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Abstract
This paper studies the question of lower bounds on numbers of neurons
and examples necessary to program a given task into feedforward neural
networks. We introduce the notion of information complexity of a network
to complement that of neural complexity. Neural complexity deals with
lower bounds for neural resources (numbers of neurons) needed by a
network to perform a given task within a given tolerance. Information
complexity measures lower bounds for information needed about (i.e.,
number of examples of) the desired input-output function. We study the
interaction of the two complexities, and so lower bounds for the complexity
of building and then programming feedforward nets for given tasks. We
show something unexpected a priori - the interaction of the two can be
simply bounded, so that they can be studied essentially independently. We
construct ordern® RBF algorithms, show that they are information-
optimal, and give example applications.

Keywords: Feedforward neural network, complexity, information complexity,
neural complexity, radial basis functions, RBF networks, learning

1. Introduction

Learning problems in feed-forward neural network theory are essentially
partial information issues. That is, we wish to reconstruct a desired input-output
(i-o) function from partial information consisting of examples (i.e., individual
function evaluations). A complexity theory for neural networks from the
standpoint of information complexity has had some beginnings in the work of
Girosi & Poggio (1990), Poggio & Girosi (1989), and others.

The theory of neural complexity contrasts itself from that of information
complexity in that the former deals with numbers of neurons in the hidden layer
of a feed-forward network which are necessary for the computation of a given i-
o function, generally assuming full information about that function within some
tolerance: . This theory has seen some extensive and successful development in
recent years, particularly in the work, e.g., of Mhaskar (1996), Mhaskar &



Micchelli (1992, 1993, 1994, 1995), and Barron (1993). Additional work on
function approximation issues has been done in Chui & Li (1992), and Chui, Li
& Mhaskar (1993, 1996).

Information complexity is to an extent the “second half” of complexity
theory for neural networks, that which deals with information issues, and
numbers of examples needed to encode given tasks into neural networks. Neural
complexity has been studied in the above references, while information
complexity (the number of examples of an i-o function needed to approximate it
within a given tolerance) is, we believe, still open to a good deal of development
- in this paper we begin a study of the interaction of the two. We introduce a
parameter , the number of examples available in the construction of a network
to complement the number of hidden neurons available.

Just as neural complexity theory has its roots in classical approximation
theory, the theory of information complexity is closely related to continuous
complexity theory as currently studied (e.g., Traub, Wasilkowski &
Wozniakowski, 1998). The proofs of many results in complexity of feed-forward
neural nets, once the two sets of connections are established, reduce largely to
developing results in or referencing work in these two areas, as occurs in several
places here.

Initially we divide complexity of feed-forward nets into two exact scenarios.
The first is when we know the i-o functigh  to be approximated exactly, i.e., we
have unlimited information. The question here is, how complex a neural net
(how many hidden units) do we need to express the function within a tolerance
measured in some norm? The second arises when we assume unlimited neural
resources (as large a hidden layer as we please), and ask how many examples of
f are required for its approximation withéin . The question of what to do with
limited information has been at the center of learning theory for a number of
years, with algorithms for classical feedforward nets such as backpropagation
and the Boltzmann machine having received a good deal of attention.

We will examine the second issue and then the combined question of what to
do with limited numberg of examples and of neurons. The interaction of
andk is interesting, and we characterize this joint complexity's order. We show
something unexpected a priori - that relationships between information and
neural complexities can be simply bounded, and so the two issues can be studied
independently before their interaction. The two complexity questions pose
challenging problems in mathematics and neural phenomenology - it is in a
sense fortunate they can be largely separated.



We wish to show these results have practical in addition to some theoretical
significance. We believe they can be used directly in practical situations to
obtain upper and lower bounds on numbers of examples and neurons needed to
develop systems with desired i-o functions. We present some examples of how
this might be accomplished. Beyond calculating complexities, we wish also to
construct algorithms optimizing and , to show they are optimal or almost
optimal, and to apply them to examples of interest. The prescriptions here,
though they are mathematically optimal, are presented with useable algorithms
which are of use in the construction of RBF networks.

We remark that the heart of the information complexity problem is the fact
that the reconstruction of an i-o functigh  from incomplete (partial) and/or
noisy information is an ill-posed problem. The best regularization techniques for
this problem given natural a priori smoothness constraints on can be shown
equivalent to the use of optimal reconstruction algorithms in continuous
complexity. It is remarkable that within the model of computation in which
arbitrary hidden layer activation functio6§z)  are allowed, optimal algorithms
for reconstructingf , i.e., algorithms which utilize information in examples with
the greatest possible efficiency, are those using radial basis functions of the type
studied by Mhaskar & Micchelli (1992), Micchelli & Buhmann (1992), Girosi
& Poggio (1990), and Poggio & Girosi (1989, 1990), and in various works on
continuous complexity, see e.g. Traub, Wasilkowski & "Wozniakowski (1988),
and Plaskota (1996).

