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Abstract
This paper studies the question of lower bounds on numbers of neurons

and examples necessary to program a given task into feedforward neural
networks.  We introduce the notion of information complexity of a network
to complement that of neural complexity.  Neural complexity deals with
lower bounds for neural resources (numbers of neurons) needed by a
network to perform a given task within a given tolerance.  Information
complexity measures lower bounds for information needed about (i.e.,
number of examples of) the desired input-output function.  We study the
interaction of the two complexities, and so lower bounds for the complexity
of building and then programming feedforward nets for given tasks.  We
show something unexpected a priori - the interaction of the two can be
simply bounded, so that they can be studied essentially independently.  We
construct order  RBF algorithms, show that they are information-�

�

optimal, and give example applications.

Keywords:  Feedforward neural network, complexity, information complexity,
neural complexity, radial basis functions, RBF networks, learning

1.  Introduction

Learning problems in feed-forward neural network theory are essentially
partial information issues.  That is, we wish to reconstruct a desired input-output
(i-o) function from partial information consisting of examples (i.e., individual
function evaluations). A complexity theory for neural networks from the
standpoint of information complexity has had some beginnings in the work of
Girosi & Poggio (1990), Poggio & Girosi (1989), and others.

The theory of neural complexity contrasts itself from that of information
complexity in that the former deals with numbers of neurons in the hidden layer
of a feed-forward network which are necessary for the computation of a given i-
o function, generally assuming full information about that function within some
tolerance .  This theory has seen some extensive and successful development in�
recent years, particularly in the work, e.g., of Mhaskar (1996), Mhaskar &
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Micchelli (1992, 1993, 1994, 1995), and Barron (1993). Additional work on
function approximation issues has been done in Chui & Li (1992), and Chui, Li
& Mhaskar (1993, 1996).

Information complexity is to an extent the “second half” of complexity
theory for neural networks, that which deals with information issues, and
numbers of examples needed to encode given tasks into neural networks.  Neural
complexity has been studied in the above references, while information
complexity (the number of examples of an i-o function needed to approximate it
within a given tolerance) is, we believe, still open to a good deal of development
- in this paper we begin a study of the interaction of the two. We introduce a
parameter , the number of examples available in the construction of a network�
to complement the number  of hidden neurons available.�

Just as neural complexity theory has its roots in classical approximation
theory, the theory of information complexity is closely related to continuous
complexity theory as currently studied (e.g., Traub, Wasilkowski &
Wozniakowski, 1998). The proofs of many results in complexity of feed-forward´
neural nets, once the two sets of connections are established, reduce largely to
developing results in or referencing work in these two areas, as occurs in several
places here.

Initially we divide complexity of feed-forward nets into two exact scenarios.
The first is when we know the i-o function  to be approximated exactly, i.e., we�
have unlimited information.  The question here is, how complex a neural net
(how many hidden units) do we need to express the function within a tolerance �
measured in some norm?  The second arises when we assume unlimited neural
resources (as large a hidden layer as we please), and ask how many examples of
�  are required for its approximation within . The question of what to do with�
limited information has been at the center of learning theory for a number of
years, with algorithms for classical feedforward nets such as backpropagation
and the Boltzmann machine having received a good deal of attention.

We will examine the second issue and then the combined question of what to
do with limited numbers  of examples and  of neurons.  The interaction of � � �
and  is interesting, and we characterize this joint complexity's order.  We show�
something unexpected a priori - that relationships between information and
neural complexities can be simply bounded, and so the two issues can be studied
independently before their interaction. The two complexity questions pose
challenging problems in mathematics and neural phenomenology - it is in a
sense fortunate they can be largely separated.
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We wish to show these results have practical in addition to some theoretical
significance. We believe they can be used directly in practical situations to
obtain upper and lower bounds on numbers of examples and neurons needed to
develop systems with desired i-o functions.  We present some examples of how
this might be accomplished. Beyond calculating complexities, we wish also to
construct algorithms optimizing  and , to show they are optimal or almost� �
optimal, and to apply them to examples of interest. The prescriptions here,
though they are mathematically optimal, are presented with useable algorithms
which are of use in the construction of RBF networks.

We remark that the heart of the information complexity problem is the fact
that the reconstruction of an i-o function  from incomplete (partial) and/or�
noisy information is an ill-posed problem. The best regularization techniques for
this problem given natural a priori smoothness constraints on  can be shown�
equivalent to the use of optimal reconstruction algorithms in continuous
complexity.  It is remarkable that within the model of computation in which
arbitrary hidden layer activation functions  are allowed, optimal algorithms.²%³W
for reconstructing , i.e., algorithms which utilize information in examples with�
the greatest possible efficiency, are those using radial basis functions of the type
studied by Mhaskar & Micchelli (1992), Micchelli & Buhmann (1992),  Girosi
& Poggio (1990), and Poggio & Girosi (1989, 1990), and in various works on
continuous complexity, see e.g. Traub, Wasilkowski & Wozniakowski (1988),´
and Plaskota (1996).

