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Abstract

We characterize uniform convergence rates in Sobolev and local Sobolev spaces
for multiresolution analyses.

1. Introduction and definitions

In [KR1] it is shown that convergence rates of wavelet and multiresolution expansions
depend on smoothness of the expanded fungtion . Specifically, if is not larger than a
fixed parameter angf € H* then the error of approximatioiD(s—"(*21/2)) , with
dimension and. the number of scales used in the expansion. This result is expected (see
[Wa]) and comparable to Fourier approximation orders. In this paper we study a very
different phenomenon which occurs for function spaces beyond a certain degree of
smoothness. In these cases the rate of convergence “freezes” and fails to improve, no
matter what the smoothness pf . Such behaviors have been studied in the context of
approximation theory.

We show here that the smoothness level at which such freezing occurs depends on the
wavelet or scaling function in a well-defined way, and that it more generally depends on the
reproducing kernel of the multiresolution analysis (MRA).  This completes a
characterization of pointwise convergence rates in Sobolev spaces for general MRA's
begun in [KR1], to include Sobolev spacd$ with large. In addition (The®yewe
extend these results to local Sobolev spaces which are related to spaces with uniformly
bounded derivatives. See [Ma, Me, Wa] for some result§’on L&nd convergence rates
of r-regular multiresolution expansions.
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In [KR1] it is assumed wavelets' or scaling functigns have sufficient regularity that
the regularity off is the limiting factor in convergence rates. Here we asfume has
sufficient regularity, and show that limitations on approximation rates then depend on
regularity properties of® op . We indicate more generally how the interaction of the
regularities ofy* and of limits convergence. This complements results (see [D2, Ma,
Me]) which relate convergence rates for functighs to exact characterizations of function
spaces. These results rely on sufficient regularityfor , and so do not give information
when wavelets have lower regularity relativefto

Our conditions on behavior of wavelets near the origin are more precise versions of
Strang-Fix type conditiorls SF]. They can be translated into moment conditions on
wavelets in the case that the moment powers are integers; see also [KR2].

For detailed definitions and theory of an MRA we refer to [D2]. An MRA is defined as
an increasing sequence of subspafgs}  L%RY) d > () suchfthate V, iff
f(2z) € V,41, the intersection of the spaces{i§ , the closure of their union is &1l of
andVj is invariant under translations of integers. It is also generally assumed (though we
do not require it here) that there exists a function) gdading function ) whose integer
translates form an orthogonal basis¥pr

Let W, be the orthogonal complementlgf Vin, &, VigoV; , Solthat =
V; @ W;. From existence ap it follows (see, e.g., [D2], [Me], [W0]) that there is a set of
basic wavelets {y* a( ey  (WithA a finite index set) such thal = (3

20412 N 2z — k) (j € Z, k € Z9) form an orthonormal basis for;  for fixgd , and form
an orthonormal basis fdr? R¢ ) asj, k  vary.

Our results will hold for any wavelet sé¢*},  related/itg whose translations and
dilations form an orthonormal basis fbf RY{ ), regardless of how they are constructed (see
[D2], Ch. 10; [Me]; [HW]).

It follows from the above definitions that there exist numidéns} ;7. such that the
scaling equation

¢(x) =2 " hpd(22 — k) (1.1)
k=—o00
holds. We define
mo(§) =Y hpe (1.2)
k=—o00

to be thesymbol of the MRA Note it satisfiegs) = mq(£/2)$(£/2) , whére denotes
Fourier transform. Our convention for the Fourier transform is

3(6) = F(6)(©) = (2m) "2 | olz)e " da
where¢ - x = £x.

Definitions 1.1: We defineP, and), to be th®® orthogonal projections dfto and
W,, respectively, with kernels (when they exiBf)z y( , ) &hdz vy ( , ). We défjine P



Givenf € L?,
(i) themultiresolution approximatiorof f is the sequende, f}, ;
(i) thewavelet expansioroff is

Y () ~ f, (1.3a)
JikiA

with aj.k the L? expansion coefficients §f ,amd  denoting convergente in

(i) thescaling expansionoff is

D bedn(x) + Y aji(a) ~ f, (1.3b)
k 3>0:k:\
where théh, ¢, aré” expansion coefficients, and:) = ¢(z — k).
We say such sums converge in any given sense (e.g., pointwige, in , etc.) if the sums
are calculated in such a way that at any stage in the summation there is a uniform bound on

the range (largest minus smallest)jof values for which we have only a partial suin over
A

Definitions 1.2: A multiresolution analysis (MRA) or family of waveletg' yields

pointwise order of approximatiofor pointwise order of convergence 0 "inf Hor
anyf € H", the/™ order approximatidjf  satisfies
1Pif = fll, = 0277, (1.4)

asj tends to infinity, it —d/2 >0 (iFf —d/2 <0 the left side ¢f.4) is in fact infinite
for somef ) It yielddest pointwise order of approximation (or convergence)0 H'in
if sis the largest positive number such that (1 4) holds fofalH". If the supremum  of
the numbers for which (1 4) holds is not attained, then we denote the best pointwise order
of convergence by .

The MRA yieldsoptimal pointwise order of approximation (or convergenceifs is
the best pointwise order of approximation for sufficiently smgbth , i.efferH” for
sufficiently larger . Thus this order of convergence is the best possible order in any
Sobolev space. We say= if the best order of approximatio®/’in becomes
arbitrarily large for large .

By convention best order of approximation means that the supremum irfals 49
go to O0; thuss > 0 by our definitions.

We remark that our use of the term best approximation order differs from thbdstm
approximationas used, e.g., by Singer [Si]. In addition the wdrelst is used for technical
reasons associated with the formulations of our statements. Specifically, in this paper an
expansion hasrder of approximations if the optimal exponent in (1 4y isor better |,
while it hasbest order of approximatios if the optimal exponentds and no larger than

Definitions 1.3: The Sobolev spacH® s defined by



o= {rerr@y isle= [ 1760 aegpra <}

The homogeneous Sobolev space is:

N
o= { e @y 7 = [ D6 <)
Note the spaces contain the same functions (by virtue of the fact/fhat is restricted to
L?). Only the norms differ, and the second space is incomplete as defined (its completion

contains nonk?  functions which growat).

Definitions 1.4: A function f (z) onRY isradial iff depends om | | only. A real valued

radial function isradial decreasing if|f ¢ ) < |f ¢ ) whenever| > vy | |. A function
f(x) is in theradially bounded class [RB] (c.f. [GK1,2]) if it is absolutely bounded by a
positive L' radial decreasing functiopz ( ), i.@.2 = n(z2) when| = |z], with

n(z1) < n(zz) wheneveray P af, |, and 2 (9 L* R ) (note we assyme is defined and
finite at the origin, so that must be bounded).

Less general forms of the following two theorems were announced in [KKR2, KR2];
Theorems 1 through 4 were proved in [KR1] (see http://math.bu.edu/people/mkon/). These
theorems say that under mild assumptions on the MRA (i.e., the scaling function or
wavelets have a radially decreasiby ~ majorant) ffer H*(R?) , the rate of convergence
to 0 of the errof| f — P;f||. has sharp ordev*~%/2).  We emphasize that the conditions
in Theorems 1 through 4 are equivalent.

Theorem 1[KR1]: Given a multiresolution analysis with either

() a scaling functionp € [RB],

(i) basic wavelets)* € [RB] or

(iii) a kernel P(xz,y) for the basic projection P satisfying({Ry) <| (aHy) with
H € [RB],

then the following conditions atg b are equivalentfos d/2  , with the dimension:

(a) The multiresolution approximation yields pointwise order of approximatiem & in
Hs.

(@) The multiresolution approximation yields best pointwise order of approximation
s— d/i2in H.

(@) The multiresolution approximation yields best pointwise order of approximation
r—d/2inH"foralld/2 <r < s.

(b) The projectiol — R :H — T is bounded, whdre is the identity

Theorem 2 is related to the vanishing moments property of the wayelets
Theorem 2[KR1] : Under the assumptions of Theorem 1, if there exists a fguly of

basic wavelets correspondingfo,}P with ¢JRB] , then the following conditions are
equivalent to those of Theorem 1:



(c) For every such family of basic wavelets and eaah € H, * , the diig].of
(c)) For every such family of basic wavelets and for each

PO EI d <o (15)

El<é

for some (or for all)6 > 0.
(¢”) For some such family of basic wavelets, (1 5a) holds.

Definition 1.5: We define the spacéH® to be the Fourier transforms of functiad$ in
with the analogous definition foF H ;.

Theorems 3 and 4 are related to the so-called Strang-Fix conditions on the scaling
function and the low pass filten

Theorem 3[KR1]: Under the assumptions of Theorem 1, if there exists a scaling function
¢ corresponding td B}, the following conditions are equivalent to those of Theorefins
and 2:

(d) For every such scaling functioh~ (2r Y25 | FH;* .