More precisely, in the well-defined context of optimality given here, the
algorithms are optimal in their use of information, assuming we have sufficiently
many neurons in the hidden layer to work with (a number at least equal to the
numberk of examples, see Theorem 2 in Se@ion ). Since the optimality results
are not restricted to networks but are based on lower bounds of error for any
system using the information in the examples, we show that no other network
learning from examples can improve on this algorithm. We thus claim that with
the computational provision of as many neurons as there are examples, along
with the capability for basic linear algebra operations (essentially Gaussian
elimination on ak x k system of equations) a particular RBF algorithm is a
priori at least as accurate and efficient as backpropagation, the Boltzmann
machine, or any other algorithm. When the neuron number is limited and
smaller thark , then our claim (Theorem 3) reduces to (almost) optimality only
within the class of RBF neural networks with a given number of hidden units.
Our error criteria are general to the extent they can involve essentially any norm.



We remark that the model of information complexity presented here is a
continuous complexity model in which there is a separation between information
and algorithmic complexity. It fits a widely used template for so-called standard
information N f = (f(Z), f(Z2),..., f(Zk)), i.e., the desired output values
f(@;) at a series of examples (input vectafs) . The algorithmic pottion
(which computes the coefficients of the approximation network from
information NV f ) fits a model of computation in which each additional neuron
has a unit cost, and remaining computations are deemed negligible in their
contributions to complexity. Thus the numbkr  of examples represents
information complexity, and the number of neurons (i.e., RBF's) used
represents algorithmic complexity in this model. Since the latter corresponds to
the number of neurons, we call it neural complexity. We show algorithms using
radial basis functions are optimal from the standpoint of information complexity
in that for a given number  of examples, these algorithms provide the smallest
possible errar

Using the above notation, the full neural system computes a furgtion) ,
with the algorithmic portiod using informatid¥if  from examples to compute
the network approximation of . Thus lettidy  be the class of functions from
which f is drawn, N(F;) C R* be the space of possible information
(f(Zy),...,f(Z)), and I be the identity operatoff =f , we wish to
approximate the identity operator with our neural network, which is a
compositionpoN of the information operation  with the algorithmic operation

o.
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Fig. 1: The schematic relation of the spaces in continuous complexity theory

We note in passing there are other useful ways of measuring complexity
suited to other requirements. For example, the complexigoofputingthe
weights of the neural network which best approximate the desired i-o function (a
linear algebra operation here), is not part of our computational model, though
this can be changed if needed. Though the algorithms presented here do not
necessarily perform the task of finding the optimal weights in the fastest way,
they are quite tractable from a practical standpoint for problems whose essential
input dimension is less than 100, and optimal in the number of examples
required for a given error tolerance.

A main theme of this paper is the remarkable set of parallels between the
fundamentals of feed-forward neural network theory and two very established
areas of mathematics and theoretical computer science, namely approximation
theory and continuous complexity theory. The parallel with the former has been
seen in a number of works on neural complexity (see above references), while a
parallel with the latter is studied here, in the connection between neural
information complexity and continuous complexity. Some mathematical
statements on approximation optimality translate directly into statements on
optimality of neural networks, and one purpose of this paper is to show how this
theory can be applied to answer our questions. The brevity of our proofs
indicates how well-developed continuous complexity is, and the extent to which
the present information complexity theory depends on it.



In this paper, we consider only the deterministic, worst case setting. There
may be a need for more theoretical study of other settings such as average case
setting and ones in which information is taken at random. In these cases there is
also a complexity theory (Traub, Wasilkowski & Wozniakowski, 1988,
Plaskota, 1996), and we believe that similar results can be obtained.

2. Definitions and main result.

We will generally assume that our input-output (i-o) functfon is multivariate.
That is,

f:D—R,

where D=R? orD is a proper subset Bf , e.p=0,1]¢ isla -
dimensional unit cube. We have some a priori knowledge of , e.gf, that isina
sense smooth. This is expressed by assuming

fEFla

where F; is a ball of a normed space. This assumption is general in that any
convex, balanced, and absorbing set is a unit ball of such a space.

We wish to construct a neural network approximation ©f An
approximation is constructed based only on this a priori information and on a
posteriori information abouft  given in examples

yi = [(%)

for 1 < < k. We consider three layer neural networks with node activatipns
in the first (input) layery; in the second (hidden) layer, and for the single
output neuron in the third layer.



Fig. 2: Model three layer network

(We remark that the general case of more than one neuron in the output layer
can be handled as a combination of the single output neuron models we discuss

here.)
We assume an RBF model, by which we mean that activations of neurons in
the hidden layer are given by = G;(7) for given functios , Where

7= (x1,...,24)7 (T is transpose), while the output is linear in the activations
of the second layer, i.e.,

i=1 i=1

Heren is the number of neurons in the hidden layer.

We now state the main results of the paper. More detailed definitions and
statements are left to the body of the paper. We assume for the results that our
function space is aeproducing kernel Hilbert space (see below). Essentially
this is a Hilbert space in which function evaluation is a well-defined, i.e.,
continuous, operation.