More precisely, in the well-defined context of optimality given here, the
algorithms are optimal in their use of information, assuming we have sufficiently
many neurons in the hidden layer to work with (a number  at least equal to the�
number  of examples, see Theorem 2 in Section ).  Since the optimality results� 

are not restricted to networks but are based on lower bounds of error for any
system using the information in the examples, we show that no other network
learning from examples can improve on this algorithm.  We thus claim that with
the computational provision of as many neurons as there are examples, along
with the capability for basic linear algebra operations (essentially Gaussian
elimination on a  system of equations) a particular RBF algorithm is a� d �
priori at least as accurate and efficient as backpropagation, the Boltzmann
machine, or any other algorithm.  When the neuron number  is limited and�
smaller than , then our claim (Theorem 3) reduces to (almost) optimality only�
within the class of RBF neural networks with a given number of hidden units.
Our error criteria are general to the extent they can involve essentially any norm.
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We remark that the model of information complexity presented here is a
continuous complexity model in which there is a separation between information
and algorithmic complexity. It fits a widely used template for so-called standard
information , i.e., the desired output values5� ~ ²�²% ³Á �²% ³ÁÃ Á �²% ³³W W W� � �

�²% ³ %W W� � at a series of examples (input vectors) . The algorithmic portion �
(which computes the coefficients of the approximation network from
information ) fits a model of computation in which each additional neuron5�
has a unit cost, and remaining computations are deemed negligible in their
contributions to complexity.  Thus the number  of examples represents�
information complexity, and the number  of neurons (i.e., RBF's) used�
represents algorithmic complexity in this model. Since the latter corresponds to
the number of neurons, we call it neural complexity.  We show algorithms using
radial basis functions are optimal from the standpoint of information complexity
in that for a given number  of examples, these algorithms provide the smallest�
possible errorÀ

Using the above notation, the full neural system computes a function ,�²5�³
with the algorithmic portion  using information  from examples to compute� 5�
the network approximation of . Thus letting  be the class of functions from� -�

which  is drawn,  be the space of possible information� 5²- ³ ��
�l

²�²% ³ÁÃ Á �²% ³³ 0 0� ~ �W W� � , and  be the identity operator , we wish to
approximate the identity operator with our neural network, which is a
composition  of the information operation  with the algorithmic operation�k5 5
�.
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Fig. 1:  The schematic relation of the spaces in continuous complexity  theory

We note in passing there are other useful ways of measuring complexity
suited to other requirements.  For example, the complexity of computing the
weights of the neural network which best approximate the desired i-o function (a
linear algebra operation here), is not part of our computational model, though
this can be changed if needed.  Though the algorithms presented here do not
necessarily perform the task of finding the optimal weights in the fastest way,
they are quite tractable from a practical standpoint for problems whose essential
input dimension is less than 100, and optimal in the number of examples
required for a given error tolerance.

A main theme of this paper is the remarkable set of parallels between the
fundamentals of feed-forward neural network theory and two very established
areas of mathematics and theoretical computer science, namely approximation
theory and continuous complexity theory. The parallel with the former has been
seen in a number of works on neural complexity (see above references), while a
parallel with the latter is studied here, in the connection between neural
information complexity and continuous complexity.  Some mathematical
statements on approximation optimality translate directly into statements on
optimality of neural networks, and one purpose of this paper is to show how this
theory can be applied to answer our questions. The brevity of our proofs
indicates how well-developed continuous complexity is, and the extent to which
the present information complexity theory depends on it.
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In this paper, we consider only the deterministic, worst case setting. There
may be a need for more theoretical study of other settings such as average case
setting and ones in which information is taken at random. In these cases there is
also a complexity theory (Traub, Wasilkowski & Wozniakowski, 1988,´
Plaskota, 1996), and we believe that similar results can be obtained.

2.  Definitions and main result.

We will generally assume that our input-output (i-o) function  is multivariate.�
That is,

� ¢ + ¦ Ál

where  or  is a proper subset of , e.g.,  is a -+ ~ + + ~ ´�Á �µ �l l� � �

dimensional unit cube. We have some a priori knowledge of , e.g., that  is in a� �
sense smooth.  This is expressed by assuming

� � - Á�

where  is a ball of a normed space.  This assumption is general in that any-�

convex, balanced, and absorbing set is a unit ball of such a space.
We wish to construct a neural network approximation of . � An

approximation is constructed based only on this a priori information and on a
posteriori information about  given in examples�

& ~ �²% ³W� �  

for  � � � � �À We consider three layer neural networks with node activations %�

in the first (input) layer,  in the second (hidden) layer, and  for the single� ��

output neuron in the third layer.
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Fig. 2:  Model three layer network

(We remark that the general case of more than one neuron in the output layer
can be handled as a combination of the single output neuron models we discuss
here.)

We assume an RBF model, by which we mean that activations of neurons in
the hidden layer are given by  for given functions , where� ~ . ²%³ .W� � �

% ~ ²% ÁÃ Á % ³ ; �W � �
;  (  is transpose), while the output  is linear in the activations

of the second layer, i.e.,

�²%³ ~ $ � ~ $ . ²%³W W� �
�~� �~�

� �

� � � � . (1)

Here  is the number of neurons in the hidden layer.�
We now state the main results of the paper. More detailed definitions and

statements are left to the body of the paper.  We assume for the results that our
function space is a  (see below).  Essentiallyreproducing kernel Hilbert space
this is a Hilbert space in which function evaluation is a well-defined, i.e.,
continuous, operation.

Let  be the reproducing kernel Hilbert space with reproducing kernel/
. ¢ + d+ ¦ �l.  Suppose our a priori information places  in the ball

- ~ ¸ � � / ¢ P�P � � ¹� /
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of . We approximate  by an RBF neural network  of the form (1) with/ � �
activation functions , for some  (see Section ).. ² h ³ ~ .²% Á h ³ % � + 
� � �W W

By an algorithm for constructing network approximations we meanoptimal 
the one which minimizes the worst case error of approximation over all possible
� - À from  We also mention that an algorithm  is one whose� almost optimal �
worst case error is within a (usually small) fixed factor  of the minimal worst*
case error.