(d’) For every scaling function € [RB] corresponding{ta,} P

/I£I - ERhent ¢ < (18

for some (or ally > 0.
(d") For some scaling functiop  correspondingtg} R1 %)  holds.
(@) For every scaling function € [RB] corresponding{ta,}P

[N ISE D SIS (18)
Kl<é “r20

We defineF’ ={ 0,19 to be the set of@ll -vectors with entries from the paiy 0,1 .
Theorem 4[KR1] : If my(&) is a symbol of a multiresolution expansion corresponding to a
sequence of projection8, as in Theorem 1 the following conditions are equivalent to
those in Theorems 1-3 fer> d /2 :

(e) For every symbolgt¢) corresponding{tg,}P
L, @@ i < (18)

for some (orally >0
(¢) For some symbolgff) correspondingtg} P .,415 ) holds.
(") Every (or some symbol(g) corresponding tq} P satisfies



/ M) F [ — me[* & <oo (15)
[£—me|< &

for some (or ally >0 and for everye F’ , where we define
F' = F\{0}, (1.6
whereF = {0,1}¢ and) denotes the zero vectoflir6)

For the remainder of the paper, we assume the following:

Assumptions: We assume in all of the following theorems that one of the following holds:
(1) The projection? ontd, satisfies

|P(x,y)| < H(x —y) for someH € [RB]

If a scaling functiory  exists, (1.7)
(i) ¢ € [RB].

If a wavelet family)” exists,
(iii) ¥*(z)(In(2 + |z|) € [RB]for all \.

Remark: It is shown in [KKR1] that(ii) = (i) andiii) = (i). This follows from the
representations aP(x,y) in terms of sums involving 0r  when they exist.

Note that the condition o ifiii) is somewhat stricter than that required for Theorems 1
through 4 above. It is required for existence of a kefét,y) for the projekfion
satisfying| Pj(z,y)| < H(xz —y) , withH (- ) aradial decreasifiy  function. This class of
wavelets includes all r-regular wavelets (see [Me]) for any r 0. The assumptions are
also needed for appropriate’ and a.e. convergence properties of wavelet expansions
[KKR1].

Theorems 1 - 4 apply only to expansions of functions in Sobolev sp&ices for which
E=1-PF,: H — L* is bounded (see (b) of Theorem 1). They say nothing about the
case of unbounded’ . We show here that for lasger (for which is unbounded),
approximation rates are essentially the same as for the largest forAhich is bounded.
Details of the approximation rates, however, depend somewhat delicately on the wavelets
or scaling function. Before giving an overview of our new results in Theorem 5, we refer
the reader to formulgs. 1 5a, b, d as motivation for the following definition.

Definitions 1.6: We define fors,c > 0



I(c) = 1— (2m) %2 s
@= [ (1-erpe) i o
K(c) = sup[ (D (©PEP &

A JI>EPc
LO = [ a-mohif ¢
1>Epc
In this paper an often-used consequence of Theorems 1 through 4 is the existence of a least

upper boundr (best Sobolev parameter), depending only on the MRA, for (bhich of
Theorem 1 holds. This motivates the following definition.

Definition 1.7: Thebest Sobolev parameter of an MRA is
o=sup{s>0 |{—P )H; — L* isboundéd .

By conventions = 0 if the set in the supremum is empty. Some bounds on follow from
Theorem 1 above:

Proposition 1.8: If the best Sobolev parametee£ 0, thep- d/2  , and the set
Y ={s>0|(U—-P)H; — L isboundef

satisfies
¥ =(d/2,0] or ¥ =(d/2,0). (18

Proof: Assumeo # 0, so that >0 (recal =0 means there is no positive order of
convergence). Under any one of the assumptions (1.7), the kdne)) of the projection
onto V; is bounded b¥ (z —y) , witlk € [RB]. Thus is bounded andin , and
hence K(x —y) € L*[y] and is bounded i&*[y] , uniformlydin . Thus foe L?
Pf e L™.

But for every nonnegative integdr , there exist unbourjyfjedH;f/2 . Forfsuch

Ef=({I-P)f=f—Pf is not in L*, and SoF : H{f/? — L is unbounded.
Similarly, £ : H — L* is unbounded fof <s<d/2 . Thus ##0 ,ie., B is
bounded for some >0 , theR  must be bounded for and/2 . Therefore , the
supremum of for whiclly is bounded, must satisfy d/2

To prove statement (1.8) we need only siow is connected. This on the other hand
follows by the equivalence ofa’) (¢”) , afl)  of Theorem 1, showirg(d/2,0) or
¥ =(d/2,0].

From Theorems 1 and 4 we then have immediately

Proposition 1.9 If the best Sobolev parameterst 0, then



o=sup{s >0 |[5(0) <oo} = suds>0 K(0)<oo}= sups>0 I(0) < oo}

In Theorems 1-4g is important in that all statements hold only<fo . For
approximation rates if* , we prove the following theor&his summarizes convergence
rates in allH* in terms of properties of the projectidt)s or of integrals involving the
wavelets or scaling functions.

Theorem 5: Given a multiresolution approximatich ,, P,

(o) If o =0, there is no positive order of approximation for the ME%} in iy
s € R.

If (0) does not hold themr > d/2 and:

(i) For 0 < s < d/2, the best pointwise order of approximationdri  0is ;

(it) If d/2 <s < o, the best pointwise order of approximation it Hris —s d/2;

@) If s = o the best pointwise order of approximation i 5
_ Jo—d2 if 1,(0) < oo

"= { (0 —di2y~  if I,(0) = oo’

(iv) If s>o0, the Dbest pointwise order of approximation inH® is
_fo—d/2 if Ir41Ac) = O(1/c) (¢ —0)

"= { (0 — dI2)” otherwise ’

(v) In (iii) and (iv) above/;(c) can be replaced By(c)  orlhyc)

Another way to say (iv) is that i > o , then there exigtg H*(R%) such that
sup2/(s-4/2)||g — P,g||,, = co. This says the convergence rate cannot be improved for
J

functions belonging even to very smooth Sobolev spaces. Moreover we note that the value
o+ 1/2 used above ifiv) is not crucial for its statement. Equivalent conditions to those in
(4v) exist in the forml,, »(c) = O(c™®) forany (or aly > 0

In terms of the Sobolev order of the expanded funcfion and the best Sobolev
parameter of the MRA, the following diagram gives rates for an MRA expansion in any
Sobolev space (or local Sobolev space; see below). The rates on the boundary region
s = o in (iii ) above are not indicated in the diagram.



il

Figure: Approximation rate diagram; see Theoré# 3 for rates on the boundary (=)The
in (¢ —d/2)~) indicates that the superscript  is present only in some cases.

We will show that this diagram applies to expansions of functfons H*in and in
uniform local space#/?, , when the decay rtate of the scaling function satisfiés> s
(see Theoren8) . In addition, on compact subsets the rates in the diagram apply to
functions in local Sobolev spacd$;. , when the wavelet has compact support. See
Definitions 1.10 below for definitions of the spaclS,  dig, :

We now establish several equivalent conditions for failure of convergence in all
Sobolev spaces.

Corollary 6: The following ((a) through (e)) are equivalent for the MEA }
(@ I—P:Hj — L* is unbounded for all > 0
(b) This operator is unbounded fore (d/2,d/2 +¢)  for some 0

If there exists a family of waveldts’} :

(c) For everys > d/2, f|@k(§)|2|5|*28d§ = oo for soma
If there exists a scaling functiagh:
(d) Foreverys > d/2, [(1— (2m)¥2¢(£))|¢]25dE = oo .
(e) In every Sobolev spadé®  of nonnegative order, the MRA fails to have any positive
order of convergence, i.e., the optimal order of convergente is

We now state our results for optimal pointwise orders of convergence in Sobolev
spaces Recalk denotes the best Sobolev paramefér, pf , and that optimal order of
approximation denotes the highest order of approximation in sufficiently smooth Sobolev
spaces.



Corollary 7: If the best Sobolev parameter# 0 , then the wavelet collegtion [or
scaling function ¢ ] yield optimal pointwise order of approximation— d/2 if
Iy412(c) = O(1/c) [wherel can be replaced by  or L], atiet —d/2)~  otherwise.
This optimal order is attained for all functiorfs  with smoothness greater¢han , i.e., for
f e Hwiths >0

Corollary 7 gives “best possible” pointwise convergence rates, i.e., convergence rates
for the smoothest possible functions. In fact this optimal rate in fact is largely independent
of how smoothness is defined, i.e., which particular scale of spaces we are working with.
Such a statement is possible because when the smoothness parameter is sufficiently large,
the most used scales of “smoothness spaces” satisfy inclusion relations. For exagple for
large the spac&® is contained in the sup-norm Sobolev fpace and ihBther  -type
Sobolev spaces. Therefore the optimal rates of convergence given here are upper bounds
for convergence rates in dll°  spaces, no matter how smooth.

What is most important is that such inclusions work in both directions for the uniformly
local spaces in Definitions.10 below. For example, for sufficiently large , the uniformly

local L”-Sobolev spacé; , is contained in spaces in the dddg;}, for any fixed
values ofp and; (includingo) . In addition, for sufficiently large the sdafg:ue;
contains Sobolev spacdsl . This includgs and its related smoothness spaces of

functions with bounded derivatives.