Let H be the reproducing kernel Hilbert space with reproducing kernel
G : D x D — R. Suppose our a priori information plagés in the ball

R={feH:|flz<a}



of H. We approximatef by an RBF neural netwgrk of the form (1) with
activation functions7;( - ) = G(%;, - ) , forsom& € D (see Section ).

By anoptimal algorithm for constructing network approximations we mean
the one which minimizes the worst case error of approximation over all possible
f from F;. We also mention that admost optimal algorithtn  is one whose
worst case error is within a (usually small) fixed fagtor  of the minimal worst
case error.

Theorem |. Suppose the number of available neurons is not smaller than the
numberk of examplesAi n optimal algorithm (network) for approximafing
from information 3§ = Nf = (f(i1),..., f({,))" is given by the linear
combination

where the coefficientg = (c;,...,c;)?  are solutions of the linear system

—

C
Myeé = 3 with the matrixMy = (G(L;, 1;))F ;.
Theorem II. Let Al be an almost optimal algorithm that gives neural network
approximations with a limited numben of neurons and assuming full
information about a function. Then the composite algorifhm ¢; — Al(qy) is
almost optimal for approximating by an neuron network from information
y = N(f) aboutf .

Theneural complexity:(e), is the minimal number of neurons in the hidden
layer sufficient to approximate anfy from the bi@ll  with accueacy assuming
full information aboutf . Thenformation complexityk(e) , is the minimal
number of example$Z;, f(Z;)) from which it is possible to approximyate
within €, assuming an unlimited number of neurons available.

Theorem Ill. Information complexity dominates neural complexity, i.e.,
n(e) < k(e), Ve>0.
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Theorem IV. In order to approximate any functioh from the bgfl|z < a

with errore > 0, it is necessary to use at leasgt) neurons/g@agl examples,
and sufficient to use at maste/2)  neurons a(d/2) examples.
3. Examples

As a concrete example to motivate this work, suppose we are building a control
system in which homeostatic parameters such as temperature, humidity, and
specific chemical contents of an industrial mixture can be controlled (i.e., are
input variables), and the output of these inputs, the ratio of elasticity and
strength of a plastic which is produced from the mixture, is also recorded.
Theoretically, combinations of values of the input variables may have
unpredictable effects on the output variables, including binary and tertiary
correlations of input variables, as well as even more complicated dependences.
We wish to build a neural network whose input is the vegter(zy, ..., z4) of
input parameters, and whose output f(%) is the ratio of elasticity and
strength. The functiorf is unknown, and we have experimental data of the
form {(Z;, f(Z;))}F_, from many previous runs of our equipment. We wish to
build a network which will run on a moderate size computer and which will
correctly predict the elasticity/strength ratio from our homeostatic parameters.
Because of limits on our computational equipment, we must limit thensize  of
our network, and because of limited data, is also limited. If we specify an error
tolerance: for this ratio, we will wish to optimize our procedure for constructing
our e -network by optimizing some functidr{n, k),  which may depend on just
n, just £, a linear combination of the two (with weights determined by the
relative difficulty of increasing computational scale versus obtaining
information), or a more complicated function. This problem can be somewhat
more tamely stated if we invert the dependencé,af ¢ on . This leads to a
guestion which combines complexity Questions 1 and 2 below, and is stated in
Question 4.

A second example (modified from one which was worked on by a consultant
known to the authors) consists of a neural network which studies purchasing
patterns of people using various mail order corporations. Corporations share data
on consumers, and correct “mining” of such data can produce large numbers of
sales to clients very likely to purchase given classes of products. In this case, a
reasonable approach is to create a tree structure on the family of products under
consideration (e.g., a node would be appliances, while a subnode would be

11



kitchen appliances, under which would be ovens, etc.), and as input variables for
a given individual to include the dollar quantities  of purchases of the given
consumer. The desired output in this case wouldl(F¢ , the probability that the
consumer would purchase the present target product, say a blender, toaster, or
oven. In this situation we have a large dimension of the input data (i.e., there
are many products which can be purchased), as well as unchangeakle size of
the learning sef &, f(Z))}, and we are interested here in finding the algorithm
yielding the network with smallest practica for our givén and
computationally limiting: . Question 4 is at the heart of this problem as well.

We remark that the assumptions we have made here regarding assumed
membership of the unknown i-o function in a ball of a function space,/[&€%9.,
or another Sobolev space, are reasonable if a function with small norm in the
said space can be assumed to approximate pointwise the i-o function within a
“good” tolerance. It is unnecessary that the unknown function be exactly
smooth, or exactly belong to the indicated class. There must be a global fit
which is acceptable, and under such assumptions these theorems can be applied.

