��m� 	� be this solution� Then� ��R� �
M�v��m� 	� is the best bound we can obtain from Theorem C� for the sample error�

We will therefore minimize ��R� � ��R��
For a point R � � to be a minimum of ��R� � ��R� it is necessary that ���R� �

����R�� Taking derivatives� we get

���R� � �CA
��r

s� r
R
��s�r�
s�r and ����R� � CA

�r�s � r�

�s � r��
R
��s
s�r
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where CA � D�
��kA�rf�k

�s
s�r
� � and

���R� � �Mv��m� 	� and ����R� � �v��m� 	��

Since CA 
 � we deduce that ����R� is a positive function monotonicallydecreasing
on ������� On the other hand� since v��m� 	� � �� it follows that ���R� is a positive
function strictly increasing on ������� Since ������ � ��� ������� � ��
����� � �� and ������ � ��� we deduce the existence of a unique R� such that
���R�� � ����R���

For di�erent instances of the general setting the value of R� may be numerically
computed�

Remark �� In this section we considered a form of the bias�variance problem which
optimized the parameter R �xing all the others� One may consider other forms
of the bias�variance problem by optimizing other parameters� For instance� in
Example �� one may consider the degree of smoothness of the kernel K� The
smoother K is� the smaller HK is� Therefore� the sample error decreases and the
approximation error increases with a parameter re!ecting this smoothness�

Chapter III� Algorithms

�� Operators defined by a kernel

Recall that X is a compact domain or manifold in Euclidean space with dimX �
n� However� for much of this chapter it is su�cient to takeX to be a compact metric
space� Let � be a Borel measure on X and L���X� be the Hilbert space of square
integrable functions on X� Note that � can be any Borel measure� Signi�cant
particular cases are Lebesgue measure or the marginal measure �X of Chapter I�

Let K � X �X � R be a continuous function� Then the linear map

LK � L���X� � C�X�

given by the following integral transform

�LKf��x� �

Z
K�x� t�f�t�d��t�
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is well�de�ned� Composition with the inclusion C�X� �� L���X� yields a linear
operator LK � L���X� � L���X� which� abusing notation� we will also denote by
LK �

The function K is said to be the kernel of LK and several properties of LK follow
from properties of K� Let

CK � sup
x�t�X

jK�x� t�j�

Also� for x � X� let Kx � X � R be given by Kx�t� � K�x� t��

Proposition �� If K is continuous� then LK is well�de�ned and compact� In ad�
dition� kLKk �

p
��X�CK � Here ��X� denotes the measure of X�

Proof� To see that LK is well de�ned we need to show that LKf is continuous for
every f � L���X�� To do so� consider f � L���X� and x�� x� � X� Then

j�LKf��x��� �LKf��x��j �

����
Z

�K�x�� t��K�x�� t��f�t�

����
� kKx� �Kx�kkfk by Cauchy�Schwartz

�
p
��X�max

t�X
jK�x�� t��K�x�� t�jkfk�

Since K is continuous and X is compact� K is uniformly continuous� This implies
the continuity of LKf �

The assertion kLKk �
p
��X�CK follows from the inequality

j�LKf��x�j �
p
��X� sup

t�X
jK�x� t�jkfk

which is proved as above�
Finally� to see that LK is compact� let �fn� be a bounded sequence in L���X��

Since kLKfk� � CKkfk we have that �LKfn� is uniformly bounded� And� since

j�LKfn��x����LKfn��x��j �
p
��X�maxt�X jK�x�� t��K�x�� t�jkfnk for all n 
 ��

we have that the sequence �LKfn� is equicontinuous� By Arzela�s Theorem �see e�g�
x���� of ���
�� �LKfn� contains a uniformly convergent subsequence�

Two more important properties of LK follow from properties of K� Recall that
we say that K is positive de�nite if for all �nite sets fx�� � � � � xkg � X the k � k
matrix K�x
 whose �i� j� entry is K�xi� xj� is positive de�nite�

Proposition �� �a� If K is symmetric� then LK � L���X� � L���X� is self�
adjoint�

�b� If� in addition� K is positive de�nite� then LK is positive�

Proof� Part �a� follows easily from Fubini�s Theorem and the symmetry of K� For
�b�� just note thatZ Z

K�x� t�f�x�f�t� � lim
k��

��X�

k�

kX
i�j��

K�xi� xj�f�xi�f�xj�

� lim
k��

��X�

k�
fTxK�x
fx

where� for all k 
 �� x�� � � � � xk � X is a set of points conveniently chosen� fx �
�f�x��� � � � � f�xk�� and K�x
 is the k � k matrix whose �i� j� entry is K�xi� xj��
Since this matrix is positive de�nite the result follows�
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In the sequel we will consider a Mercer kernel K �i�e� a function K � X�X � R
which is continuous� symmetric and positive de�nite�� Then LK � L���X� � L���X�
is a self�adjoint� positive� compact operator and the Spectral Theorem �Theorem �
of Chapter II� applies� Let �k� k 
 �� denote the eigenvalues of LK and �k the
corresponding eigenfunctions�

Corollary �� For k 
 �� if �k �� �� then �k is continuous on X�

Proof� Use that �k � �
�k
LK��k��

In the sequel we will assume� without loss of generality� that �k 
 �k�� for all
k 
 ��

�� Mercer�s Theorem

If f � L���X� and f��� ��� � � �g is a Hilbert basis of L���X�� f can be uniquely

written as f �
P�

k�� ak�k and the partial sums
PN

k�� ak�k converge to f in L���X��
If this convergence also holds in C�X�� we say that the series uniformly converges
to f � Also� we say that a series

P
ak converges absolutely if the series

P jakj is
convergent�

Theorem �� Let X be a compact domain or a manifold� � a Borel measure on
X� and K � X � X � R a Mercer kernel� Let �k be the kth eigenvalue of
LK and f�kgk
� the corresponding eigenvectors� For all x� t � X� K�x� t� �
�X
k��

�k�k�x��k�t� where the convergence is absolute �for each x� y � X � X	 and

uniform �on X �X	�

The proof of Theorem � is given in ���
 forX � ��� �
 and � the measure inherited
by the Lebesgue measure on R� but the proof there is valid in the generality of our
statement�

Corollary �� The sum
P

�k is convergent and

�X
k��

�k �

Z
X

K�x� x� � ��X�CK �

Therefore� for all k 
 �� �k �
�
�
X�CK

k

�
�

Proof� By taking x � t in Theorem � we get K�x� x� �
�X
k��

�k�k�x�
�� Integrating

on both sides of this equality� we get

�X
k��

�k

Z
X

�k�x�
� �

Z
X

K�x� x� � ��X�CK �

But since f��� ��� � � �g is a Hilbert basis�
R
��k � � for all k 
 � and the �rst

statement follows� The second statement follows from the assumption �k 
 �j for
j � k�



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING �


	� Reproducing kernel Hilbert spaces

In this section we �x a compact domain or a manifold X� a Borel measure � on
X� and a Mercer kernel K � X �X � R� The two main results of this section are
the following�

Theorem �� There exists a unique Hilbert space HK of functions on X satisfying
the following conditions�

�i� for all x � X� Kx � HK �
�ii� the span of the set fKx j x � Xg is dense in HK � and
�iii� for all f � HK � f�x� � hKx� fiK �
Moreover� HK consists of continuous functions� and the inclusion IK � HK � C�X�

is bounded with kIKk � C
���
K �

Theorem �� The map

$ � X � ��

x 	� �
p
�k�k�x��k�N

is well�de�ned� continuous� and satis�es

K�x� t� � h$�x��$�t�i�
Corollary �� For all x� t � X� jK�x� t�j � K�x� x����K�t� t�����

Proof� This is a consequence of the Cauchy�Schwartz inequality and the last state�
ment in Theorem 	�

Remark �� �i� Note that the space HK of Theorem � depends only on X and K�
It is independent of any measure considered on X�

�ii� In the learning context� the space �� in Theorem 	 is often called the feature
space and the function $ the feature map�

�iii� The Hilbert space HK in Theorem � is said to be a reproducing kernel Hilbert
space �or� for short� a RKHS�� This terminology is of common use in the
learning literature�

�iv� A substantial amount of the theory of reproducing kernel Hilbert spaces was
developed by N� Aronszajn ��
� On page 	�� of this reference� Theorem �� in
essence� is attributed to E�H� Moore�

Proof of Theorem �� Let H� be the span of the set fKx j x � Xg� We de�ne an
inner product in H� as follows� If f �

Ps
i�� �iKxi and g �

Pr
j�� �iKtj � then

hf� gi �
X
��i�s
��j�r

�i�jK�xi� tj��

Let HK be the completion of H� with the associated norm� It is easy to check that
HK satis�es the three conditions in the statement� We only need to prove that it
is unique� So� assume H is another Hilbert space of functions on X satisfying the
noted conditions� We want to show that