This observation can then be used as followsh () has decay rate (Def. 1.10) with
t —d > o — d/2 (which holds for many wavelets of interest), then by The@dralow the
optimal convergence rate in all of the scales of uniformly local spég‘;%s (including
p = ), is eitherc —d/2 or(c —d/2) , i.e., the same as in Corollary 7. Now the
extension of Corollary 7 to the spacb%m (CorolRyy can be broadened, by the above
argument, to more general scales of smoothness spaces, including smoothness spaces based
on sup norms. (The caveat, however, is the scaling fungtion must have sufficiently rapid
decay.)

With this motivation, we now give the results for uniformly local Sobolev spaces. Our
results will also extend to local Sobolev spabs with some caveats.
Definitions 1.10: Thedecay rateof a functiory is
sup(t : |¢(z)| < K|z|* for someK > 0}.

We will assume here our decay rates are positive unless otherwise specified.

The local Sobolev spacél;  is{f: fne H* Vne C*} , where&® is compactly
supported”> functions. Theiform local Sobolev spadé?, ¢ : | f||“ < oo}, where
the uniformly local normj| - || is defined fy heBe s the unit ball centered at ):

1£115" = supll£]s,z.-

zeRd

Above, the local norm is defined by

10



1 flls.8. = inf—[[f7]ls (1.9)

1|, =t et

Similarly, the spacd.? = {f € L?: (1 — A)*>f € L’} has a local versibp,, defined
analogously to the above with the nojifi||;  (in )1 9 replaced by the norm of the Sobolev
spaceL?.

Thus H?, consists of functions locally f*  with loddF  norms uniformly bounded.
The following results forH;, are effectively local versions of our rates of convergence
results, modulo the spatial uniformity assumptions on functiorg;jn . Such uniformity
assumptions also hold, e.g., I0*  Sobolev spaces.

We require our working spacék;  to have uniformly bounded Iocal ~ Sobolev norms
rather than.*® Sobolev norms, since the latter would make our work more difficult. As
shown above, however, most other scales of smoothness spaces based on Offiform (-
type) bounds satisfy inclusion relations with the uniform Sobolev spdges , extending
optimal convergence rate results to these spaces. Additionally, our results of course
become entirely local (valid for local Sobolev spaces) if wavelets involved have compact
support.

Recall from the definitions that approximation order O in a space  means the error
E, f fails to have any positive rate of decay for sgine X.

Theorem 8 (Localization): The multiresolution or wavelet expansion corresponding to a
scaling function ¢ € [RB] has a best pointwise approximation order of at least
min(r,t — d) in H?,, withr the rate of best approximationfiff  and d the decay rate

of ¢.

Corollary 9: If the best Sobolev parameter< ¢t —d/2  (where is the decay rate of ),
then

(@) The optimal approximation order in the scale of spabgs is exactlyl/2 if
Iy1152(c) = O(1/c) [wherel can bereplaced by or L], af@d—d/2)~  otherwise.

(b) The same exact optimal approximation order holds in the scale of uniform local spaces
L, forfixedl < p < oo, and in particular also in the scalg)}.  and tiigs

Indeed, note that whesn is an even integer (i.e. the opdrathy*/? is local) the
spacesL® andgful are identical, since the first space always is contained in the second,
and if f ¢ L°, then there is a sequence of unit balls for wisigh(—A)*/2 f IS

z€eB;

unbounded, so that¢ L3,.  Thus for each , the sthfe,}, is eventually contained in
L for r sufficiently large, and similarly L}, is eventually Irf;, , so the two scales
have identical optimal orders of convergence. This type of inclusion also works for other

scales ofL>™® Sobolev spaces, yielding identical optimal orders of approximation.

11



Proposition 10: If ¢ is compactly supported, the best pointwise approximation rate for the
expansion of any € f on any compattc R is the same as the rate for the global
spaceH”.

Examples: To illustrate these results we give applications to some well-known wavelet
approximations.

1. Haar wavelets

We calculate the exact approximation order for Haar wavelets. The scaling fuhction
is the characteristic function of the unit interval, whose Fourier transform is

56 = —— / e = " ginges)
V2 (£/2) \F

In this case|¢(€)] = —— + O(|€]?) so by Proposition.9 g =3/2, and
1,(0) = oo. In addition

Ia+1/2(c) = /1>§> (1-— (277)1/2|$(€)|)|€|—20—1d£

[ (12 e
1>[¢]>c §

- /1 (€25 0E g =0l

Thus by Theorem 5, IBf* Haar expansions have best order of convergence

0, 5<1/2
s—1/2, 1/2<s<3/2
"= { 1=, s=3/2 ’

1, 5>3/2
with the same orders in the uniform local Sobolev spates by Th&rem By the same
theorem, sincep is compactly supported, these orders of convergentie:)to hold
uniformly for z in a compact set, for angyfx) locally ¥ . Finally by Corollary 7, the
optimal approximation order for such expansions (i.e., for arbitrarily smooth functions) is
1. By Corollary 9 this optimal order also holds, for example, in the dgale Lof
Sobolev spaces.

2. Meyer wavelets

We now consider standard Meyer wavelet expansions. The Fourier transform of the
scaling function is [D2, page 137]

12



(2m)~'7, €|<2m/3
5(5) — { (2m)~12cos[Fu (3 [€]-1)], 2m/3<fél<dn /3
0 otherwise
where v is an appropriately chosen smooth function for w&i@cgo . In this case
o = o0, so we have order of convergence 1/2 eath Sobolev spéces > 1/2,
and convergence order  for<1/2. Note this implies that for functions in the

intersectionnN H* of all Sobolev spaces, we have convergence faster than any finite order
S

r. The same holds in the uniform local spatks by The8rem . Thus the optimal order
of convergence in both these casesods . , ie., convergence rates have no intrinsic
limitations based on the wavelet for very smaofth

3. Battle Lemarié wavelets

Consider now Battle-Lemarié wavelets, which effectively yield spline expansions of a
given order. For splines of order 1 the B-spline is

Cf1—z[, 0<2[ <1
$(z) = { 0 otherwise

The Fourier transform is

b(&) = (2m) /2 (%)2

Here ¢ is not a scaling function, since it does not have orthonormal translates. The
orthogonalization trick ([D2], section 5.4) yields a scaling funcifon  with orthogonal
translates, whose Fourier transform is

3(6) = /3(2m) 2 ASITE/2

€[1 + 2cogE 212

The corresponding wavelet has Fourier transform

16 sirté /4
£2[1 + 2 cog¢ /4]172

1+2sin2§/4]1/2 _ o).

h(E) — —1/2 ji€/2gj
B(6) = Vaten) e sive/a |1 TR

From this it follows from Proposition.1 9 that= 5/2.  Furthaf, (0) = co , while

Ky pp(c) = Kalc) = / D)2l de = O(1/c).

l§]>c

By Theorem 5, Battle-Lemarié expansions (and of course order one spline expansions,
since the scaling spacks are the same) have order of convergence

13



2, 5=5/2

0, s<1/2
- { s—1/2, 1/2<s<5/2
2, §>5/2

in H*. In the uniform local spacé$’;, the same approximation rates hold by Th&orem
Analogous results hold for the higher order versions of these spline wavelets, and the
corresponding spline expansions.

4. Daubechies wavelets

For standard Daubechies wavelets of order 2, we consider the symgol ( (3ee 1.2
note the definition of the coefficients  in equation 1 1)):

mo©= S IA+V3) + @R/ HE 1@V v @V ]

1
= —[a+bz+ cz* +d2*
8

Herez = ¢ % , and

a:1+\/§, b:3+\/§, c=3—\/§,d:1—\/§.

Notem(0) = 1, while

|mo(f)|2
1
= o [(a2 + b% 4+ 2 + d*) + 2(ab + be + cd) cosé + 2(ac + bd) coRE + 2ad co8¢|.
Therefored%]mo(g)P‘ _ =0.Sincec+bd=0 ,ab+bct+ed=18 , and= -2,
d—2|m ©F = -~ [2(ab + be + ed) cosé + 18ad cossg} — — L1136 cos—36 caxe]
de2" S T gy ~ 64 ’
and sgf;|mo(¢)1?|  =0. Inadditionds|mo(¢)?| =0 but
=0 =0
d* 1
d—£4|m(g)|2 == [36cos§ — 324 coSSf} ,

# 0. Thereforegmq(€)> =1+ O(|¢]*) &— 0) , so Theorefnimplies
€=0
o =5/2. Thus by Theorem 5, iff* the best order of approximation for these Daubechies
wavelets is

4
SO et [mo (&)
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0, s<1/2
. s—1/2, 1/2<s<5/2
"= 2, =5

2, s>5/2
Similar analyses can of course be done for higher order Daubechies expansions. As before,
by Theorem 8, the global spaté can be replaced by the uniform localEjpace . We see
the optimal order of convergence for Daubechies wavelets of order 2 is 2.

For the compactly supported Daubechies order 2 wavelets, these are entirely local

results. Thus for any € Hj. , the above exact approximation rates hold uniformly on any
compactk C R<.