Suppose we again have the previously mentioned homeostatic system, and
know that the variation of the output quality is such that the quality can be
approximated by a 10 times differentiable function (e.g., a polynomial) whose
first 10 derivatives are smaller than 15 (in some appropriate scale). In the case
of polynomial approximation, this would place bounds on the coefficients of the
polynomials, a reasonable way to “guess” the nature of a function approximating
an unknown one. (Though of course such bounds would have to be considered a
heuristic process, techniques and guidelines for such approximate bounding can
be established; see below). The above assumption would imply that the i-o
function can be well-approximated by a function in the Sobolev spgce  , in the
ball of radius 15. This would provide our candidate functionfget (the ball of
radius 15 inf’ = L

Next, with this information plus a given error tolerance, say 1 (in
possibly another error metric, say thé metric), we could compute theoretical
upper and lower bounds for the neural and information complexities of our
problem using theorems such as Theorem 1 and standard techniques in
continuous complexity theory (Traub, Wasilkowski & Wozniakowski, 1988).
This does not in itself say what examples to use and how to program the weights
for an optimal such network, but it has been shown that using sparse grid points
is very effective in such a regard, and that the algorithm of Theorem | is optimal
in finding appropriate weights. Thus it would be practically feasible not only to
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use the minimum numbers of neurons and examples to solve this practical
problem, but also to program the weights of the network which results.

More specifically, such a computation might show that with full information
we would need 1,000 neurons for ertp2 = .05 , while with unlimited numbers
of neurons we would need at least 2,000 data points for ef2oe .05 (via
informational techniques explicitly given in Traub, Wasilkowski &
Wozniakowski, 1988). Note that by Theordirthe complexity functions:(¢)
andk(e) satisfyn(e) < k(e) . Then we would use Theorem IV to estimate that
we are guaranteed errore= .1 or less with 1,000 neurons and 2,000 data points.

Experimental verification of the above bounds on polynomial
approximations could be made after data are taken. Namely, derivatives of such
approximating smooth functions can be calculated, and in a bootstrapping way
used to verify (or negate) the underlying assumptions about membership by the
function f in the sef s . For example, that the gradient of the data is bounded
by, say, 5 units can easily be verified from our algorithmic approximation or
experimentally from the data, and higher derivatives can be bounded similarly.

4. Neural complexity & = oo)

We now formally consider the above questions, and their answers in our
mathematical context.

Question 1. Given a fully known i-o functiofi and an error tolerarce , what
is the smallest size  of the hidden layer in a network that can approxfmate
within €?

This involves a complete information setting, and is partially answered in,
e.g., the work of Barron (1993), Chui & Li (1992), Micchelli & Mhaskar (1992,
1993, 1994, 1995), as well as others. Approximation results depend on the
space of functions being considered, as well as the family of approximating
functions allowed.

We present a result of Micchelli & Mhaskar (1993) for a particular space of
functions, under the assumption that arbitrary dilations and translations of a
given periodic functiorp are allowed. This theorem is a typical consequence of
the work done in neural complexity.

13



Let C%* denote the space ofr2 -periodic continuous function®bn For
f € C%, define E¢(f) =min||f — P||, whereT, is the set of trigonometric
S

polynomials of order. or less i** afid|| is the supremum norm

Thus E4(f) represents the best possible error with  terms of a Fourier
series. LetS, C {m € Z?: p(m) # 0} wheré(m) denotes Fourier series
coefficients, ancdassumehere is a seff containingx s  matrices with integer
entries such that{A”m:m e S,, Ae J} =7° , wherelT  denotes the
transpose. Iid =s ang is a function with none of its Fourier coefficients

equal to zero (the radial basis case), then we may chBpseZ’ and
J = {I;xs} the identity matrix. Letk,, be the multi-integer with minimum
magnitude such that m = ATk, for somed=A4,,¢J , and

N, = maX{|kn|: —2n < m < 2n}. Let
my, = min{[p(k,,)|: —2n <m < 2n},

where the last inequality is taken componentwis@in . Then we have:

Theorem 1.Lets >d >1,n>1,andN > N, be integerg,e C* p,e C%*
There exists a network

0(%) = qoyp(f3 7) Zdjp (2)
such that
17 = ano D < o B2 + EH2 )
In (2) the sum contains at ma8{n*N?) terms,e J t; ¢ RY, dnd are

linear functionals off , depending en vV, p.

These types of full-information results are benchmarks (and lower bounds)
for comparison with complexities in partial information settings. In our setting
we can use such results directly to compute (or estimate) the neural complexity.

Definition 1. Given a familyI' = {G,}, of activation functions, l&t, be the
set of neural networks with  hidden neurons,

14



Nn:{q:ZwiGi: GiEF,wieR}.
=1

For a functionf and error norfh ||, we define the th error of approximation
ase(f,n) =infcpn || f —qlle. Ther therror overaclaBs  of functions is

ei(n) = suprer, e(f,n) = sUper, infen;, If — alle-

Definition 2. Thelocal neural complexitya(f,e) of evaluating a functiofi is

the smallest number of neurons in the hidden layer required for the estimation
of f within errore . Theglobal neural complexity (or neural complexity) on a
classF; of functions is

n(e) = supn(f,e).
fern

5. Information complexity (n = oo)

Question 2. Given an unknown functiofi in some class, what is the smallest
numberk of examplesZ{ f(7;))}¥., for which it is (theoretically) possible to
estimatef within erroe  (assuming unlimited access to hidden units)?