Theorem I.  Suppose the number  of available neurons is not smaller than the�
number  of examples  n optimal algorithm (network) for approximating � À ( �

from information is given by the linear& ~ 5� ~ ²�²! ³ÁÃ Á �²! ³³W W W
� �

;

combination

� ~ � .²! Á h ³ÁW
&W

�~�

�

� ��
where the coefficients  are solutions of the linear system� ~ ²� ÁÃ Á � ³W � �

;

4 � ~ & 4 ~ ².²! Á ! ³³ ÀW W W W
5 5 � � �Á�~�

� with the matrix

Theorem II.  Let Al be an almost optimal algorithm that gives neural network
approximations with a limited number  of neurons and assuming full�
information about a function. Then the composite algorithm  is& ª � ª (�²� ³W & &W W

almost optimal for approximating  by an  neuron network from information� �
& ~ 5²�³ �W  about .

The neural complexity , is the minimal number of neurons in the hidden�² ³�
layer sufficient to approximate any  from the ball with accuracy  assuming� -� �
full information about . The  , is the minimal� �² ³information complexity �
number of examples  from which it is possible to approximate ²% Á �²% ³³ �W W� �

within , assuming an unlimited number of neurons available.�

Theorem III.   Information complexity dominates neural complexity, i.e.,

�² ³ � �² ³Á D � �À� � �
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Theorem IV.  In order to approximate any function  from the ball � P�P � �/

with error , it is necessary to use at least  neurons and  examples,� � �� � �² ³ �² ³
and sufficient to use at most  neurons and  examples.�² °�³ �² °�³� �

3.  Examples

As a concrete example to motivate this work, suppose we are building a control
system in which homeostatic parameters such as temperature, humidity, and
specific chemical contents of an industrial mixture can be controlled (i.e., are
input variables), and the output of these inputs, the ratio of elasticity and
strength of a plastic which is produced from the mixture, is also recorded.
Theoretically, combinations of values of the input variables may have
unpredictable effects on the output variables, including binary and tertiary
correlations of input variables, as well as even more complicated dependences.
We wish to build a neural network whose input is the vector  of% ~ ²% ÁÃ Á % ³W � �

input parameters, and whose output  is the ratio of elasticity and� ~ �²%³W
strength.  The function  is unknown, and we have experimental data of the�
form {(  from many previous runs of our equipment.  We wish to% Á �²% ³³¹W W� � �~�

�

build a network which will run on a moderate size computer and which will
correctly predict the elasticity/strength ratio from our homeostatic parameters.
Because of limits on our computational equipment, we must limit the size  of�
our network, and because of limited data, is also limited.  If we specify an error�
tolerance  for this ratio, we will wish to optimize our procedure for constructing�
our -network by optimizing some function which may depend on just� �²�Á �³Á
�Á �just , a linear combination of the two (with weights determined by the
relative difficulty of increasing computational scale versus obtaining
information), or a more complicated function.  This problem can be somewhat
more tamely stated if we invert the dependence of  on .  This leads to a�Á � �
question which combines complexity Questions 1 and 2 below, and is stated in
Question 4.

A second example (modified from one which was worked on by a consultant
known to the authors) consists of a neural network which studies purchasing
patterns of people using various mail order corporations. Corporations share data
on consumers, and correct “mining” of such data can produce large numbers of
sales to clients very likely to purchase given classes of products.  In this case, a
reasonable approach is to create a tree structure on the family of products under
consideration (e.g., a node would be appliances, while a subnode would be
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kitchen appliances, under which would be ovens, etc.), and as input variables for
a given individual to include the dollar quantities  of purchases of the given%�

consumer. The desired output in this case would be , the probability that the�²%³W
consumer would purchase the present target product, say a blender, toaster, or
oven.  In this situation we have a large dimension  of the input data (i.e., there�
are many products which can be purchased), as well as unchangeable size  of�
the learning set ( and we are interested here in finding the algorithm¸ %Á �²%³³¹ÁW W
yielding the network with smallest practical  for our given  and� �
computationally limiting . Question 4 is at the heart of  this problem as well.�

We remark that the assumptions we have made here regarding assumed
membership of the unknown i-o function in a ball of a function space, e.g., 3B

 

or another Sobolev space, are reasonable if a function with small norm in the
said space can be assumed to approximate pointwise the i-o function within a
“good” tolerance. It is unnecessary that the unknown function be exactly
smooth, or exactly belong to the indicated class. There must be a global fit
which is acceptable, and under such assumptions these theorems can be applied.

Suppose we again have the previously mentioned homeostatic system, and
know that the variation of the output quality is such that the quality can be
approximated by a 10 times differentiable function (e.g., a polynomial) whose
first 10 derivatives are smaller than 15 (in some appropriate scale).  In the case
of polynomial approximation, this would place bounds on the coefficients of the
polynomials, a reasonable way to “guess” the nature of a function approximating
an unknown one.  (Though of course such bounds would have to be considered a
heuristic process, techniques and guidelines for such approximate bounding can
be established; see below).  The above assumption would imply that the i-o
function can be well-approximated by a function in the Sobolev space , in the3B

��

ball of radius 15. This would provide our candidate function set  (the ball of-�	

radius 15 in ).- ~ 3B
��

Next, with this information plus a given error tolerance, say .1 (in� ~
possibly another error metric, say the  metric), we could compute theoretical3�

upper and lower bounds for the neural and information complexities of our
problem using theorems such as Theorem 1 and standard techniques in
continuous complexity theory (Traub, Wasilkowski & Wozniakowski, 1988).´
This does not in itself say what examples to use and how to program the weights
for an optimal such network, but it has been shown that using sparse grid points
is very effective in such a regard, and that the algorithm of Theorem I is optimal
in finding appropriate weights. Thus it would be practically feasible not only to
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use the minimum numbers of neurons and examples to solve this practical
problem, but also to program the weights of the network which results.