Remark: Our results imply that for one dimensional [RB] scaling functions with
Fourier transforms (e.g., for compactly supported ones), optimal orders of convergence are
always integers. The reason is clear from Theorem 5, since forpsuch is always a half-

integer (see Def. 1.6 and Prop. 1.9), given the Fourier transgﬁorm Is always infinitely

differentiable at the origin. Specifical|3$| =1/ $$ is also infinitely differentiable at O,
and so|¢(¢)| = ﬁ + O(|¢|*) witha an integer and= /2 +1/2  (nete=1 here)

Howevera: must be even singg¢)|  always has a maximu-\%?of ¢ =dak

In such cases the Strang-Fix conditions, which indicate integer convergence orders and
are related to moment and polynomial representation conditions, are entirely equivalent to
those above. However, for non-compactly supported scaling functions supported cases the
two theories can diverge, in particular our results allow for non-integer optimal
convergence rates (see [KR1]).

The proofs for the new results 5-9 above are given in section 7. These hold for
multiresolution, scaling, and wavelet expansions when they are defined.

2. Preliminaries for proofs

Let P, and@, be the kernels of the’ projections onto the spgces Wand ,
respectively. We inverse Fourier transform and obtain

Py(z,~€) = F, P, y); Qu(z,—€) = F,'Qul,y) (2.2)
with

Pz, —€) = (2m) /2 / Po(x,y)e¥dy (2.2

and @n(x, —£) defined similarly. The transforms converge everywhere and are continuous
in ¢ if |P(x,y)| < H(zx —y) with H € [RB] (see Def. 14). As usual, we have defined
P = P, here. The same conclusions holghifz) In(Z+¢|) [RB] [KKR1].

The errorE, = I — P, is bounded ib>. In Fourier space its kernel is [KR1]
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(Bnf)w) =E,Ff,
whereE\Jn has the kernel (in the variable )
Ey(z,€) = )y e — P, (z,~€), (2.3

We denotell = E.
Recall the scaling property

P,(z,y) = 2V Py (2'z , 2y ), (2.4)
which implies
En(z,6) = E (2"2,27"¢). (2.5
Also under our assumptions on the scaling function , the Fourier kBrael¢) of the
remainder operataf is
E (x,8) = (2m) "™ — Z(x,)4(¢), (2.6)
where
Z(w, )= Y  dle—k)e =) o@+k)e 27)

is the Zak transform af

For later referencat follows from [KR1], equation (3.12) and its se@lehg with
properties of the Zak transform, the Poisson summation formula, and the scaling féanction
that the Zak transform can be written

Z(QL', f) = @*i&c Z (27T)d/2 25(27rl . £)€2mxl (28)
ay/e
= (2m)%/2 ¢~itx Z mo (re — £12) Z 25 (l — &/ 2)e2mial
= 1€2Z4+¢

where F = {0, 1}4.
In addition, as calculated [n KR1], we have from (2.6)

B(e.6) = (@)™ — Z(£)5€) (29
— (27T)—d/2€i9£§ <1 _ Z (2’(’? g (2.(.[ + ‘5 )6271'1'112 € 9 )
lez

The second factor can be written in the form
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1- Y (@) Sl + €)1 5 €) (219

leZd

=(1— (Zr)dﬁeﬁ) — Y @104 P @+
1£0

For completeness we state a proposition relating approximation orders and operator
norms, and two propositions relating operator norms and kernels.

Proposition 2.1 [KR1] : Assume a Banach spack , a normed linear sgace , and a
sequence of bounded operators, Q4 — B . Then the sequ@pce has order of

approximation 5(n) , i.el|(I — Qn)fllz < C¢B(n) for allf € A , if and only if the
operator norm||I — Q,|| < C’B(n) , wher€’,C; are constants (the latter depending on

/).
Proposition 2.2: An operatorR: H® — L% with kerneft (z,&) defined by
Rf() = [F (@07 ()de (2.1
has operator norm
IR e = sup[ B (2, OF (L +[€P) “de.

Proposition 2.3[KR1] : For s € R,the operator RH; — L* defined by equation
(2.11) is bounded if and only if the kerffé(x,g) satisfies

/ T (2, 212 de < € < oc.

Replacing the operatdt ly=1—- P we get:

Corollary 2.4: For s > d/2 the MRA{ R} has best pointwise order of approximation
s —d/2 in H® if and only ifE (z,8) € FH,* in the variablg , uniformly in X, i.e., iff
[1E (x,&)PIEF? d¢ is essentially bounded in x.

Proof: This follows from equivalence @¢t/) arl) of Theorgérand P roposition 2.3.

3. Growth rates of functions
The following results on growth of functions are required in our proofs of sharpness of the
best Sobolev parameter , and our main result, Theorem 5. The proofs are available for

reference in an appendix to this paper on the Internet at http://math.bu.edu/people/mkon/,
with the same title as this paper.
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Definitions 3.1: A function f(z) on an open s€ liscally bounded if it is bounded on
compact sets. We denote By  the unit balkof

Lemma 3.2: Given a locally bounded positive functidiz)  BfH— {0} ang 0,
(@) We haved(z) = O(|z|~) if and only if

|A(z) — A(z/2)| = O(|z[ *) (3.2
where ifa < 0 we assumd(0) = IimOA(:c) = 0.
(b) fa<0andA(0) = IirrE)A(:z:) exists, but we do not assuA(®) =0 , then in statement
(@), A(z) = O(|z| @) is replaced byA(z) — A(0)| = O(|x| @)
(¢) In(@),0(-) maybereplacedlby-) (as—0 ).

Definitions 3.3: Two functionsa ( ) andl { ) arequivalentq - (~ S8 -( ), if there exist
positive constants;c and ¢ such that for eyery in their domain,

cia(f) < B(f) < oalf).

ForC > 1, we definelc = L-(R?) to be the class of positive radial functigihs|) on
R? satisfyingg(bp) ~ g(p) forp >0 and <b <2 , i.e., such that foralh 0
10 < 9% _ ¢
9(p)

We also define the norm
lglle = / da J2| g(|a)

Henceforth we assume all statements involving the order parameter hold for
0<cec< 1.

Theorem 3.4: The following statements are equivalent for any fixed 0 and a positive
function f(x) on the unit balB¢ dR? , with< c <1 (all integrals are restricted to the
unit ball):

(a) The integral

/| f(z)dx = O(c™®).
(b) For some (or allyp < «

f(@) ]z’ dz = O(c"*)

|z|>c

[and if 3 > o, [ f(z)|z]|’dz < o0].
(") For some (orall)g € R,

18



[ i@l = o)

c/2<z|<c

(") For some (or all) > o , and some (oraly) withh-5—a <0
[ F@al? e+ lalyda = O(m5-2)

[and if 3 > a andy + 8 — a > 0, therﬁmoff(:n)]:dﬂ(c +|z|)7dz  exists and is finite
(¢) For any functiory(|z|) € Lc such that

[ 1al glfaly i < o
it follows that
[ st ol @) do <,
for some (or all)C > 1.

Statements in brackets] may be included or excluded without changing the equivalences.
In addition, O(-) may be replaced by(-)  simultaneously in all of the above
statements excluding (c), and the equivalences ob'(a)-( ) (i.e. all statements exeluding ( ))

continue to hold.

Remark: For completeness (though this will not be used in the paper) we remark that the
conditions in the above Theorem are also equivalent to the following conditions, listed
below:

f(x)|z|Pdz = O(cP~).
f(@) |z (c + |z])Vdz = O(c7H~).

(b™) For some (or all3 > « ,fm(C
(b™) For some (or all)3,y e R /.
(@) [, jpeojce [ () d = O(c®).
©) [, jia<c I f(2)dz = O(1).

[2<|z|<c

We now state a corollary which gives uniformity for Theorem 3.4.

Corollary 3.5: Let{f,}qq be a family of positive functions frasf Ro The following
statements (with all inequalities uniform ¢n ) are equivalent for fixed 0 (note all
integrals below are restricted tB¢ ) afid< ¢ < 1

(a) The integral

fo(x)dx < Kic™°.

|z|>c

(b) For some (or ally < «

19



fal@) el de < Kye?

|z|>c

[and for3 > o, [ f,(z)|z|?dx < K for somé independentgdf
(') For some (orall)3 € R

/ fa(z) |z|Pdr < K3c’e.
/2<|z|<e
(") For some (or all) choices of with>a and with-—a <0
/fq(af)!:vlﬁ(c +z|)de < Kye*7e
gand if 3 > o andy satisfy +3—a >0, thefif,(x)|z|’(c + |z|)’de < K for some
q

K independent of]
(¢) For any functiory(|z|) € Lo such thdy||. = [ z[{g(|z|)dz < 0o, it follows that

/ g(j) [2]* fa(@)dz < Ks|glle,

for some (or all”' > 1.
(¢') For any functiory(|z|) € Lo such thdly||, < oo , it follows that

[ st ol o) d < K (),
for some (or all)}l’ > 1 , wher&'(g) depends@n but nogon

The above constantg; are all equivalent, i.e., there is a congtant such that
%Kl < Ky, Ks,..., K5 < uK,, for any fixed choice ofy, 3, angd . The bracketed

statements ifib) an@”) can be included or excluded without changing the equivalences.