In order to answer this we assume our prior knowledggé of places it into a
setF) . For instancd;; may be a convex, balanced, and absorbing set in a linear
spaceF . This is known to determine uniquely a norm on this space, with
respect to which the functionsc F;  form the unit ball (or more generally a
ball of radiusa ). The restriction to a ball Bf is a natural consequence of the
above basic assumption .

Definition 3. Information of the form
J=Nf=(f@), f(&),.... f(@)" eRF

is standard informationabout f . Information is adaptive if the choice @f
depends on previously obtained values, i&.,=Z;(f(Z),...,f(Z;i 1))

15



Otherwise information isionadaptive . Thecardinality of information is the
number of examples in the information i.e., ¢&¢ = k

We henceforth assume informatioN f is standard unless otherwise
specified. Then Question 2 can be formulated in the language of continuous
complexity as follows. Given an unknowhe F; , what is the minimum
number of examples (i.e., cardinality of informatiyn ) for which the error can
be achieved, using the best possible algorithm for reconstrycting ?

We denote the reconstruction algorithm dyN(F;) — F . Thus takes
informationy aboutf and produces an approximati(f) € F . The error of
approximation forf is defined as

where|| - || is a given error norm.

€1

Definition 4. The (worst case) error of the algoritkhm  using informafion  on
the clasg; is defined as

G(Qb, N) = SUpfeF1 G(Qb, N7 f) = Sup€F1 ||f - qb(Nf)“e

An algorithm¢* isoptimal in a class of algorithms iff it minimizes the worst
case error.

Note in general a nonzero error is present due to the fact that our fufiction
cannot be uniquely identified by informatign . Hence the same approximation
¢(3) will correspond to all functions from the set

F(@H) =N ") nH

of functions consistent with informatigh

It is desirable that the algorithm not only minimize the worst case error over
Fi, but also the worst case error ovefy) , for each N (F}) . We remark
(see e.g. Traub, Wasilkowski & Wozniakowski, 1988, for details) that this is
satisfied iff¢(y) is just the (Chebyshev) centerftdfy) . Such an algorithm, if it
exists, is known asentral and denoted by“ . Then the (Chebyshev) radius
r(F(y)) in the| -]l norm (i.e., the radius of the smallest ball containing it)
becomes the smallest possible error for informagion

16



e(N,y) = inf SUP) If = o@)lle = [If — @)l (3

(@)  feF(y
=r(F(¥))
The supremum
e(N)= sup e(N,y) = inf sup|lf — (Nl 4
W @eN(Fl)( ) SN(P)=F  fep, I (NUDe (4

= s 1f = (N(DIle
= inf_sup [|f — ¢(N(f))lle

O:RE=F fepy
is denoted as minimum worst case error for informaton , also called the
radius of information,
r(N) = sup r(F(Nf)) =supe(N,N(f)) = e(N), (5)
fern fen

by (4). (Which of the several definitions ef-) is used will be clear from the
arguments.)

Definition 5. A family I' = {G,}, of activation functions for which the set

N = (UN,, of neural networkg(Z) = Y w;G;(Z) (with arbitrary number  of
n i=1

neurons) is dense i with respect to error nprrie , Is cedlegplete

Thus if information is the only limitation and the family Bf is complete
(i.,e., functions inF; can be reconstructed by networks with arbitrarily small
error), then issues of function reconstruction reduce to geometric ones, involving
radii of sets In particular under such circumstances, the error of the best
possible algorithm using informatiad  for reconstructfng is the supremum of
radii of slices of a set in a normed linear space (equation (5)).

The networks are complete, for example, widienz) = G(Z — Q) is the
family induced byG(Z) such that its Fourier transform vanishes on a set of
measure 0, guaranteeing by a theorem of Wiener that the translates of  are
dense inL? . In a more general case we may lfaver) = G(7, @), where
G(-,-) is a symmetric and positive definite function defined on a set
D x D c R¢ (see Sectiof ). This family is complete in the reproducing kernel
Hilbert spaceH induced b , with respect to an error norm which is weaker
than the norm o .

17



Definition 6. We define the minimal error with information of cardinality to
be
k)= inf N)= inf N) =r(k).
62( ) card N)=k 6( ) cardN )=k 7“( ) 7“( )
Then thee-information complexity of function approximation in the $gt  is the
smallest cardinality of information sufficient to obtain erwor or less,

k(e) =1inf {j: ex(j) < €}.