More specifically, such a computation might show that with full information
we would need 1,000 neurons for error , while with unlimited numbers�°� ~ À�	
of neurons we would need at least 2,000 data points for error  (via�°� ~ À�	
informational techniques explicitly given in Traub, Wasilkowski &
Wozniakowski, 1988).  Note that by Theorem III the complexity functions ´ �² ³�
and  satisfy . Then we would use Theorem IV to estimate that�² ³ �² ³ � �² ³� � �
we are guaranteed error  or less with 1,000 neurons and 2,000 data points.� ~ À�

Experimental verification of the above bounds on polynomial
approximations could be made after data are taken.  Namely, derivatives of such
approximating smooth functions can be calculated, and in a bootstrapping way
used to verify (or negate) the underlying assumptions about membership by the
function  in the set .  For example, that the gradient of the data is bounded� -�5

by, say, 5 units can easily be verified from our algorithmic approximation or
experimentally from the data, and higher derivatives can be bounded similarly.

4.  Neural complexity (� ~ B³

We now formally consider the above questions, and their answers in our
mathematical context.

Question 1.  Given a fully known i-o function  and an error tolerance , what� �
is the smallest size  of the hidden layer in a network that can approximate � �
within ?�

This involves a complete information setting, and is partially answered in,
e.g., the work of Barron (1993), Chui & Li (1992), Micchelli & Mhaskar (1992,
1993, 1994, 1995), as well as others.  Approximation results depend on the
space of functions being considered, as well as the family of approximating
functions allowed.

We present a result of Micchelli & Mhaskar (1993) for a particular space of
functions, under the assumption that arbitrary dilations and translations of a
given periodic function  are allowed.  This theorem is a typical consequence of�
the work done in neural complexity.
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Let denote the space of 2 -periodic continuous functions on   For* À�i �� l
� � * , ²�³ � P� c 7P ;�i �

�
7�;

�, define , where  is the set of trigonometricmin
�

polynomials of order or less in  and  is the supremum norm� * P h P À�i

Thus  represents the best possible error with  terms of a Fourier, ²�³ ��
�

series.  Let  where  denotes Fourier series: � ¸ � ¢ �² ³ £ �¹ �² ³V V�
�� � �t

coefficients, and   containing  matrices with integerassume there is a set1 � d  
entries such that , where  denotes the¸( ¢ � : Á ( � 1¹ ~ (;  ;

�� � t

transpose.  If  and  is a function with none of its Fourier coefficients� ~  �
equal to zero (the radial basis case), then we may choose  and: ~�

 t

1 ~ ¸0 ¹ d  the identity matrix.  Let be the multi-integer with minimum�� 
magnitude such that  for some , and� �~ ( ( ~ ( � 1;

� �

5 ~ ¸O O ¢ c�� � � ��¹À� max � ��  Let

� � ¸O�²� ³O ¢ c �� � � � ��¹V� �min , 

where the last inequality is taken componentwise in .  Then we have:�

Theorem 1. Let , , and  be integers, , . � � � � � � � 5 � 5 � � * � � *�
 i �i

There exists a network

�²%³ ~ � ²�Â %³ � � �²( % b ! ³ ² ³W W W W
�Á5Á� � � �

�

� 2

such that

P� c � ²�³P � � , ²�³ b P�P À
, ²�³�

�
�Á5Á�

 5
�

�  °�

�
8 9

In  (2) the sum contains at most terms, ,  and  are6²� 5 ³ ( � 1 ! � Á � � �
� � �l

linear functionals of , depending on � �Á5Á �À

These types of full-information results are benchmarks (and lower bounds)
for comparison with complexities in partial information settings.  In our setting
we can use such results directly to compute (or estimate) the neural complexity.

Definition 1.  Given a family  of activation functions, let  be the! D~ ¸. ¹� � �

set of neural networks with  hidden neurons,�
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   :    ,  .D ! l� � � � �

�~�

�

~ � ~ $ . . � $ �H I�
For a function  and error norm , we define the th error of approximation� P h P ��

as .  The th error over a class  of functions is�²� Á �³ ~ P� c �P � -inf�� � �D�

� ²�³ ~ �²�Á �³ ~ P� c �P� ��- ��- ���sup sup inf
� � �D .

Definition 2.  The   of evaluating a function  islocal neural complexity�²�Á ³ ��
the smallest number  of neurons in the hidden layer required for the estimation�
of  within error .  The (or neural complexity) on a� � global neural complexity 
class  of functions is-�

�² ³ � �²�Á ³� �sup
��-�

.

5.  Information complexity (� ~ B³

Question 2.  Given an unknown function  in some class, what is the smallest�
number  of examples (  for which it is (theoretically) possible to� ¸ % Á �²% ³³¹W W� � �~�

�

estimate  within error  (assuming unlimited access to hidden units)?� �

In order to answer this we assume our prior knowledge of  places it into a�
set . For instance,  may be a convex, balanced, and absorbing set in a linear- -� �

space .  This is known to determine uniquely a norm on this space, with-
respect to which the functions  form the unit ball (or more generally a� � -�

ball of radius ).  The restriction to a ball of  is a natural consequence of the� -�

above basic assumption on - À�

Definition 3.  Information of the form

& ~ 5� ~ ²�²% ³Á �²% ³ÁÃ Á �²% ³³ �W W W W� � �
; �l

is standard information adaptive about .  Information is  if the choice of � %W�
depends on previously obtained values, i.e., .% ~ % ²�²% ³ÁÃ Á �²% ³³W W W W� � � �c�
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Otherwise information is .  The  is thenonadaptive cardinality of information
number of examples in the information  i.e., card .Á ²5³ ~ �

We henceforth assume information  is standard unless otherwise5�
specified. Then Question 2 can be formulated in the language of continuous
complexity as follows.  Given an unknown , what is the minimum� � -�

number of examples (i.e., cardinality of information ) for which the error  can5 �
be achieved, using the best possible algorithm for reconstructing ?�

We denote the reconstruction algorithm by : .  Thus  takes� �5²- ³ ¦ -�

information  about  and produces an approximation .  The error of& � ²&³ � -W W�
approximation for  is defined as�

�² Á5Á �³ ~ P� c ²5�³P� � �,

where is a given error norm.P h P�

Definition 4. The (worst case) error of the algorithm  using information  on� 5
the class  is defined as-�

�² Á5³ ~ �² Á5Á �³ ~ P� c ²5�³P À� � �sup sup��- ��- �� �

An algorithm  is  in a class of algorithms iff it minimizes the worst�i optimal
case error.