Remark: For completeness (though this will not be used in this paper), we remark that the
conditions of Corollary 3.5 are also equivalent to the following:

(b™) For some (or all)3 > « ,fm% fo(@) |z)Pde < KecPe
(b") For some (or all)3,y € R ,fm(mq fa(@) |28 (c + |2])da < Kqerth-e,
(d) fc/2<\x|<c fo(x) dz < Kse™.
(e) fc/2<\z|<c lrl&fCl(‘r) dx S K9 .

with the constant&’s througki,  equivalentfp throagh

The next Corollary relates divergence rates of two integrals-as- 0 :
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Corollary 3.6: Let {f:},co denote a family of positive functiofis: B — R. The
following statements (with all inequalities uniform in ) are equivalent for given
v,0,m € R, withn < —v;, andn, n—§ positive.

@) [pafy(x)(c + |z])"dex < Ky, for somek; >0 andall < c < 1.

(b) [a [ (x)(c + |z|)"da < Kye™™?, for somek, >0 andall < ¢ <1

Furthermore, if the above assumptions hold exceptrthad IS negative, then (a) implies
that the left side of (b) is bounded uniformly;in

Proof of Corollary 3.6: We first prove ¢ )< & ) under the initial assumptions. Note that
for fixed «, statementd”) of Corollary 3.5 is equivalent to itself if “for some" is replaced

by "for all". By the symmetry ofa) ang) , it suffices to praw¢ = (b) . Thus assume
(a) holds. We define constanis> 0, 3, v  which satisfy
y=mandy+B8—-a=-n. (32

Note that sincgy < —v;, it follows > o« . Defining the functign by
fo(@) = fo(@)]a]”,

we see thatb”) of Corollary 3.5 is satisfied for our choice,df, v Oletn , and now
replacey; byy +6 ,andreplage by-6 . With these new values of n and , we keep
and (8 unchanged, so that (3.2) is still satisfied. By the equivalence of the "for some" and
“for all" versions of statemert””) in Corollary 3.5, it follows that for this new value of
(b") still holds. However(b”) of Corollary 3.5 with the new valueyof is the sanig) as

of this Corollary, provingb) as desired.

Now consider the case wheye- ¢ Is negative. We will show dghat ( ) implies that
the left side of { ) is uniformly bounded. We maintain all of the original assumptions of
this Corollary, with the only change that ngw- 6 is assumed negative instead of positive.
Again definea > 0, 3,y so that (3.2) holds. Then with these values 6f~, (a) above
is again equivalent to the unbracketed pafbof of Corollary 3.5.

Since the unbracketed part(@f)  for one value of implies the bracketed part for
all values ofy such thai+ 3 —«a >0 , it follows thatthe bracketed part of Corollary 3.5
holds for the new value of . Thus

[ fa@lal? e+ laly 0 do < K
Bd
for someK > 0 . This completes the proof.
4. Convergence rates and the best Sobolev parameter

The main result of this section, Theorem 4.3, shows that for any wavelet expansion the
best pointwise rate of convergenceHh is independent of s foe , where is the best
Sobolev parameter.

We recall thatk,, =T — P,, and), = E, — E,.; ;sde. 21 ahd )2.3 for definitions
of QnandE’ n -
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The next proposition will be used later to establish that the funéfign) can replace
I5(c) (see Def. 1.6) in the statements of our theorems.

Proposition 4.1: If s > d/2, a # 2s — d, anda > 0, then fof) < ¢ < 1
e = | [ Bt = o)
[€]>c 00
if and only if
Ve =| [ 10wor |~ o),
>c s

where the norms are in x
Proof: AssumelM (¢) = O(c™*). Using scaling properties of the ker(2ls),

N(e) = | /I§ 0, O |

= . B, (22,6/2) — B (x, OP1€|722d€ | o

< K E, @z, £/2)P|E|72de || o +
(R T
= K27 #YM(c/2) + M (),

1B, @, P €17 de || )

€[>

provingN(c) = O(c™®).
Conversely assum& (¢) = O(c™®).  Then we have

N(e)= | [ de|E,@z,&/2) — B, @ &) EP || «

Kl

2
> <|| /I€ I>cd§rsr25|ﬁn(2sc,§/2)|2||éé2— [ | d¢ E12E, ¢, 0|l éf)

§|>e

(29 | lﬂmdagrzﬂﬁn(x, VI~ i 0k ETHE, 667 | 342)2
— (2425 M (c/2)M? — M(c)V2)’,

where allL>* norms are in
To show this implied/(c) = O(c™®) , defing(c) = ¢*~4?M(c)"/?.  Then

N(e) = (22 725(c/2)(e/2)* > - cd/QSS(c)>2 — 2(§(c/2) — S(c)).
SinceN(c) = O(c @),
[S(c/2) = S(c)| = O(c /277172 (4.2)
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By (a) of Lemma 3.2, ifa>2s—d, we haveS(c)=O(c*/?*42) | and so
M(c) = O(c™®) as desired.
If on the other hand < 2s — d , in order to apply Lemma 3.2 (a) we show= Iin?)

S(c) = 0. To this end, we first bount (c) as follows. Define

~

Y() = |E (2,6)lls = [|2m) e — Z(2,~)8(6) |
where the above norms areain . It is not difficult to show (see [KR1] and the remarks for

F (&) before equation (2.3.16 there) thak) £

Note also that

/ i VB Ol s = Y (€) €] 2%

c/2<|é<c
< Ko / Y (€)%
c/2<|¢|<e

< Ky 2 clsupy (€)?

Il <e
= o(c?%).

Thus
ME) < [ IO = ol ),
>C
using the equivalence of (b) and (b") (in the case whlere is replaced by ) in Theorem 3.4,

since by our assumptiods— 2s < 0. Thus

IiLn0 S(c) = lime*2M(e)? =0(1) (¢ — 0),

c—0

so thatS(0) = 0.
Now applying Lemma 3.2 (a), we have by. ¥4 1 in the dasea < 2s—d that
S(c) = O(c/*+s=4/2) 'soM(c) = O(c™®) in this case as well, completing the proof.

Theorem 4.2: For s > 0, the MRA{ R} has pointwise order of convergeneeR in H
if and only if

/ E @ OF € +§ )%d¢ < K 20+ (4.2)

for 0 < ¢ < 1, uniformly inz .
Proof: Assume firs{4.2) holds. Then fgre H® (lettikg =2 )
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Eaf@f = | [Ev e €|
< /|En(a:z)|2 (1+4 D%ds/?t 45| (1) 2de
= (2 / B /e, OF € +§ >de / T OP@ + e

S K0257d72s+27‘+d
= K272nr’

independently of . In the third line we used the scaling prop2y for kernels.

Conversely assume the MRA has approximation order ®in H . Therefdff we
have | E.f || < K 2" =Kc¢" . Thus by Proposition 2|, |z~ = O(27")
implying by Proposition 2.2 (and the equivalence of the factdrs- ¢)=2 | and
(14 [EP)*) that

K2—2nr — KCQT

> esssgp/En 6GERO+ Pr ¢
—c “essoup[ F .6 e+ ol 2,
implying
esssup [ B £.€ e + |62 < KXo
as desired.
Theorem 4.3: If the best Sobolev parameter 0 , then the best pointwise order of

convergence of the MRP,} H* is independent of s foro.
Proof: Assume we have approximation order Hf . Then uniformly a.e. in

referring to the definition of, A, ¢ )in (2.3) and Theorem 4.2,
JIEGOF € +ip>de < K2 (43)
Assume initially thats > o + 1/2.  We apply Corollary 3\ith f!(£) = E |z, € 2)|
and~, = —-2s, n=2s—2r—d, and6 =1. We show the hypotheses and (a) of the
corollary are satisfied as follows. First-v, = —2r—d <0 . Second,
/f;‘(ﬁ)(c +[€))"de = /|E(:c,£)|2(c +[E)7FdE < KT = KT (4.4)
Note that sinces > o +1/2 , it follows that/ — P): H; — L> is unbounded. The

integral on the left side of (4.4) divergescas>- 0, since by the equivalefeg of (b)and
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in Theorem 1 and Corollary 2.4,|E(:c,£ 2 7%Yd¢  is unbounded in sforo . Thus
n > 0.

Now, for ane > 0 (to be determined later), we claim that (usirgl) uniformly a.e.
inx,

/ IE@, OF € +E 22 dg < Koo 2 2e) s — geelont (45

We first definee more precisely. We will require that be sufficiently small that
s—(1/24¢€) > 0. (4.6)

Further, we require that be chosen so that the exponrent+ 2¢ in (4.5) is nonzero.

Before continuing we will show that the part of the integral in (4.5) which is outside the
unit ball remains uniformly bounded a.exin  and  To this end, note that the exponent in
the integral satisfies

—2(s — (1/2+¢€)) < —20 < —d,

sinces > d/2 . Thus the integral over the outside of the ball remains uniformly bounded,
sinceE(x,g) is uniformly bounded (this follows from the definitionfof  and from the fact
that P(z,y) is in all cases bounded by &h  convolution kefial — y) Kith  radially
bounded; see [KR1]).