Remark 1. The issues related to this reconstruction problem are discussed in
depth in Traub, Wasilkowski & Wozniakowski (1988), and so details are

omitted here. An interesting theorem in this regard relates explicit geometric
quantities in the spacé’  with error norjn ||, we are considering, to

information error of approximation We define, f&rC F©  a balanced subset of

F (i.e. one for whicty ¢ A = —g € A) , the Gelfaridd -width 4f by

d* =d*(A,F)=inf  sup gl
AR e AnAk

whereA* is a subspace Bf of codimension at rhost . dhus is the diameter
of the intersection oA with a hyperplane of codimengion , minimized over the
choice of hyperplane. Furthermore détk) be the corresponding minimal error
of reconstruction obtained from information consistingkof  arbitrary linear
functionalsL; ,N(f) = (L1(f),..., Lr(f)) (instead of standard information).
Then

1
5dk‘ < ej(k) < d¥

with d* = d*(Fy, F). We obviously have;(k) < e,(k) . We also often have
the reverse inequality up to a constant independerit of . In this case, the
minimal error of standard information is essentially the Gelfand -width of the a
priori setF; inthe nornfl - || . Sudh -widths are calculated for various spaces
(see Pinkus, 1985, Traub, Wasilkowski & Wozniakowski, 1988), and so our
main point of interest is the fact that Question 2 reduces to this well-studied and
geometric theory.

A natural choice off" is a space of smoothed square integrable functions, say
H?(a), the ball of radius in the space
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H* = {f € L*(I7) - ||f]l, < oo}

of functions defined, say, on the udit dimensional clibe [0, 1]¢ , with the
norm ||f]|? = i?*ffwd:c(|f*|2 + [(=A)*2f*?), the infimum taken over all

= f.

functionsf* orR¢ withf*

]d

d
HereA = > 2, Fors an even integer this class is contained in the class
i=1

Ox
Sl < o'}

la|=s

W2(a') = {f:[d—>]R

1/2
with ||gll2 = <f1d92d$> , for some choice of’ . It is known that when the

Hilbert spaceff in the above discussion is replaced’By , then thegiror )
for functions of norm bounded hbf|| < a is bounded aboveisy/+!/? for
somec > 0, as long as2-d (Traub, Wasilkowski & Wozniakowski, 1988, p.
138). Thus under this assumption, this is also an upper bound for functions in
Hé(a) C W2(a’). This illustrates the type of existing results in continuous
complexity theory which apply to the= oo study of information complexity.

6. Interaction of information and neural
complexities.

Question 3. Given information aboutf wittk examples, what is the best
network approximating which uses at mest neurons in the hidden layer?

This question is crucial for a more general one:

Question 4. In Question 1 it is assumed that network size is the only
limitation (i.e. we have full information about i-o functin ). In Question 2 it is
assumed the numbér of examples (i.e., the cardinality of information) is the
only limitation. In practice both parameters are limited. How do the values of
nandk interact in determining network errer ?
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Here we will be more specific about our setting than earlier. We assume the
set F; to which our i-o functiorf belongs is a ball imegroducing kernel
Hilbert spaceH j.e., | f||z < a for some fixed: > 0 . Such an assumption is
in fact natural from our standpoint, since such spaces are essentially defined by
the condition that pointwise evaluations of functions in these spaces are
continuous (and so well-defined) operations.

Definition 7. A Hilbert spaced with the inner product, -),,  consisting of
multivariate functions defined o ¢ R? isreproducing kernel Hilbert space
if function evaluationf — f(#) is a bounded linear functional for &ny D.

A reproducing kernebf H is a symmetric and positive definite functiiiz, )
such thatforany € H ande D,

f@) = (f, K, -))n. (6)

Note that any r.k.h.slf  possesses its reproducing kernel and, morHover, s
uniquely determined by its reproducing kerhel , see e.g. Aronszain (1950).

We also assume that the family of possible activation functions is
determined by the reproducing kerd€l of the sgdce . THatEs{Ggs}aep
with

G:(7) = K(Z,d), Z,d€D.

Example 1. Let H be the space of univariate functiohs[0,1] — R that are
absolutely continuous and vanish at zero with norm

e / (f'(x))2dx.

Then the corresponding reproducing kernelGige, y) = min(x,y) . In this
case, the possible activation functions are givem as min (z, u;) with some
u; € [0, 1]. The networks are of the form

q(z) = icj min (z, u;),

and it can be easily seen tlgdr) is continuous piecewise linear function (with
knotsu; ) vanishing at zero. The error here can be measured, €., in norm.
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Note thatL? is weaker thdh ||z  and hence the set of activation functions is in
this case complete.

Important examples of reproducing kernels are shift-invariant kernels, i.e.,
ones for whichG(Z,y) = G1(y — Z) with som&, . For instance, the Ornstein-
Uhlenbeck kernel ifR? is determined 6 (Z) = 1 exp(—||Z]|1) £ € R? , with

d
120 = 2

Jj=1

,i": (xl,...,xd)T.

Definition 8. We denote by(n, N) the minimal error of approximatiorfin
using informationV. and a limited number of neutons

e N) = iy, Sup IS = 6N Tl

Furthermore, we denote leyn, k)  the minimal error of approximation using
examples and networks with hidden neurons, i.e.,

e(n, k) =inf e(n, N),
the infimum taken over all informatiaN  of cardinality

Observe first that any approximation with neurons based on partial
information cannot be better than that based on full information gbout , and it
cannot be better than approximation with unlimited number of neurons. Hence

e(n, N) > max(ei(n),r(N)),

e(n, k) > max(ey(n), ex(k)).