Note in general a nonzero error is present due to the fact that our function �
cannot be uniquely identified by information .  Hence the same approximation&W
�²&³W will correspond to all functions from the set

-²&³ � 5 ²&³ q -W Wc�
�

of functions consistent with information .&W
It is desirable that the algorithm not only minimize the worst case error over

- -²&³ & � 5²- ³W W� �, but also the worst case error over , for each .  We remark
(see e.g. Traub, Wasilkowski & Wozniakowski, 1988, for details) that this is´
satisfied iff  is just the (Chebyshev) center of .  Such an algorithm, if it�²&³ - ²&³W W
exists, is known as Then the (Chebyshev) radiuscentral and denoted by .  ��

�²- ²&³³ P h PW  in the  norm (i.e., the radius of the smallest ball containing it)�

becomes the smallest possible error for information ,&
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�²5Á &³ � P� c ²&³P ~ P� c ²&³P ² ³W W W

~ �²- ²&³³W

 3inf sup
�²&³W ��-²&³W

� �
�� �

The supremum

�²5³ ~ �²5Á &³ ~ P� c ²5²�³³P ² ³W

~ P� c ²5²�³³P

~ P� c ²5²�³³P

sup inf sup

sup

inf sup

&�5²- ³W ¢5²- ³¦- ��-
�

��-

�
�

¢ ¦- ��-
�

�
� �

�

�

�

    4

    

�

� l

�

�

�

is denoted as minimum worst case error for information , also called the5
radius of information,

�²5³ � sup
��-�

 �²- ²5�³³ ~ �²5Á5²�³³ ~ �²5³Ásup
��-�

(5)

by (4). (Which of the several definitions of  is used will be clear from the�² h ³
arguments.)

Definition 5.  A family  of activation functions for which the set! ~ ¸. ¹� �

D D
~

 of neural networks  (with arbitrary number  of~ �²%³ ~ $ . ²%³ �W W� �
�

� � �
�~�

�

neurons) is dense in  with respect to error norm , is called .- P h Pe complete

Thus if information is the only limitation and the family of  is complete!
(i.e.,  functions in  can be reconstructed by networks with arbitrarily small-�

error), then issues of function reconstruction reduce to geometric ones, involving
radii of sets   In particular under such circumstances, the error of the bestÀ
possible algorithm using information  for reconstructing  is the supremum of5 �
radii of slices of a set in a normed linear space (equation (5)).

The networks are complete, for example, when  is the. ²%³ ~ .²% c ³W W W� �
family induced by  such that its Fourier transform vanishes on a set of.²%³W
measure 0, guaranteeing by a theorem of Wiener that the translates of  are.
dense in .  In a more general case we may have where3 . ²%³ ~ .²%Á ³ÁW W W�

� �
.² h Á h ³ is a symmetric and positive definite function defined on a set
+d+ � 
l� (see Section ).  This family is complete in the reproducing kernel
Hilbert space  induced by , with respect to an error norm which is weaker/ .
than the norm of ./
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Definition 6.   We define the minimal error with information of cardinality  to�
be

� ²�³ � �²5³ ~ �²5³ � �²�³À�
²5³~� ²5³~�

          inf inf
card card

Then the  of function approximation in the set  is the�-information complexity -�

smallest cardinality of information sufficient to obtain error  or less,�

�² ³ ~ ¸� ¢ � ²�³ � ¹À� �inf �

Remark 1.   The issues related to this reconstruction problem are discussed in
depth in Traub, Wasilkowski & Wozniakowski (1988), and so details are´
omitted here.  An interesting theorem in this regard relates explicit geometric
quantities in the space  with error norm  we are considering, to- P h P�
information error of approximation   We define, for  a balanced subset ofÀ ( � -
- � � ( ¬ c� � (³ � ( (i.e. one for which , the Gelfand -width of  by

� ~ � ²(Á - ³ � P�P Á� �

( ��(q(
�inf sup

�
�

 

where  is a subspace of  of codimension at most .  Thus  is the diameter( - � �� �

of the intersection of  with a hyperplane of codimension , minimized over the( �
choice of hyperplane.  Furthermore let  be the corresponding minimal error� ²�³i

�

of reconstruction obtained from information consisting of  arbitrary linear�
functionals ,  (instead of standard information).3 5²�³ ~ ²3 ²�³ÁÃ Á3 ²�³³� � �

Then

�

�
� � � ²�³ � �� i �

�

with .  We obviously have .  We also often have� ~ � ²- Á - ³ � ²�³ � � ²�³� � i
� � �

the reverse inequality up to a constant independent of .  In this case, the�
minimal error of standard information is essentially the Gelfand -width of the a�
priori set  in the norm .  Such -widths are calculated for various spaces- P h P �� �

(see Pinkus, 1985, Traub, Wasilkowski & Wozniakowski, 1988), and so our´
main point of interest is the fact that Question 2 reduces to this well-studied and
geometric theory.