Now we will show that under the above assumptions inffact) + 2¢ < 0 . Indeed,
Corollary3.6 implies that ift — n + 2¢ > 0 , then the left side ¢4.5) is uniformly bounded
a.e.inx ag variesif®,1) (this includes the portion of the integral outside the ball by the

above remark). However, by (4.6), the left side of (4.5) diverges-a$ since (as above)
by Theorem 1 and Corollary 2.4|E(x, & 2§ "2¥¢  is unbounded in sforo . Hence
1—n+2e<0.

Thus by Corollary 3.64.5) holds, and byrheorem 4.2 we conclude that we have order
of convergence id*~(1/2t<).  Thus singe-1/2 > s — (1/2+¢) , we also have order
of convergence id/*~'/?> (when> o+ 1/2)

Thus if s > o + 1/2, and we have order of approximation i H , then we also have
order of approximation- inH*~Y2 . This means thatSif is the set of orders of
convergence irff* , thef,_,, 25, fer>o+1/2. We know also that any arder of
convergence itH* also appliesB#  for s> ,andso as a set is nondecreasing with
ThusS,_,,, € S;. Combining the above inclusios§, , = Ss , i.e., as a functien of the
setS; is periodic with period 1/2. Combining this with the fact fhat is nondecreasing,
we conclude the s, must be constant as a functien ofs fer > . Thus the valid orders
of convergence are the sameHri  doro > . We remark that above any positive constant
could have been used in placelg®  in the ter#1/2

Proposition 4.4: If E: H] — L is bounded, then for ali > o , the MRA,JP  has best
order of convergence — d/2 in H*.

Proof: Our assumption on the boundednessFof  implies by Proposition 1.8 that
o>d/2.
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By Theorem 1 if0 < r <o —d/2 , the MRA has approximation order HA , and
hence inH* C H? fors > o . Thus the best approximation order is atdeast H2in
and saS, 0,0 —d /2], wherS; denotes the set of approximation ordéfs. in Note we
have used the equivalence af ( ) amd ( ') in Theorem 1, which implies that if we have
approximation ordes - d/2 iH? this order is the largest possidi& in

By Theorem 4.35; is independent ot~ ¢ . We claimdfas o S, [0, —d /12].
First note sinc&; isincreasing with a$id [0=0 ~d /2], we lfave [0,0 — d /2] for
s>0.

We showsS; C [0 ¢ — d /2] as follows. If it were true that- 0 — d/2  and S, then
Theorem 4.3 would imply that € S, 4, , sineet+d/2 > o. This would give by the
equivalence of(a’) andb) in Theorem 1 that P, : H™*%/2 — [ is bounded. By
definition of o (Definitions 1.7), this would imply > r+d/2 , giving the desired
contradiction. Thus it is impossible thae S, »if o>—d [2and o . Therefgre =
[0,0 — dI2] fors >0 as claimed, completing the proof.

5. Conditions for convergence rates

With Corollary 2.4 as motivation, we define (foK ¢ < ) 1

J() =sup | Fechar 4,

k>c
where the sup as usual is a.e.

The following theorem is the analog of Theorem 5, using/the instead bf the integrals
as criteria for approximation orders.

Theorem 5.1: Given an MRA B} with #£ 0 :

(@) Ifd/2 < s< o the best order of approximation{of,}P i Hsis -.d/2

o—d/2if J,(0)<co

(7t) If s= o, the best order of approximationi¥ ris= {(U_d/z), I

o—d/2if Jpe1dc) =01 /c) (e—0)
(c—d/2)~ otherwise :

(7i7) If s> o, the best order of approximation irfH is r{:
Proof Sinceo #0 we have > d/2 by Proposition 1.8. Statemént () follows

from the definition ofc and from the equivalence in Theorem 1a6f ( ) &nd (). If
J»(0) < oo, statement (ii) follows from Corollar®.4.  On the other hand,if0) = co
then by Corollar®.4, approximation order— d/2  fails. However, by Proposition 1.8 the
set ¥ satisfiesy: = (d/2,0). Thus for any with/2 < s’ <o , the operator
E Hlj' — L™ is bounded, and so the MRA has approximation ostlerd/2  H*n and
hence also il{?. Therefore, i  we have all orders of approximation less th&i2 :
which means the order of approximatiorids— d/2) .

It remains to prove (iii). Since by Theorem 4.3 we have best order of approximation
independent of s for s , we need only consider a specific vakue ofs, say 1= + /2, and
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find the best approximation order #* . By Theorem 4.2 this is the supremum of values of
r for which

/@ @O € +EDZ " d < Ko ot (51

for0 < ¢ < 1. Foranyr wheré .5)1 holds, we have order of convergencél 7it?
We first show (letting = — d/2 )

/Wﬁéuﬁﬁz@+£b%46'§.Kc‘%”@*WWFI==KVC (52

Josir2(c) =0(c™), (53

(recall all order statements in  hold foxx ¢ <1  only). Then we show(that 52 is true
for o replaced by~ (i.e. it holds for all «< )(f.5 3 fails. We also need to show these
choices ofr and~ are best possible (largest possible) in 52 .

To prove the first statement, i.e., equation)5 2 , asgumg 53 holds, i.e.,

sup [ @6 417 71dE < Kaet
T Jgpc

With the goal of applying Corollar.5, let,(¢) = E| z(¢ 2M|~>~' amd=1. etL

6=20+1 and y=-20—-1, so thatv+f—a=-1<0 and3—a=20>0

Applying the equivalence @f:) aril’) in Coroll&¥p, we conclude

sup / B eef (etrler?de < Ky .
e

This proves 52 and shows thatiifi1z ¢ ( 0=c{ ) we have approximation arder
d/2 in H°*12 py Theorem 4.2.

Note that this order is in fact best by Theorem 1. Indeed, since this order is the same in
all H® for s > o, it holds fors=o0+¢ fore >0. However by Theorem 1 the

approximation order inf* in this case cannot be better thare — d/2 , and so the
(constant) order of approximation f#* fer- ¢  cannot be better than this fer-all ,
and hence cannot be better than d/2 . Thussfero + 1/2 (and so fer-alt ) the

best approximation order iH®* ds— d/2 as desired.

Now we consider whet,.12 ¢() © 1fc ) fails to hold, and show we have best
approximation ordero( — d /2) &'/ . By (ii) above the best approximation order is
least(c — d/2)~ and we must show it cannot be better. However sinceg 5 3 fails by our
assumption, it is easy to show by the same arguments as abave that 52 fails. By Theorem
4.2 therefore, we fail to have order of convergence- ¢ (2 172 , SO the best
approximation order must bexr (— d 72) . Thus by Theorem 4.3 this is the best
approximation order id/* foral > o

6. Preliminaries for the proof of Theorem 5
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We present some technical lemmas required in the proofs of the main results, parts
(iv) and ¢) of Theorenb. Recall that the clagd~ and the ndfm| ¢ are given in Def.
3.3, and that the integral

leapte) = [ (1= @B 417 tae. 6.)

Lemma 6.1: Leto > d/2 andC > 1. Assumg,,(c) = O(1/c) (for<c <1 ). Then
for g(|¢]) € Lo withlglle < oo, we have (defining(¢) = g(1¢])[¢] > )

(i) Ja A= |mo(€/2)F )A(€) € <oc

(i) f‘ﬂ<1|m0(7re + E12)F h(€) dé <oo fore € F = {1,0}°.

Proof. Using the assumptior,,;(c) = O(1/c) and the equivalence of ( ) and () in
Corollary 3.5, letting f (¢) = ( 1- @Y« )||£|*2‘7*1 and =1 ,we have

[ (1= @b <o
l€]<1
In addition,

/M(l = @Y BOR)n) de = @d(l— @924 ) ( 1+ @B

SO
[ (1-@rBer) ned <.
Kl<1
Thus since
mo@F — 1= (@ ¥ b @N- 3 o A @MW 1. (.62
we have
(1~ [mo(€/2)f Yh(&) & <oo, (6.3)
1<t
proving (7).
Additionally, it is known that (e.g., [KR1, equation (2.3.9) and Lemma 2.3.1]),
Y mo€ +re)f =1 SIS+ 2m0)2= (2m) (6.4)
ecF Le7d

If € £0, by (6.4),
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Imo(me + &2)F =1-) do b’ +&/ 2/< E mhogf B,
€ Fe

so by( 63
ot + 62 e d <o (6.5
yielding (i) and completing the proof.
The Fourier kernek(z, £) is given {2.6). We also have:

Lemma 6.2: Leto > d/2 andC' > 1. AsSUmME,(c) = O(1/c) 0K c<1.) Thenthe
kernel £ (z, €) satisfies

/m B, &)l — I1E(z,€/2)]loo] h(€) dE < o0

for any g(|¢]) € Lo with||gllz < oo . Hereh(§) = g(§)|¢|7* , anthe || - | norm is
taken with respect to.