We are now ready to state theorems about how to construct optimal
networks. We will assume that information is nonadaptive, i.e., the same
sample pointst; are used for gll 's. This is justified by the fact that, for
approximating functions in a ball of a Hilbert space, adaptive information is no
better than nonadaptive information. In other words, information complexity
can be realized by nonadaptive information, see e.g. Traub, Wasilkowski &
Wozniakowski (1988, Chap. 4).

Theorem 2. Suppose the number of available neurons is not smaller than the
numberk of examples For standard information
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ﬂZNf: (f@l)aaf(_t’k))T’

let the networlg; be given as
k
g =Y ¢G5, ),
=1

where the coefficientg = (c;,...,c;)?  are solutions of the linear system
Myé =73 with the matrixMy = (G({;, 1))k, Then the algorithm

¢*(y) = ¢y is optimal and central, i.ee(¢*, N) = r(N) = e(n, N).

Proof. The networkg; is thé/ -orthogonal projectionfof onto the subspace
spanned by the activation functio;, - ), 1 < j <k . Indeed, s@(g, - )

is the representor of function evaluatior?]at in the spAce  (i.e., plays the role
of K in equation (6)), we have

((f =), G5, ) = f{t;) — qy(E) = f(E) —y; =0,
andf — gz isH -orthogonal t&" . Such a projection is known to be the center of
the setN!(7) N Fy, and henag , being central, is an optimal algorithm; see
e.g. Traub, Wasilkowski & Wozniakowski (1988, Chap. 4). ([l

Thus the optimal network uses a number of neurons equal to the namber
of examples, and the corresponding activation functions are centered at the
information points@ . The optimal coefficients of the network are obtained as
solutions of & x k linear system.

Remark 2. Throughout this paper information is, for simplicity, assumed
noiseless. Assume for a moment that information is in addition contaminated by
noise uniformly bounded in some norm, i.§.= Nf +7j withlly < ¢

(6 > 0). Then an almost optimal network (j.e. optimal up to a factdr of ) is
the one minimizing the regularization functional

F(g) = (6*/a)lgllz + 17 — N(9)lly

over g€ H. That is, the minimum aof is uniquely determined and is a
network with & neurons. In particular, fofl - ||y a Hilbert norm,

|7lly = /7 27 with ¥ = X2 > 0, this minimum is given as in Theorem 2
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with the coefficients ¢; being the solution of the linear system
((62/a®)X + My)é = 7.

This is a direct consequence of results in analytic complexity given in
Plaskota (1996, Sec. 2.5-6). We additionally note that for noise bounded in a
Hilbert norm the coefficients; can be selected in such a way that the network
gy Is optimal, i.e., it minimizes the error of approximation in the clgss . This
follows from results in Melkman & Micchelli (1979). However, an explicit
construction of these optimal coefficients is in general unknown. The types of
algorithms mentioned above are also studied in Girosi & Poggio (1990). It is
interesting that these are best algorithms in the above strict sense.

Assume now the general case with arbitrary &nd . This, in particular,
includes the case when the numbeof available neurons is smaller than the
numberk of examples.

Theorem 3. Let f — Alf) andy — ¢(y) be almost optimal algorithms for
finding neural network approximations, respectively, for  neurons and full
information aboutf , and for an arbitrary number of neurons and information
y = N faboutf. Thatis,

If = Al(f)lle <Ci-ex(n) and |[[f —d(Nf)[le < Co-r(N) ,

for all f € Fi. Then the composite algorithrhlo¢p ~ gives an almost optimal
network in\,, , i.e.,

If = Alp(Nf))lle < (Cr + C2) -e(n, N),  VfeF.

Proof. By the triangle inequality, for the composite algorithm
1f = Alp(Nf))lle < |If = (N f)lle + lo(Nf) — AN f))]]e
< Cyr(N) 4 Crer(n) < (Cy + Cy) max(ey(n), r(N))
< (Cy 4+ Cy)e(n, N),

as claimed. O

Let us comment on Theorem 3 above. It says that the problem of finding an
(almost) optimal network can be divided onto two separate problems related to
pure neural and information issues. In the first step, an algokithm  using
ny = k neurons approximates the i-o functipn . In the second this approximate
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function ¢, = ¢(y) is used as a target function (now in the full information
setting) for an approximatiod! by the currenk n, neural network. Thus
the composite algorithmlo ¢ gives an almost optimal network.

We now pass to the complexity questions.

From the proof of the last theorem we can immediately infer the following
result, allowing us to bound (up to a factor2of ) the eefar, V) in terms of

e (n) and g(V) , and the errefn, k) byn) andk)
Theorem 4. (a) Fork < n we have
e1(n) <e(n,N)=ey(N), card(N)=n,

er(n) <ei(k) <e(n, k) = ey(k).
(b) For arbitrary £ andn we have
max(ei(n), es(N)) <e(n,N) < e(n) + es(N), card(N) = n,

max(e;(n), es(k)) < e(n,k) < ei(n) + ex(k).