A natural choice of  is a space of smoothed square integrable functions, say-
/ ²�³ � , the ball of radius  in the space
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/ ~ ¸� � 3 ²0 ³ ¢ � � B¹ �
 

2 + +  

of functions defined, say, on the unit  dimensional cube , with the� 0 ~ ´�Á �µ� �

norm , the infimum taken over all+ + 
� ~ �%²O� O b O²c ³ � O ³ 
�

�

i �  °� i �inf
i

�l
"

functions  on  with � � ~ �Ài � i

0
l e

�

Here   For  an even integer this class is contained in the class" ~ À  �
�~�

�
C
C%

�

�

�

> ²� ³ ~ � ¢ 0 ¦ P� P � � Á� Z � ² ³ Z
 

O O~ 

�H f I�l
�

�

with , for some choice of .  It is known that when theP�P ~ � �% ��
� Z

�°�6 7

0�

Hilbert space  in the above discussion is replaced by , then the error )/ > � ²� 
�

�

for functions of norm bounded by  is bounded above by  forP�P � � ��c °�b�°�

some , as long as 2  (Traub, Wasilkowski & Wozniakowski, 1988, p.´� � �  � �
138).  Thus under this assumption, this is also an upper bound for functions in
/ �³ � > ²� ³ � Z

 ( .  This illustrates the type of existing results in continuous
complexity theory which apply to the  study of information complexity.� ~ B

6   Interaction of information and neuralÀ
complexities.

Question 3. Given information about  with  examples, what is the best� �
network approximating  which uses at most  neurons in the hidden layer?� �

This question is crucial for a more general one:

Question 4.  In Question 1 it is assumed that network size  is the only�
limitation (i.e. we have full information about i-o function ).  In Question 2 it is�
assumed the number  of examples (i.e., the cardinality of information) is the�
only limitation.  In practice both parameters are limited.  How do the values of
� �and  interact in determining network error ?�
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Here we will be more specific about our setting than earlier.  We assume the
set  to which our i-o function  belongs is a ball in a - �� reproducing kernel
Hilbert space ,  , / P�P � � i.e., for some fixed .  Such an assumption is/ � � �
in fact natural from our standpoint, since such spaces are essentially defined by
the condition that pointwise evaluations of functions in these spaces are
continuous (and so well-defined) operations.

Definition 7.  A Hilbert space  with the inner product  consisting of/ º h Á h »/
multivariate functions defined on  is a + � l� reproducing kernel Hilbert space
if function evaluation  is a bounded linear functional for any � ª �²%³ % � +ÀW W
A  of  is a symmetric and positive definite function reproducing kernel / 2²%Á &³W W
such that for any  and � � / % � +ÁW

�²%³ ~ º�Á2²%Á h ³ » ÀW W ² ³/ 6

Note that any r.k.h.s.  possesses its reproducing kernel and, moreover,  is/ /
uniquely determined by its reproducing kernel , see e.g. Aronszain (1950).2

We also assume that the family  of possible activation functions is!
determined by the reproducing kernel of the space .  That is, 2 / ~ ¸. ¹! � �W W�+

with

. ²%³ ~ 2²%Á ³Á %Á � +À�W W W W W W� �

Example 1.  Let  be the space of univariate functions  that are/ � ¢ ´�Á �µ ¦ l
absolutely continuous and vanish at zero with norm

P�P ~ ²� ²%³³ �%/
�

�

Z �o� .

Then the corresponding reproducing kernel is .  In this.²%Á &³ ~ ²%Á &³min
case, the possible activation functions are given as  with some% ª ²%Á " ³min �

" � ´�Á �µÀ�   The networks are of the form

�²%³ ~ � ²%Á " ³Á�
�~�

�

� �min

and it can be easily seen that  is continuous piecewise linear function (with�²%³
knots ) vanishing at zero.  The error here can be measured, e.g., in  norm." 3�

�
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Note that  is weaker than  and hence the set of activation functions is in3 P h P�
/

this case complete.

Important examples of reproducing kernels are shift-invariant kernels, i.e.,
ones for which  with some .  For instance, the Ornstein-.²%Á &³ ~ . ²& c %³ .W W W W� �

Uhlenbeck kernel in is determined by , , withl l� �
�

�
�

. ²%³ ~ ²cP%P ³ % �W W Wexp 1

P%P ~ O% O % ~ ²% ÁÃ Á % ³W W� � � �
�~�

�
;� , .

Definition 8À  We denote by  the minimal error of approximation in �²�Á5³ -�

using information  and a limited number  of neurons5 � Á

�²�Á5³ ~ P� c ²5�³P Àinf sup
� D:5²- ³¦ ��-

�
� � �

  �

Furthermore, we denote by  the minimal error of approximation using �²�Á �³ �
examples and networks with  hidden neurons, i.e.,�

�²�Á �³ ~ �²�Á5³Áinf

the infimum taken over all information  of cardinality 5 �À

Observe first that any approximation with  neurons based on partial�
information cannot be better than that based on full information about , and it�
cannot be better than approximation with unlimited number of neurons. Hence

�²�Á5³ � ² � ²�³Á �²5³ ³Ámax �

�²�Á �³ � ² � ²�³Á � ²�³ ³Àmax � �

We are now ready to state theorems about how to construct optimal
networks.  We will assume that information is nonadaptive, i.e., the same
sample points  are used for all 's.  This is justified by the fact that, for! ��

approximating functions in a ball of a Hilbert space, adaptive information is no
better than nonadaptive information.  In other words, information complexity
can be realized by nonadaptive information, see e.g. Traub, Wasilkowski &
Wo niakowski (1988, Chap. 4).ź