Proof: We have from (2.8):

2z, 3€) )
= Imo(¢/2)F €/ 22 (2 £/ 2 Mo &/ 2 &/ D moke +&/ B @ & 2 me ),

e£0
and so
205, B€) ~ 2(2r, £/ 2D €12) ) (66
= (mo(¢/DF ~ 1 €/ 27 @ &/ 2k ot/ DY D more+¢ 1 @~¢ J2 7 )
e£0

We now use (6.6) anti) ardi) of Lemma 6.1(with And as in the Lemma), noting
1E(22,£/2)]l0 = [[E(2,£/2)]|. to obtain
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[ ~ 1/2
(/|«$|<1| 1E (2, ) |loo — 1 E(2,£/2)||00] B (E) dg)

~ (L

~ _ 172
| e ™ Z(@,~)6€) — 2m) ™ || oo — || 72 (20, =€/ 2 €12)— (27) ™ || 0| *h(€) d€)

_ _ 1/2
< ( / | Z€)D€) — 7206125 €/ 2) 2 h(e) a)
[£l<t

= ( /If I mo/2F - 1) ¢/ 27 @ £ I2)

_ 1/2
+ mo(6/2)6€/2) Y molwe + €12) Z (20 £ 12— 7e || 2 h(€) d§>
e£0

= 1/2
< (/ Gmol/2f — B¢/ 2 Z @ & 2)|oo|2h<s>d5)
[¢l<t

1/2
. (L IT6/206€/2 S molre + €/2) || Z @, €/ 2- 7€ )| |2 h(¢ )d&)
€£0

< 00,

where we have used thatz, € &¢) , angl(¢) are uniformly bounded in £. and

Lemma 6.3: Assume that > d/2 . There exists a numbeér- 1 such that for any
g1(/¢]) € Lo (R?), the following holds (defining; (€) = g1 (&)[€] % ):
For any positiveY (§) withY (£) joo , ifflﬂ<1|Y(§) Y €12)F hy (&) d€ < oo, then

3
f\g\<1IY2(€) 1 (§)d€ < 0.
Proof: Define g(|¢]) = {g1(|§|) if [¢] <1

0 otherwise’
h(€) = g(|£])|€] 727, so that from the assumption of the Lemma

withg, € Lo, and” to be determined. Let

[ ve-veERrne ¢< . (6.7)

Now choos&” > 1 so
90 1/2 ~ 2fd/2’

which is possible since > d/2.
Then

/ Y(€) — Y(¢/2) h(€) dé = / YOV — Y(E/2)h(e/2)r(E/2) de

where (recaly € L ; see Definitions 3.3)
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” _ 1/2 1/2 _ 9—0 9(|£|)1/2 —o1/2 —d/2
(€/2) = (&) n(e/2)V* = 777 A5y < 2O <o

We have defined/0 =0 above.
LetY, (¢) be a positive sequencelii  which converges pointwise&o ( ) such that

Y, (&) <Y(§). We may assume convergence occurs such that, defining
G(&) = Y (h(§)'? andG,(€) = Ya(&)h(§)'?,

G (€) — r(&/2)Gn(§/2) < 15 €)— r(£/2)G €/2)I. (6.8)
For example, sinceY' (&) 5?00 , we could choo%g(é) = (Y (&) —1/n)+ , with +
denoting the greater of the argument and 0. Thgfw) — Y,,(8)| < |Y(a) — Y(0)| for all
a, 5 € RY and

Y, (E)h(E)Y? — Y, (£/2)h(€)V?
Y (ER(EY? — Y (£/2)h(&)"?]
G(&) —r(¢/2)G(¢/2)]

A

I
I
I
as desired. Now

| Ga(€) — 7(6/2)Ga(€/2)2 > || Gu@)l2 — || 7(€/2)Gn€/2)2  (6.9)
> (1-29277C"2) || G (9|2

By our choice ofC' we have— 2¢/>-°C'/2 > 0. By( .7
/Rle(ﬁ) —7(£/2)G(¢/2)PdE = /Rd VE) — YE/2)h(E) ¢ < oo

Thus by dominated convergence d6B), the left sid& & converges, so the right side
is bounded i . Thus the sequenicg, £ ||{ ) is bounded, andGipnge () converges to
G(€) pointwise from below||G {|), is finite, proving the lemma.

Recall for an inner product spate  (with inner product , a family of veffirsC V'
forms a frame if there exist constants> 0 dhek oo such that fgrall” :

AlIfIP < Y If -2 < BISIP.

Lemma 6.4: In a finite dimensional space, the optimal frame bound is a continuous
function of the frame. Specifically, if the vectpg’(¢)}1, form a fran®'in  forgach
and if theZ(¢) vary continuously 1 , then

EAPAGIES S(F 4F 4015
T 619

are continuous functions ¢f .
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Proof: We write

f:l!f-Z%f)P . 2
sup4/Q~— — su . Z . 6.11
sup YT feRn,“pﬂ;v ©)] (6.11)

Because suprema of equicontinuous function families are continuous, it is only necessary
m . - - -

that we check that the family{> |f-Z'(¢)|*}fes is equicontinuous, where
i=1

S ={f:|f| =1}. Butfor this it suffices to show that for eacH|f - Z'(¢)|*} fes  forms
an equicontinuous family of functions, which is clear by the Schwartz inequality.

Lemma 6.5: Letf(¢) andZ (x,£) be vector functions @&f ,det>-0 , and assume

(1) The vectors{Z(x0)} spalR” , i.e., there is no nonvanishing vettor such that
Z(x,0)-d=0a.e.[x].

(ii) Z(x,€) is continuous irg .

Then iff (€) is a vector function ih?(R™”) such that

/6 7@ 2@ 0P = 0() aes), (6.12)
it follows that
/|£ IF(@rds = o)
Proof: Assume (6.12). Lefz;}?, be such tHa(z;,0)};  is a basi®for , and such that

the equality in (6.12) holds far= z; Vi . Then by the previous Lemmagffor  sufficiently
small, say¢| < 9,

FOF < KY 1£(6) Z(x:,6),

since{Z (;, 0}; forms a basis and thus a frame.
Now write (for smalk )

2 e ) ,
/§>c|f(€)! ¢ = /5>|§|>c’f(§)| d§+/ F(6))de

|€]>6
< K AR 2d¢ + 2d
< /WX SIIF(©) Z e 9P /5 rera
<O(c )+ K,
=0(c™).

7. Proof of Theorem 5

The next theorem establishes the equivalence of the fundgtions L, and
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Theorem 7.1: For a > 0,0 < c < 1,t #d+ a,

/ L (L e enta= ot (71
if and only if
/ L, @ eEh e = 0() (72
Proof: Let the left side of( 7)L b&'(c) and that 67 .2) bée). Recall

B(&) = mol/2)B(¢/2). LetS(c)= [ (1—(2m)(¢)")[¢|"d¢. Note by factoring
the integrand that'(c¢) = O(¢™) iff'(¢) = O(c¢™®) .

Assume( 7.1 . Then (6.2) giv€s ).2 (after factoring the differences of squares on
the right of( 6 2 ).

Conversely assun(@ ).2 holds, i.e., figt) = O(c™ ). Then note
(1- @rP@R) - (- @944H) = @) @ nocAIFKAI. (.73

The factors in the integrand ¢f 7.2 are positbiece they symboing({) assumes its
maximum of 1 até =0 . Thus, without loss redefining- (27)%/2(¢)|? = 0 for
€l >1/2,

0<c—“>:/ S @Y BeR)- (1 @9 € 125) Ertde

>

/ (1- @Y P ER ) tde — 2t / (- @ HOP e
e<|¢l<1 c/2<€|<1/2
— [S(c) — 215 (c/2)|.
Defining P(c) = ¢~ %S(c) we have
O(c®) = |e"H(P(c) - P(c/2))
SO

|P(c) — P(c/2)| = O(c™F=9), (7.4)

Hence ift — a —d < 0, by Lemm&.2, P(c) = O(c! % %) ,s0l’(c) = O(c ), as desired.
On the other hand, f— a — d > 0, then we can again ajyei;nma 3.2 (a) if we can

showP(0) = limP(c) = 0. To this end, note that sirde @ )2 €)) ]

[ (L @PBODET dE < (e/2)7 1B stl1 — (27)3(e)) = ofc ).

€] <e
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where |B(c)| denotes the volume éh  dimensions of the ball of radius . Thus by the
second paragraph of the statement of Theorem 3.4 (note tsince—d > 0 we have
t > d) relating to replacement 6f by |,

re) = [ (1= @ RHODET g = o).
c<flk1
So by factoring the integrand below,
s@= [ (1-@YPODLIdE = o)
c<flk1

and thusP(c) = ¢'~45(c) e 0 . Thus we can applgmma 3.2 to (7.4), to again obtain
P(c) = O(ct %), andT(c) = O(c ®), completing the proof.

