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Mathematical quantum field theory (in its many current forms) has become an
established and diverse area of physics as well as of mathematics. Work in the area began in
in earnest in the 1950's, after the realization that elaborate and apparently ad-hoc mathematical
constructs were required for the construction of a quantum field theory with
phenomenological value. As in the case of Feynman's path integral approach to quantum
mechanics (for which there is in fact no underlying measure space in the classical sense), there
are in quantum field theory strong and almost overwhelming suggestions of an underlying
mathematically cohesive and relatively simple description of the phenomenology, though
serious difficulties with divergences arise when such canonical-looking theories are
implemented in the infinite dimensional home of quantum field theory. Dealing with such
problems in a mathematically rigorous and understandable way was the essential purpose of
the mathematical approach.

The primary workers in this field have included, among others, James Glimm, Arthur
Jaffe, Oscar Lanford, Edward Nelson, Barry Simon, and Arthur Wightman. Irving Segal, a
major contributor since the area's inception, was one of the first to introduce a probabilistic
approach to solving the problems of this area, and this approach has become widely used in
the course of the field's development. His book with John Baez and Zhengfang Zhou
approaches the construction of quantum fields in two space-time dimensions through a very
general algebraically oriented approach, which is then specialized to the construction of two
space-time dimensional fields.

This book emphasizes a methodology (algebraic quantization) for quantizing arbitrary
linear systems (i.e., transforming classical linear systems to quantum ones). It gives a
description of Fock space in its particle representation, and describes the quantization of
single particle operators, i.e., their extension to many particle operators on Fock space. Here
Weyl systems, the exponentiated versions of the canonical commutation relations, are
introduced rigorously. Functional integral representations of Fock space are presented as
well; these, in their two forms, have the advantage of diagonalizing momentum or creation
operators. The book also introduces the analogs of such systems for fermions (in addition to
the boson structures studied initially), in implementations of the canonical anti-commutation
relations. Quantizations of general symplectic and orthogonal systems are also introduced in
this context.

The issue of unitary implementability of canonical transformations is discussed
throughout the book, and a remedy to the problem of implementability of infinite dimensional
canonical transformations is considered in a study of the C"-algebraic approach to quantum
field theory.

Specializations of the algebraic approach are given to quantizations of linear differential
equations (such as the Schrodinger, Klein-Gordon, and Dirac equations), and then the process
of constructing a nonlinear field theory begins. Renormalized products of quantum field



operators ¢(x,t) are defined, and finally are used to complete the rigorous construction of a
continuum quantum field in two space-time dimensions.

A benefit of the abstract algebraic approach is that it describes in a general context
results which sometimes seem quite specialized. The book presents the quantization process
for the two space-time dimensional theory elegantly, in operations on a (single particle)
Hilbert space with a distinguished family of physical operators. This differs from other
approaches, which specify physical wave equations and their related Hilbert spaces earlier on,
and use analytic techniques to quantize the equations. The process of quantizing hyperbolic
equations is clarified in the book, and, in the end, there is a renormalized quantum field theory
in two space-time dimensions, with the overview of a general mathematical context to draw
on. The book reveals how this quantization applies, for example, to the quantized Schrédinger
equation (for which there is an initial complex Hilbert space) and also other physical systems
for which a real Hilbert space is natural, and which need to be complexified before the general
Ansatz of quantization can be accomplished.

The book's intended audience consists of mathematicians and mathematically inclined
physicists. The level of the book presumes a knowledge of functional analysis, though there is
a novel glossary which explicates a large portion of the background required. The glossary
explains terms in the book, and includes much of the functional analytic background
information necessary. It is a very useful tool.

The book is quite well put together, with few typographical errors and an index, along
with the above-mentioned glossary. In any text with mathematical notation a list of symbols
is a great convenience, and this book has one. To the present reviewer, the book provides an
important overview and a useful synthesis of some significant contributions to the
mathematical understanding of quantum field theory.
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