H � HK and h � iH � h � iHK ����

We �rst observe that H� � H� Also� for any x� t � X� hKx�KtiH � K�x� t� �
hKx�KtiHK � By linearity� for every f� g � H�� hf� giH � hf� giHK � Since both H
and HK are completions of H�� ��� follows from the uniqueness of the completion�
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To see the remaining assertion consider f � HK and x � X� Then

jf�x�j � jhKx� fij � kfkkKxk � kfk
p
K�x� x��

This implies kfk� � p
CKkfkHK and thus kIKk �

p
CK � Therefore� convergence

in k kHK implies convergence in k k�� and this shows that f is continuous since f
is the limit of elements in H� which are continuous�

Proof of Theorem �� For every x � X� by Mercer�s Theorem�
P

�k�
�
k�x� converges

to K�x� x�� This shows that $�x� � ���
Also by Mercer�s Theorem� for every x� t � X�

K�x� t� �
�X
k��

�k�k�x��k�t� � h$�x��$�t�i�

It only remains to prove that $ � X � �� is continuous� But for any x� t � X�

k$�x�� $�t�k � h$�x��$�x�i� h$�t��$�t�i � �h$�x��$�t�i
� K�x� x� �K�t� t� � �K�x� t�

which by the continuity of K tends to zero when x tends to t�

We next characterize HK through the eigenvalues �k of LK � Theorem � of
Chapter II guarantees that �k 
 � for all k 
 �� In the rest of this section we
assume that� in addition� �k � � for all k 
 �� There is no loss of generality in
doing so �see Remark 	 below��

Let

HK �

�
f � L���X� j f �

�X
k��

ak�k with

�
akp
�k

�
� ��

�
�

We can make HK a Hilbert space with the inner product

hf� giK �
�X
k��

akbk
�k

for f �
P

ak�k and g �
P

bk�k� Note that the map

L
���
K � L���X� � HKX

ak�k 	�
X

ak
p
�k�k

de�nes an isomorphism of Hilbert spaces� In addition� considered as an operator

on L���X�� it is the square root of Lk in the sense that LK � L
���
K � L���K �

Proposition �� The elements of HK are continuous functions on X� In addition�
for f � HK � if f �

P
ak�k� then this series converges absolutely and uniformly to

f �

Proof� Let g � HK � g �
P

gk�k� and x � X� Then

jg�x�j �
�����
�X
k��

gk�k�x�

����� �
�����
�X
k��

gkp
�k

p
�k�k�x�

����� � kgkKk$�x�k � kgkKK�x� x�����

the inequality by Cauchy�Schwartz and the last equality by Theorem �� Thus�
kgk� � p

CKkgkK� Therefore� convergence in k kK implies convergence in k k�
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which� applied to the series gN � f �PN
k�� ak�k� proves the statement about uni�

form convergence� The continuity of f now follows from that of the �k �Corol�
lary ��� The absolute convergence follows from the inequality

P jgk�k�x�j �
kgkKk$�x�k�
Lemma �� Let x � X� The function 
x � X � R de�ned by 
x�t� � h$�x��$�t�i
belongs to HK�

Proof� Use Theorem 	�

Proposition �� For all f � HK and all x � X� f�x� � hf�KxiK �
Proof� For f � HK� f �

P
wk�k�

hf�KxiK �
�X
k��

wkh�k�KxiK �
�X
k��

wk

�k
h�k�Kxi

�
�X
k��

wk

�k

Z
�k�t�K�x� t� �

�X
k��

wk

�k
�LK�k��x� �

�X
k��

wk

�k
�k�k�x�

� f�x��

Theorem �� The Hilbert spaces HK and HK are the same space of functions on
X with the same inner product�

Proof� For any x � X� the function Kx coincides� by Theorem 	� with the function

x in the statement of Lemma �� And this result shows precisely that 
x � HK � In
addition� Proposition � shows that for all f � HK and all x � X� f�x� � hf�KxiK�
We now show that the span of fKx j x � Xg is dense in HK �

To do so� assume that for f � HK� hf�KtiK � � for all t � X� Then� since
hf�KtiK � f�t�� we have f � � on X� This implies the desired density�

The statement now follows from Theorem ��

Remark �� A consequence of Theorem � is the fact that the Hilbert space HK �
although being de�ned through the integral operator LK and its associated spectra
which depend on the measure �� is actually independent of �� This follows from
Remark ��

Remark 	� The properties of HK and $ have been exposed under the assumption
that all eigenvalues of LK are strictly positive� If the eigenvalues might be zero
as well� let H be the linear subspace of L���X� spanned by the eigenvectors corre�
sponding to non�zero eigenvalues� If H is in�nite dimensional� all the results in this
section remain true if one replaces L���X� by H � If H is �nite dimensional� this is
so if� in addition� we replace �� by RN where N � dimH�

�� Mercer kernels exist

Given a kernel K� it is in general straightforward to check its symmetry and
continuity� It is more involved to check that it is positive de�nite� The next result�
Proposition � below� will be helpful to prove positivity of several kernels� It was
originally proved forRn by Schoenberg �	�
 �together with a more di�cult converse��
but it follows for subsets of Rn by restricting to such a subset a kernel de�ned on
Rn�
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A function f � ������ R is completely monotonic if it is C� and� for all r � �
and k 
 �� ����kf 
k��r� 
 �� Here f 
k� denotes the kth derivative of f �

Proposition 	� Let X � Rn� f � ����� � R and K � X � X � R be de�ned by
K�x� t� � f�kx�tk��� If f is completely monotonic� then K is positive de�nite�

Corollary 	� Let c �� �� The following kernels� de�ned on a compact domain
X � Rn� are Mercer kernels�

�a� �Gaussian� K�x� t� � e�
kx�tk�

c� �
�b� K�x� t� � �c� � kx� tk���� with � � ��

Proof� Clearly� both kernels are continuous and symmetric� In �a� K is positive

de�nite by Proposition � with f�r� � e�
r
c� � The same for �b� taking f�r� �

�c� � r����

Remark �� The kernels of �a� and �b� in Corollary � satisfyCK � � andCK � c���

respectively�

The following is a key example of �nite dimensional RKHS induced by a Mercer
kernel� In contrast with the Mercer kernels of Corollary � we will not use Proposi�
tion � to show positivity�

Example � �continued�� Let Hd � Hd�R
n��� be the linear space of homoge�

neous polynomials of degree d in x�� x�� � � � � xn� Thus� we recall� elements f � Hd

have the form f �
X
j�j�d

w�x
� with � � ���� ��� � � � � �n� � Nn��� It follows that

the dimension of Hd is

N �

�
n� d
n

�
�

We can make Hd an inner product space by taking

hf� gi �
X
j�j�d

w�v��C
d
��
��

for f� g � Hd� f �
P

w�x
�� g �

P
v�x

�� Here

Cd
� �

d%

��% � � ��n%
is the multinomial coe�cient associated to the pair �d� ��� This inner product�
which we call the Weyl inner product� is natural and has important properties such
as group invariance� If kfk denotes the norm induced by this inner product� then
one has

jf�x�j � kfkkxkd
where kxk is the standard norm of x � Rn�� �cf� Lemma 
 of Chapter �� of ��
�
this reference gives more background to this discussion��

Let X � S�Rn��� and

K � X �X � R

�x� t� 	� hx� tid
where h � i denotes the Euclidean inner product in Rn��� Let also

$ � X � RN

x 	�
�
x��Cd

��
���
�
�
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Then� for x� t � X� we have

h$�x��$�t�i �
X
j�j�d

x�t�Cd
� � hx� tid � K�x� t��

This equality enables us to prove that K is positive de�nite since it implies that� for
t�� � � � � tk � X� the entry in row i and column j of K�t
 is h$�ti��$�tj�i� Therefore�
ifM denotes the matrix whose jth column is $�tj�� we have thatK�t
 � MTM from
which the positivity of K�t
 follows� Since K is clearly continuous and symmetric�
we conclude that K is a Mercer kernel�

Which is the RKHS associated to K 

Proposition 
� Hd � HK as function spaces and inner product spaces�

Proof� We know from the proof of Theorem � that HK is the completion of H��
the span of fKx j x � Xg� Since H� � Hd and Hd has �nite dimension� the same
holds for H�� But then H� is complete and we deduce

HK � H� � Hd�

The map V � Rn�� � RN de�ned by V�x� � �x��j�j�d is a well�known object
in algebraic geometry� where it receives the name of Veronese embedding� We note
here that the feature map $ de�ned above is related to V since for every x � X�
$�x� � DV�x� where D is the diagonal matrix with entries �Cd

��
���� The image of

Rn�� by the Veronese embedding is an algebraic variety called the Veronese variety�
which is known �cf� x��� of �	�
� to be non�degenerate� i�e� to span all of RN� This
implies that HK � Hd as vector spaces� We will now see that they are actually the
same inner product space�

By de�nition of the inner product in H�� for all x� t � X�

hKx�KtiH� � K�x� t� �
X
j�j�d

Cd
�x

�t��

On the other hand� since Kx�w� �
P
j�j�dC

d
�x

�w�� we have that the Weyl inner

product of Kx and Kt satis�es

hKx�KtiHd �
X
j�j�d

�Cd
��
��Cd

�x
�Cd

�t
� �

X
j�j�d

Cd
�x

�t��

We conclude that� since the polynomials Kx span all of H�� the inner product in
HK � H� is the Weyl inner product�

The discussion above extends to arbitrary� i�e� not necessarily homogeneous�
polynomials� Let Pd � Pd�Rn� be the linear space of polynomials of degree d in
x�� � � � � xn� A natural isomorphism between Pd and Hd is the �homogenization�

Pd � HdX
j�j�d

w�x
� 	�

X
j�j�d

w�x
d�j�j
� x��

Here� � � ���� � � � � �n� � Nn is a �multi�index� and x� � x��
� � � �x�nn � The inverse

of the homogenization is obtained by setting x� � �� Through this isomorphism we
can endow Pd as well with the Weyl inner product�
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Let

K � Rn�Rn � R

�x� t� 	� �� � hx� ti�d

and $ � Rn � RN given by $�x� �


�� x��Cd

��
���
�
� Then� one has h$�x��$�t�i �

K�x� t��

Remark �� Note again that the reproducing kernel Hilbert structure on Hd for
K�x� t� � hx� tid is precisely the Weyl one�

�� Covering numbers on reproducing kernel Hilbert spaces

The goal of this section is to estimate the covering number N �IK�BR�� �� for
R� � � � as promised�

Theorem D� Let K � X � X � R be a C� Mercer kernel and HK its corre�
sponding RKHS� Then the inclusion IK � HK �� C�X� is compact and its entropy
numbers satisfy ek�IK� � C�hk

�h��n� for all h � n� where C�h is independent of k�
Consequently� for h � n� � � �� and R � ��

lnN
�
IK �BR�� �

�
�
�
RCh

�

��n
h

where Ch is a constant slightly larger than C�h�

Lemma �� Let � � r � s and a � L�
�X�� Suppose there exists C � � such that�
for all R � ��

min
b s�t�kbks�R

kb� ak � C

�
�

R

� r
s�r

�

Then� for all 	 � �� kakr�� � c�C
s�r
s �

Proof� See e�g� Theorem � in �	�
 �take E � L�
�X�� H � Hs�X� and � � r�s�� If
for all R � �

min
b s�t� kbks�R

kb� ak � C

�
�

R

� r
s�r

�

then kakr�s�� � �C
s�r
s where k kr�s�� denotes a norm in an interpolation space

whose precise de�nition will not be needed here� Actually� in ��
� pages �� and ���
equation ��x�� it is proved that� for all 	 � �� there exists a constant C� such that�
for all a in this interpolation space�

kakr�� � C�kakr�s���
The proof now follows by taking c� � �C��

Lemma �� Let K be a C� Mercer kernel� Then� the image of LK is included in
H� �X� for all � 
 �� Considered as a linear map from L�
�X� to H� �X�� LK is
bounded�
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Proof� For f � L�
�X��

kLKfk�� �

Z
x�X

X
j�j��

�D��LKf��x��
� �

Z
x�X

X
j�j��

�Z
t�X

D�
xKt�x�f�t�

��

�
Z
x�X

X
j�j��

Z
t�X

�D�
xKt�x��

�

Z
t�X

f�t��

� kfk����X�
X
j�j��

sup
x�t�X

�D�
xKt�x��

�

where the �rst inequality follows from the Cauchy�Schwartz inequality�

Proof of Theorem D� Let f � HK and R � �� By Theorem 	 ��� in Chapter II
with A � LK � s � �� r � ��� and a � f � we have

min
g s�t� kL��K gk�R

kg � fk � �

R
kL����K fk� �

�

R
kfk�K �

Let � � � and c� � kLKk for LK � L�
�X� � H� �X�� By Lemma 	 above�

min
g s�t� kgk�� R

c�

kg � fk � �

R
kfk�K

or replacing R�c� by R�

min
g s�t� kgk��R

kg � fk � c�
R
kfk�K �

Since this inequality holds for all R � � we can apply Lemma �� We do so with
s � � � 	h��� r � 	h��� 	 � h��� and C � c�kfk�K to obtain

kfkh�� � C�kfkK����

where C� � c�
p
c�h���

Inequality ���� proves the existence of a bounded embedding HK �� Hh���
Also� since h � n� the Sobolev Embedding Theorem and Rellich�s Theorem apply
to yield a compact embedding Hh�� �� C�X�� From this we deduce the following
factorization

HK

J ����
��

��
��

�
IK �� C�X�

Hh��

Jh��

��

which shows that IK is compact�
In addition� by Edmunds and Triebel�s bound �inequality ��� in Chapter I�� we

have ek�Jh��� � C


�
k

�h��n
for a constant C independent of k� Therefore

ek�IK� � ek�Jh��J � � ek�Jh���kJ k � C�C

�
�

k

�h��n

�

which proves the �rst statement in the theorem by taking C�h � C�C�

The second statement follows by using that N �IK �BR�� �� � �k � � if and only
if ek�IK� � ��R and solving for k�
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�� On the minimizer of Ez�f� � �kfk�K
Let X�L���X��K� k kK and HK be as in Section �� We now abandon the setting

of a compact hypothesis space adopted in Chapter I and slightly change the per�
spective� In what follows� we take H � HK � i�e� H is a whole linear space� and we
consider the regularized error E� de�ned by