Theorem 2.  Suppose the number  of available neurons is not smaller than the�
number  of examples   For standard information� À
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& ~ 5� ~ ²�²! ³ÁÃ Á �²! ³³W W W
� �

; ,

let  the network  be given as�&W

� ~ � .²! Á h ³ÁW
&W

�~�

�

� ��
where the coefficients  are solutions of the linear system� ~ ²� ÁÃ Á � ³W � �

;

4 � ~ & 4 ~ ².²! Á ! ³³ ÀW W W W
5 5 � � �Á�~�

� with the matrix   Then the algorithm
� �i i

&W²&³ ~ � �² Á5³ ~ �²5³ ~ �²�Á5³ÀW  is optimal and central, i.e., 

Proof  À  The network  is the -orthogonal projection of  onto the subspace � / � =&W

spanned by the activation functions . Indeed, since .²! Á h ³Á � � � � � .²! Á h ³W W
� �

is the representor of function evaluation at  in the space  (i.e., plays the role! /W
�

of  in equation (6)), we have2

º ²� c � ³Á.²! Á h ³ » ~ �²! ³ c � ²! ³ ~ �²! ³ c & ~ �ÁW W W W & &W W� / � � � �

and  is -orthogonal to .  Such a projection is known to be the center of� c � / =&W

the set and hence , being central, is an optimal algorithm; see5 ²&³ q - Á �Wc�
� &W

e.g. Traub, Wasilkowski & Wozniakowski (1988, Chap. 4).´ �

Thus the optimal network uses a number  of neurons equal to the number � �
of examples, and the corresponding activation functions are centered at the
information points .  The optimal coefficients of the network are obtained as!W�
solutions of a  linear system.� d �

Remark 2. Throughout this paper information is, for simplicity, assumed
noiseless.  Assume for a moment that information is in addition contaminated by
noise uniformly bounded in some norm, i.e.,  with & ~ 5� b P P �W W W� � �@

² � �³ Á �� .  Then an almost optimal network (i.e. optimal up to a factor of ) is
the one minimizing the regularization functional

< �²�³ ~ ² °� ³P�P b P& c 5²�³PW� � � �
/ @

over .  That is, the minimum of  is uniquely determined and is a� � / <
network with  neurons.  In particular, for  a Hilbert norm,� P h P@

P P ~ ~ � �W W W� � '� ' '@
; ;m  with , this minimum is given as in Theorem 2
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with the coefficients  being the solution of the linear system��
²² °� ³ b4 ³� ~ &W W� '� �

5 .
This is a direct consequence of results in analytic complexity given in

Plaskota (1996, Sec. 2.5-6).  We additionally note that for noise bounded in a
Hilbert norm the coefficients  can be selected in such a way that the network��
� -&W � is optimal, i.e., it minimizes the error of approximation in the class .  This
follows from results in Melkman & Micchelli (1979).  However, an explicit
construction of these optimal coefficients is in general unknown.  The types of
algorithms mentioned above are also studied in Girosi & Poggio (1990). It is
interesting that these are best algorithms in the above strict sense.

Assume now the general case with arbitrary  and . This, in particular,� �
includes the case when the number � of available neurons is smaller than the
number  of examples.�

Theorem 3. Let Al  and  be almost optimal algorithms for� ª ²�³ & ª ²&³W W�
finding neural network approximations, respectively, for  neurons and full�
information about , and for an arbitrary number of neurons and information�
& ~ 5� �W  about .  That is,

P� c (�²�³P � * h � ²�³ P� c ²5�³P � * h �²5³� � � � �      and     , �

for all .  Then the composite algorithm  gives an almost optimal� � - (�k� �
network in , i.e.,D�

P� c (�² ²5�³³P � ²* b * ³ h �²�Á5³Á D� � - À� � � � �.         

Proof. By the  triangle inequality, for the composite algorithm

P� c (�² ²5�³³P � P� c ²5�³P b P ²5�³ c (�² ²5�³³P

� * �²5³ b * � ²�³ � ²* b * ³ ²� ²�³Á �²5³³

� ²* b * ³�²�Á5³

� � � �� � �

� � � � � �

� �

max
,

as claimed. �

Let us comment on Theorem 3 above.  It says that the problem of finding an
(almost) optimal network can be divided onto two separate problems related to
pure neural and information issues.  In the first step, an algorithm  using�
� ~ � ��  neurons approximates the i-o function .  In the second this approximate
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function  is used as a target function (now in the full information� ~ ²&³& � W
setting) for an approximation  by the current  neural network.  Thus(� � � ��

the composite algorithm  gives an almost optimal network.(� k�
We now pass to the complexity questions.
From the proof of the last theorem we can immediately infer the following

result, allowing us to bound (up to a factor of ) the error  in terms of� �²�Á5³
e  and e , and the error  by and .� � � �²�³ ²5³ �²�Á �³ � ²�³ � ²�³

Theorem 4.  (a) For  we have� � �

� ²�³ � �²�Á5³ ~ � ²5³ ����²5³ ~ �Á� � ,     

� ²�³ � � ²�³ � �²�Á �³ ~ � ²�³À� � �

(b) For arbitrary  and  we have� �

max²� ²�³Á � ²5³ ³ � �²�Á5³ � � ²�³ b � ²5³Á ����²5³ ~ �Á� � � �          

max²� ²�³Á � ²�³ ³ � �²�Á �³ � � ²�³ b � ²�³À� � � �

Proof. The first inequalities in (a) are a consequence of the fact that for � � �
the optimal network is the center of the set , while the first5 ²&³ q -Wc�

�

inequalities in (b) can be obtained by applying the composite algorithm of the
previous theorem with  and  such that their errors are arbitrarily close to(� �
� ²�³ � ²5³� � and , respectively.  The second inequalities in (a) and (b) then
follow from the first ones by taking the infima over  with .5 ����²5³ ~ � �

Corollary 1.  A necessary condition for error e to be at most  is that!�� ²�Á �³ �
� ²�³Á � ²�³ � Á � ²�³Á � ²�³ �� � � �

�
�

� �while a sufficient condition is that . In
other words, in order to approximate an i-o function with error at most , we�
must use at least  examples of  and a network with  neurons, while this�² ³ � �² ³� �
error of approximation can be obtained via an optimal algorithm using at most
�² °�³ �² °�³� � examples and neurons.