Proof. The first inequalities in (a) are a consequence of the fact that<on

the optimal network is the center of the s€t'(y)NF , while the first
inequalities in (b) can be obtained by applying the composite algorithm of the
previous theorem withd/ and such that their errors are arbitrarily close to
e1(n) andey(N), respectively. The second inequalities in (a) and (b) then
follow from the first ones by taking the infima ow®r willvd(N) =%k .0O

Corollary 1. A necessary condition fohe errofre k) to be at most is that
e1(n), es(k) < ¢, while a sufficient condition is that;(n), es(k) < e . In
other words, in order to approximate an i-o function with error at naost , we
must use at leagt(e) examplesfof and a networkmnyith neurons, while this
error of approximation can be obtained via an optimal algorithm using at most

k(e/2) examples and(e/2) neurons.

Inverting the relationshig; (k) < ey(k) in Theorem 4 and using the fact
both functions are monotone decreasing, we obtain Thediemrsd IV from
Section2 .
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We have showed in particular that(n) < e(n) . Sometimes, but not
always, we also have the reverse inequality, egn) < Cei(n) for some
constantC' independent of , which means that the both minimal errors are
essentially the same; see Example 2. In this case, there is another algorithm for
constructing approximation networks consisting of the two following steps. In

the first step we find, as before, the netwgsk  with=%k > n neurons best
approximatingf from the giveh examples. In the second step we find the
network ¢; best approximating; from  examplesgpf . Specifically let

N*(g) = (g(ﬁ),...,g(t;‘))T be optimal (or almost optimal) information, i.e.,
information for whiche(N*) < Csey(n) for somé€'s independentof . Letting

—k %

7 = N*(g;) and My. = (G, )7, , we findgs = > c;G@E, -)  with
i=1

i1 %5 ))i5=1 "
My¢* =7*. Thus we have made one-time use of a network with- n
neurons in order to construct the weights of the final network having
neurons. Note that in the second step we use only partial infornsitios )
aboutgy , though full information is available.

Using again the triangle inequality we get for gng F ,

If = @Gl < If — gl + llgg — g1l < Caea(k) + Csea(n)
< (02 + CgC) max(61 (7’1,), eg(k’)),

i.e., the new algorithm is also almost optimal.
We finally present an example illustrating the above results.

Example 2. Let D =[0,1] and the activation functions be given by
G(s,t) = min(s,t), as in Example 1. Recall that then any neural netwahk,in

is a continuous and piecewise linear function with  knots, and the gpace
consists of absolutely continuous real functions definedon  and vanishing at
zero. We assume as earlier that our prior knowledge of the i-o furfction is that

£l = +/ [ (f(£))2dt < a for a fixeda .

Suppose first that we wish to approximage v norm, i.e.,
[flle = \/f01f2(:c)dx. Then ey(n) and;(n) are both proportionalliton ~ and
equidistant sampling is close to optimal. Indeed, to calculdie we can use

the well-known formula for the radius of information (see, e.g., Traub,
Wasilkowski, & Wozniakowski, 1988, Chap. 4),

r(N) = sup{ | flle = [Ifllr < a, Nf=0}.
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Sincee;(n) < ey(n) , the erroe;(n) is also at most proportional ta . The
lower bound fore; (n) , proportional to/n , can be in turn obtained for the saw-
tooth function which takes zeros ah equidistant knots. Hencel/for
approximation, the neural and information complexities are comparable and
both proportional td /¢ .

Consider now the uniform error norfif||. = sup<.<i1|f(z)| . Using a
similar argument as fof.? norm, we get that equidistant sampling is again
(almost) optimal. However, the erref(n) is now proportionaﬂl/tg)/ﬁ , and
the information complexity increases tb/e)?> . This is not surprising as the
uniform norm is stronger than tHé  norm. It is interesting, howeverg that
remains proportional td/n  (as fdi? norm), and the neural complexity is
proportional to(1/¢) . To see this, for a givghe F} we select the knots
0=ty <ty <---<t,=1suchthat for al

2

t.
1 2 a
e ten) [ (PO < .
Note that this is possible sincd (f'(t))%dt <a® . As the network

approximatingf we take the piecewise linear interpolatipn f of  with the
selected knots; . Then for amye [t;1,t;]  we have

f(z) - C./f(x)‘ = /x HOESAG dt‘

t

< / () — (o)) dt

tio1

< \/(ti—tm)\//t_i (f'(t) — ¢5 () dt <

Y

Sle

as claimed. The lower bound fer(n) is again obtained for the saw-tooth
function.

Thus neural complexity is an order of magnitude smaller than information
complexity for error measured in the uniform norm, and both complexities are
roughly the same for error measuredZin norm. This is a consequence of the
fact that for the uniform norm an adaptive choice of knots (different knots for
different f 's) is better than a nonadaptive one, while this is not the casé for
norm.
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Figures:

Fig. 1: The schematic relation of the spaces in continuous complexity
theory

Fig. 2: Model three layer network
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