E��f� �
Z
Z

�f�x� � y�� � �kfk�K
for a �xed � 
 �� For a sample z� the regularized empirical error E��z is de�ned in
Proposition � below� One may consider a target function f� minimizing E� �f� over
H� But since H is no longer compact� the existence of such a target function is not
immediate� Our next result proves that f� exists and is unique�

Proposition �� For all � � � the function f� � �Id��L��K ���f� is the unique
minimizer of E� over H�

Proof� Apply Theorem 	 ��� of Chapter II with H � L���X�� s � �� A � L
���
K �

and a � f�� Since for all f � HK � kfkK � kL����K fk� � the expression kb � ak� �
�kA�sbk� is in our case E��b�� Thus� f� is the #b in Theorem 	 and the proposition
follows�

For the following result we have followed ��

 and its references� See also the
earlier paper ���
�

Proposition 
� Let z � Zm and � � R� � � �� The empirical target� i�e� the
function f��z � fz minimizing the regularized empirical error

�

m

mX
i��

�yi � f�xi��
� � �kfk�K

over f � HK � may be expressed as

fz�x� �
mX
i��

aiK�x� xi�

where a � �a�� � � � � am� is the unique solution of the well�posed linear system in Rm

��m Id�K�x
�a � y�

Here� we recall� K�x
 is the m � m matrix whose �i� j� entry is K�xi� xj�� x �
�x�� � � � � xm� � Xm� and y � �y�� � � � � ym� � Y m such that z � ��x�� y��� � � � �
�xm� ym���

Proof� Let H�f� �
�

m

mX
i��

�yi � f�xi��
� � �kfk�K and write� for any f � HK � f �

�X
k��

ck�k� Recall that kfk�K �
�X
k��

c�k
�k

�

For every k 
 ��
�H

�ck
�

�

m

mX
i��

���yi � f�xi���k�xi� � ��
ck
�k

� If f is a minimum

of H� then� for each k� we must have 	H
	ck

� � or� solving for ck�

ck � �k

mX
i��

ai�k�xi�
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where ai �
yi�f
xi�

�m � Thus�

f�x� �
�X
k��

ck�k�x� �
�X
k��

�k

mX
i��

ai�k�xi��k�x�

�
mX
i��

ai

�X
k��

�k�k�xi��k�x� �
mX
i��

aiK�xi� x��

Replacing f�x� in the de�nition of ai above� we obtain

ai �
yi �

Pm
i�� aiK�xi� x�

�m
�

Multiplying both sides by �m and writing the result in matrix form� we obtain
��m Id�K�x
�a � y� And this system is well�posed since K�x
 is positive and the
addition of a positive matrix and the identity is strictly positive�

Proposition � yields an algorithm which outputs an approximation of the target
function� working in the in�nite dimensional function space HK � We won�t pur�
sue the implications of that result here� but see ��

 and its references for some
indications� Moreover� we have not given a bias�variance estimate based on the pa�
rameter �� That would be useful since a good choice of � is important in choosing
an algorithm� The framework developed here suggests approaches to this problem�
But it is time for us to end this modest contribution to the foundations�

Appendix A� Entropy numbers and eigenvalues

The entropy numbers of a compact operator T � E � E are closely related to the
eigenvalues of T � If j��j 
 j��j 
 � � � are these eigenvalues� then j�kj �

p
�ek�T ��

This inequality is due to B� Carl and is proved� for instance� on page ��� of ���
�
An inequality in the opposite direction is proved in Proposition � below� Related
material can be found in ���
�	

Proposition �� Let �� 
 �� 
 � � � 
 �n 
 � � � 
 � be a sequence of real numbers�
Consider the diagonal linear operator de�ned by

L � �� � ��

�wn� 	� ��nwn��

If �k � Ck�� for some C� � and all k 
 �� then

�k�L� � CL�ln k�
��� and� if k 
 �� ek�L� � �CLk

���

Here CL � �C���

	Many of the analysis references used for our paper deal with the case dimX � � and that case
is not useful in learning theory� Thus some care must be taken in depending on the literature� It
is useful to quote Pietsch ������ page �	�� in this respect�

� � � � � Moreover the situation is even worse� since these authors have very often
omitted proofs claiming that they can be adapted step by step from the scalar�
valued setting� Thus � � � � � we are not in a position to recommend any rigorous
reference� On the other hand� it would be beyond the scope of this book to provide
all necessary details� This section is therefore in striking contrast to the rest of the
book� It presents the most beautiful applications of the abstract theory of eigenvalue
distributions to integral operators� but requires a lot of blind con�dence on the part
of the reader� Nevertheless� I bet my mathematical reputation �but not my car��
that all the statements are correct�
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Proof� By Lemma � below�

�k�L� � � sup
n�N

k�
�
n ����� � � � �n�

�
n

� �C sup
n�N

k��n
�

�

n%

���n
� �C sup

n�N
k��n

� e
n

��

� �Ce� sup
n�N

k��n
�
�

n

��
�

the last by Stirling�s inequality� Letting x � n�� and looking at the zero of the

derivative of f�x� � xk�x
��	

� we see that the maximum of f is reached when
x � ��� lnk��� Therefore� the supremum of the expression above is bounded by its
value at n � ln k��� i�e��

�k�L� � �Ce�k�
	

ln k

�
�

lnk

��

� �C

�
�

lnk

��

�

Moreover

ek�L� � ��k���L� � �C

�
�

ln��k � ��

��

� ���C���k���

The following result is taken from ��
 �see Proposition ��	�� there��

Lemma �� In hypothsesis of Proposition �� for every k 
 ��

sup
n�N

k�
�
n ����� � � � �n�

�
n � �k�L� � � sup

n�N
k�

�
n ����� � � � �n�

�
n �

Appendix B� The least squares algorithm

Recall that fz is the function minimizing inH the empirical error Ez� In Chapter I
we focused on the con�dence of having a small sample error EH�fz�� The problem
of actually computing fz was however ignored� We now shift our attention to that�
for the case of H a �nite dimensional full linear space�

Let ��� � � � � �N be a basis of H� Then� each function f � H can be written in a
unique way as

f �
NX
i��

wi�i

with wi � R for i � �� � � � � N �
For a sample z � Zm� z � ��x�� y��� � � � � �xm� ym��� to minimize the empirical

error Ez means to �nd f � H minimizing
mX
j��

�f�xj� � yj�
�

where we suppose m � N � Thus one �nds w � RN minimizing

mX
j��

�
NX
i��

�wi�i�xj�� � yj

��

�
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Let aij � �i�xj� and A be the m�N matrix with entries aij� Our problem�in the
sequel the least squares problem�now becomes that of� given A and y� minimizing
over w �W � RN�

mX
j��

�
NX
i��

aijwi � yj

��

�
mX
j��

��Aw�j � yj�
� � kAw � yk��

Note that in our situation� since m � N � the system Aw � y is likely to have no
solutions� A point w minimizing kAw � yk� is called a least squares solution�

The idea to �solve� an overdetermined system of equations Aw � y by �nding
a point minimizing kAw� yk� goes back to Gauss and Legendre�
 The motivation
was to �nd a function �tting a certain amount of astronomical data� The y values
of these data were obtained by measurements and thus contaminated with small
errors� Laplace had suggested minimizing

Pm
j�� j�Aw�j � yj j with the additional

restriction
Pm

j����Aw�j � yj� � �� and he had proved that the solution w thus
found satis�ed n of the m equalities in Aw � y� But Gauss argued that such a
solution was not consistent with the laws of probability since greater or smaller
errors are equally probable in all of the m equations� Additionally� Gauss proved
that� contrary to Laplace�s suggestion� the least squares solution enjoys remarkable
statistical properties �cf� Theorem � below��

Let�s now discuss how to �nd a w minimizing kAw � yk�� By abuse of notation
let�s denote also by A the linear map from RN to Rm whose matrix is A� Let
Im�A� � Rm be the image of A� and c � Im�A� be the point whose distance to y is
minimal� Then

S � fw � RN j Aw � cg
is an a�ne subspace of RN of dimension N � dim�ker�A��� In particular� the least
squares problem has a unique solution w � RN if and only if A is injective� The
next result is immediate�

Proposition ��� Let A � RN � Rm be injective and y � Rm� Then the solution
of the least squares problem is given by w � Ayy where Ay � �Aj Im
A��

���� Here
� � Rm� Im�A� is the orthogonal projection onto Im�A��

Recall that the orthogonal complement to Im�A� in Rm is ker�A�� where A�

denotes the adjoint of A� Thus� for every w � RN�
w � Ayy 
� Aw � �y 
� Aw � �y � Im�A��


� A��Aw � y� � � 
� w � �A�A���A�y�

The map Ay � �A�A���A� is called the Moore�Penrose inverse of the injective
map A� So� we have shown that w � Ayy� In particular� w is a linear function of
y� For the rest of this section� assume A is injective�

To compute w the main algorithmic step is to solve the linear system Sw � b
with S � A�A and b � A�y� The �eld of Numerical Linear Algebra provides us
with an important collection of algorithms for doing so as well as results about their
complexity and stability properties�

�In Nouvelle m�ethodes pour la determination des orbites des com�etes� published in ���	�
Legendre writes �Of all the principles that can be proposed � � � � �� I think that there is none more
general� more exact� and more easy to apply� than that consisting of minimizing the sum of the
squares of the errors��
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Perturbation results for least squares follow from perturbation theory for linear
equation solving� Recall that the condition number of A is de�ned to be ��A� �
kAkkAyk� A proof of the following can be found in �

�

Theorem 	� Let A be an injective m � N matrix� y � Rm and w � Ayy� Let 	A
be an m �N matrix such that rank�A� 	A� � rank�A� and let 	y � Rm� Suppose
�A� �y 
 � such that

k	Ak
kAk � �A and

k	yk
kyk � �y�����

De�ne 	w � �A � 	A�y�y � 	y� �w�
If ��A��A � �� then

k	wk � ��A�

�� ��A��A

�
�Akwk� �y

kyk
kAk � �A��A�

ky � Awk
kAk

�
� �A��A�kwk�

����

Thus� Theorem � says that if A and y have relative errors bounded as in �����
then the error in the solution of the least squares problem is given by ����� We
note the role of the condition number of A in this estimate�

If A is not injective� one can �nd a solution w � S by considering a maximal
rank restriction of A and solving the problem for this restriction�

Before �nishing this section we state Gauss� result on a statistical property of
least squares� First some de�nitions�

De�nition �� Let Y be a probability space and y � �y�� � � � � ym� � Y � Rm be
a random vector� A function g � Rm � RN is an unbiased estimate of a vector
v � RN if E�g�y�� � v�

We say that g� is aminimum variance estimate �in a class C of functions fromRm

to RN� of v if E�g�y�� � v and
PN

i�� �
��gi�y�� is minimized over all the functions

g � C�

Theorem 
 �Gauss�� Let A � Rm�N be injective� y� � Rm� and w� � RN such
that Aw� � y�� Consider the random vector y such that� for j � �� � � � �m� yj �
y�j � � where � is a random variable with mean � and variance ��� The minimum

variance estimate of w� in the class of all unbiased linear estimators is w � Ayy�
i�e� the least squares solution of Aw � y�

In our case� Gauss� Theorem would say that if for every x � X the probability
measures ��yjx� are identical� then the following holds� Let w� � RN such that

fH �
NX
i��

w�i�i�

For all samples z � Zm� the least squares solution w of
mX
j��

�fw�xj�� yj�
�

is the one minimizing the variance �in the sense of De�nition �� among all linear
maps g � Rm� RN such that� for i � �� � � � � N �Z

y�Ym

gi�y� � w�i �
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Generalizations of Gauss� Theorem �among many other results on least squares�
can be found in �

� See also ��	
�

Remark �� This paper can be thought of as a contribution to the solution of Prob�
lem �� in �	

�

Index

d e� �� covering number� ��
k kK � ��� 	� defect function� 

k ks� �� distortion� ��
C�X�� � entropy number� ��
C��X�� �� error� �
CK � 		 approximation� �� ��
D
�� �� empirical� �
E � � empirical in H� ��
E� � �� in H� �
E��z� �� regularized� ��
EH� � regularized empirical� ��
EH�z� �� sample� �
�k� �� feature
ek� �� map� 	�
Ez� � space� 	�
f� � �� general setting� ��
fH� � and approximation error� ��
f�� 	� � and bias�variance problem� 	�
fY � � in Hilbert space� ��
fz� � Hoe�ding�s inequality� 

HK � 	� homogeneous polynomials� �� 	�
Hs�X�� �� hypothesis space� �
��� �� convex� �

LK � ��� 	� kernel� 		
L���X�� ��� �� least squares� �� ��
Lz� 
 Mercer kernel� ��� �
� ��
N � �� model selection� 	�
�� � noise�free� �

�X � � regression function� 	� �
��yjx�� � reproducing kernel Hilbert space� ��� 	�
���� � sample� �
X� � Sobolev
Y � � Embedding Theorem� ��
Z� � space� ��� ��� ��� 	�
Zm� � Stirling�s inequality� ��
Bernstein�s inequality� 
 target function� �
best �t� � empirical� �
bias�variance trade�o�� � Veronese
Chebyshev�s inequality� 
 embedding� 	�
compact operator� �� variety� 	�
con�dence� � Weyl inner product� 	�
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