Inverting the relationship  in Theorem 4 and using the fact� ²�³ � � ²�³� �

both functions are monotone decreasing, we obtain Theorems III and IV from
Section .�
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We have showed in particular that .  Sometimes, but not� ²�³ � � ²�³� �

always, we also have the reverse inequality, i.e.,  for some� ²�³ � * � ²�³� �

constant  independent of , which means that the both minimal errors are* �
essentially the same; see Example 2.  In this case, there is another algorithm for
constructing approximation networks consisting of the two following steps.  In
the first step we find, as before, the network  with  neurons best� � ~ � � �& �W

approximating  from the given  examples.  In the second step we find the� �
network  best approximating  from  examples of .  Specifically let� � � �&

i
& &W W W

5 ²�³ ~ ²�²! ³ÁÃ Á �²! ³³i i ;
� �

iW W  be optimal (or almost optimal) information, i.e.,
information for which  for some  independent of .  Letting�²5 ³ � * � ²�³ * �i

� � �

& ~ 5 ²� ³ 4 ~ ².²! Á ! ³³ � ~ � .²! Á h ³W W W Wi i � i i
& 5 � � � �

i i i

�Á�~� &
�~�

�

W W and , we find  withi �
4 � ~ & � � �5 �

i i
iW W .  Thus we have made one-time use of a network with 

neurons in order to construct the weights  of the final network having � ��
i

neurons.  Note that in the second step we use only partial information 5 ²� ³i
&W

about , though full information is available.�&W
Using again the triangle inequality we get for any ,� � -�

P� c � P � P� c � P b P� c � P � * � ²�³ b * � ²�³

� ²* b * *³ ²� ²�³Á � ²�³³Á
& &
i i

& & � � � �

� � � �

W WW W

max

i.e., the new algorithm is also almost optimal.
We finally present an example illustrating the above results.

Example 2. Let  and the activation functions be given by+ ~ ´�Á �µ
.² Á !³ ~ ² Á !³min , as in Example 1.  Recall that then any neural network in D�

is a continuous and piecewise linear function with  knots, and the space � /
consists of absolutely continuous real functions defined on  and vanishing at+
zero. We assume as earlier that our prior knowledge of the i-o function  is that�

P�P ~ ²� ²!³³ �! � � �/ �

� Z �m
  for a fixed .

Suppose first that we wish to approximate  in  norm, i.e.,� 3�

P�P ~ � ²%³�% � ²�³ � ²�³ �°�e m

�

� �
� �.  Then  and are both proportional to  and

equidistant sampling is close to optimal.  Indeed, to calculate  we can use� ²�³�

the well-known formula for the radius of information (see, e.g., Traub,
Wasilkowski, & Wozniakowski, 1988, Chap. 4),´

�²5³ ~ ¸ P�P ¢ P�P � �Á 5� ~ � ¹Àsup � /
W
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Since , the error  is also at most proportional to .  The� ²�³ � � ²�³ � ²�³ �°�� � �

lower bound for , proportional to , can be in turn obtained for the saw-� ²�³ �°��

tooth function which takes zeros at  equidistant knots.  Hence, for �� 3�

approximation, the neural and information complexities are comparable and
both proportional to .�°�

Consider now the uniform error norm .  Using aP�P ~ O�²%³O� ��%��sup
similar argument as for  norm, we get that equidistant sampling is again3�

(almost) optimal.  However,  the error  is now proportional to , and� ²�³ �° �� l
the information complexity increases to .  This is not surprising as the²�° ³� �

uniform norm is stronger than the  norm.  It is interesting, however, that 3 � ²�³�
�

remains proportional to  (as for  norm), and the neural complexity is�°� 3�

proportional to .  To see this, for a given  we select the knots²�° ³ � � -� �

� ~ ! � ! � Ä � ! ~ � �� � �  such that for all 

²! c ! ³ ²� ²!³³ �! �
�

�
� �c�

!

!
Z �

�

��
�c�

�

.

Note that this is possible since .  As the network

�

� Z � �²� ²!³³ �! � �

approximating  we take the piecewise linear interpolation  of  with the� � ��

selected knots .  Then for any  we have! % � ´! Á ! µ� �c� �

e e f f�
�
l o�

�²%³ c � ²%³ ~ � ²!³ c � ²!³ �!

� O� ²!³ c � ²!³O �!

� ²! c ! ³ ²� ²!³ c � ²!³³ �! � Á
�

�

�

%
Z Z

�

!

%
Z Z

�

� �c�
!

!

Z �Z
�

!�c�

�c�

�c�

�

as claimed.  The lower bound for  is again obtained for the saw-tooth� ²�³�

function.
Thus neural complexity is an order of magnitude smaller than information

complexity for error measured in the uniform norm, and both complexities are
roughly the same for error measured in  norm.  This is a consequence of the3�

fact that for the uniform norm an adaptive choice of knots (different knots for
different 's) is better than a nonadaptive one, while this is not the case for � 3�

norm.
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Fig. 1:  The schematic relation of the spaces in continuous complexity
theory

Fig. 2:  Model three layer network
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