Note for later reference that
F(@) = 29225 (27 ),
Recall also formula (2.6) fat (x,€)
We now give the complete proof of Theorem 5, the main result of this paper.
Proof of Theorend :

(o) It ¢ = 0 it suffices to show that we fail to have any positive order of convergeni@é in
fors > d/2. Recallb =0 means — P : Hj — L* is unbounded forsalt 0.
To begin we claim that in this case the convergence rate of the MRAXfat/2 is
independent of. The rest of the proof is similar to thathaforem 4.3.
Assume we have approximation order 0 HfA . Then uniformly (as usual a.e.) in
x, we have by Theorem 4.2

/@ @OP e+ EN>d < Ke 22— Ko (75)

Assume for the moment that > d/2+1/2. We apply Corollary 3a6th
¢ = IE @ OF, m=-2s, n=2s—2r—d, and6=1+2¢ , withe >0 to be
determined below Note that the supremum of the left side.of divBrges ag — 0 by
Corollary 2.4, the equivalence @f’) afild in Theofem and the fact that/2 > o,

so that—n < 0. Similarly to the proof of Theorem 4.3, it follows from Corollary 3.6 that
for somee > 0 we have uniformly a.e.in

/ E (2, 6)F € +§ 722 ge < Koo A-(/2a)s2d - peelont2e (17 6)

More precisely, we choose so small that (1/2+¢)>d/2 , and also so that the
exponentl —n+2¢ # 0. Then as in the previous proof, we conclude that in fact
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1 —n+ 2e < 0, since the left side af7.6) diverges as — 0 . The divergence of the left
side of( 7 6) follows by Corollary 2.4, the equivalencéoj @d in Thedrtem and the
fact thats — (1/2+¢€) > d/2 > 0. Corollary 3.6 then gives7 6).

From this we conclude we have pointwise approximation orderH*in'/2+¢). With
appropriate choice of > 0 , it follows (as in the proof of Theorem 4.3) that the best
pointwise approximation order (as a function sof ) is periodic with peticd and
nondecreasing. Thus the set of orders is constastfod /2 , as desired.

We have established the rate of convergenceH in Is independent of . By Theorem
1,itis also less than—d/2 IH*® for>d/2. Singe can be arbitrarily clod¢zo , we
concluder < s —d/2 must be smaller than any positive number. Hence there is no
positive rate of convergenege in any Sobolev sgate  swithi/2 . Sineé{oi /2

ands > d/2 we havél® > H* | it also follows that there are no positive convergence rates
for s’ < d/2. Thus we have proved).

(i) For 0 <s<d/2, there exist unboundeflec H* . However, for gh¢ H* ,
PfeL*®. This follows since by our assumptions, the scaling function satisfies
|¢(x)| < n(|z|) with n bounded, decreasing, andi(R?) . Thus

1/2 1/2
IPfl =D arg(z— k)| < <Z|ak|2> (Zn(w - k)2> < K| Pfllzzlnlla-
e e e

Above, the sum involvingy can be bounded by the norm on the right because it can be
bounded by an integral. Thus for unbounded H* we hgve- f — Pf is unbounded.
ThereforeE : H* — L™ is never bounded, and hefBg|| sz fails to have any decay
rate. This yields approximation order O in these spaces (by our definition of approximation
order0).

(ii) This follows from equivalence of/( ) and ( ) in Theorem 1.

(iii) This follows from the equivalence af ( ) antl ( ) of Theorems 1 and 3. Specifically if
1,(0) < oo then by these theorems the best pointwise approximation ordé&f’in is
o —d/2. Butifl,(0) = oo, then Theorems 1 and 3 imply the best approximation order in
H? cannot ber — d/2 . However far= 0 —e Theorem 1 implies the best approximation
order inH® iss—d/2=0—d/2—¢€ . Thus for any >0 —e¢ the best approximation
order is at leastr —d/2 —¢.  Since this holds for att-0 , for o the MRA has
approximation order — d/2 — ¢ for ak > 0 , and hence has best ofder d/2)~ as
desired.

(iv)  Sinceo # 0, we have > d/2 . By Theorem 4.3 the best approximation order in
H? is independent of fos =z . Thus to determine this order forsany > we only
considers = + 1/2. By pafiii) of this Theorem, since best approximation ordér in
cannot be worse than i fer rp» , the best ordéfin isatkeast ( — d/2) .

We now show that if

35



N\
Lape)= [ (1-@0Bo) 17t = o) (17
12p>e
then we have approximation order- d  /2HY  $§ar o0 . To do this we will verify

Josanle) = sup | B GENATTE =00 c) (7.:8)
>c
and use Theorem 5.1.
To verify (7.8) we will use equivalence af ( ) and ( ) in Corollasy. Specifically
we letf,(€) = |E(x, £)F|¢) 271 andn =1 . It thersuffices to show for some fix&d > 1
that for anyg; (4)|€ Lo such thgig|g;(|¢]) d€ < oo,

[ oD sup P& R g P < K <o (79)
To prove( 79 for som& (we will chooge later), §€f|) = {gl(m) gtﬂr:viie

Defining

Y(©) = 1B,
we have by Lemma 6.2 thatfif¢) = g(|¢])|¢]7%

/|£| JY©- Y(€/2fh(€) dé < 0.

Note thatY (&) gjoo (see remarks before equation (2)3.16 in [KR1]). Now clivose

in the statement of Lemma 6.3. Then, using Lemma 6.3, we have

/|5|<1 gk sgng 6ENQTde = Y2(€) h(€) dé < oo,

l€l<1

so (7.9) has been established, proving we have approximation erdet/2  H* in
s> 0.
To prove the second case(df) , suppose now that

leaple) = [ (1= @0 BO) 417 4 £ 0 @)

as

for

for ¢ < 1. By the equivalence dfa) an@d) in Theorem 3.4 for @y 1 there then

existsg(|¢]) € Lo with[ €174 g(|¢]) d¢€ < o and

/ (1= @Y= ) £1%9(1¢]) dé = oo
l€]<1

36



We wish to show that in this case the order of convergente in s >far (o -isi/2)".

To this end it suffices to show, by Theorem,5.1 that, »(c) # O(1/c)  cferl . Again
let A (&) = g(|€DIEI7*"
We have
L. @ erbemea = (7.10
Letting C' denote the unit cube R, we have by (2.9) and (2.10):
(7.11)
. 2
[aa | |Botw6)] nte)ag
c lEl<t
_ — 2
— [azf (27r)d’2(1— (Zr)dbé)f) C @ 9P 0 6B @i ey he)de
¢ k1<t 10

1£0

— 9 B
= /I£|<1 ((Zﬂ)dlz(l (ZW)dlcb(f)F)‘ +Z ‘ (2t Y25 é)zﬁ(Zrl—kgf) h(€) d¢
> 2 4/27% (D onl 2h p
= /Klq;‘( )" (€)p(2r +§)‘ () dé¢

The second equality follows from the Parseval identity for Fourier series, since the
integration (oncer and integrations are interchanged) is the square Iof the -norm of a
Fourier series in: .

By (6.4) and( 7 10, factoring the difference of squares below,

(27r>d/£ b+ 20PmE) de = [ @— @y BeRn(E) dé = oo,

|<1 (0 g<1

so comparing witt{7.11) , (sincz%(o) £0 agd is continuous)

/Cd;u/£<1 ‘Eo(x,g)fh(g) d€ = oo,

The above is ah' norm over the unit cdbe z in |, sd.the norm is also infinite
Thus the error operat@d?  with Fourier kernel

Bol,€) = @) 92 67— Z(2,~€) 0 €)

satisfies

H /5 B9 h() d&HOO — . (7.12)
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But by the equivalence of partsa () and’ () of Corollary 3.5, letting
f=(§) = |§0($,£)|2|£|_2‘7_1, it follows

JUH/QE\ /<|£||ﬁo($,£)|2|€|_2”‘1de £ 010,

Now by Theorem 5.1, it follows that the best pointwise order of approximatiéf’ in is
(o0 —d/2)", as desired. This completes the proofiof ( ).

(v) We wish to show the above statements hold Wjth /»(c) replaced, by, (c) or
Ls11/5(c). Note by Theorems 1 through 4 the prooff) does not change if we réplace

by K orL.
Now consider the proof dfiv) in these cases, first with replacemet of (c) with

Ly11/2(c). We wish to show
= _ dr2 -1 3¢ _
Luple)= [ (1= @ Be) (17 =0 @),
1>EPe
if and only if
Lowp(@)= [ @- o@D de=00/e)
1>Eke
We apply Theorem.7 1 with=20+1 ,ard=1 ,dota=d+1 . We h2awe>d
so thatt =20 +1# d+« . It follows that,,,,,(c) may be replaced by,,,,(c) , as

desired.
To show we can repladg_»(c)  BY,.1/5(c) ,sleow first that if

Iyi12(c) = O(1/e), (7.13
then the same holds for
Ko 112(c) = sup [N )P K27 de
A J1I>ERC

Note that if( 7.13) holds then by p&it)  of this theorem antheprem 5.1

Topip= I [ 1B o(z, OPIE ™2 7HE || o = O(1/c) (7.14)

&>

which by Proposition 4.1 implies that

|| / 10, (2, PIEN e || o = O(1/0).
[€]>c

~

We write Q@ = Q, andE = E,. Note thaf(¢’ (y — k)) = ¢ (—)e k. We then have
that the kernel [KKR1]
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where Z*(z, &) = Y-y (@ + k)e* is the Zak transform @f* . But for a éet zof  of
K

positive measureZ*(x,£)  is nonzerot 0 (see [KR1] after (2.2.9)), and it is always
continuous in¢ , since its Fourier coefficients (x + k) areZin . We have, letting

=1

Z(2,6) = (21, 2%,..., 2%) and (&) = 672D (~€), 5 (=)0, D (~))
[ o -zeofa= [ ST coreole s

[€]>c’ )

— /I£ Qe Pl
=0(1/c).

The set{Z(z,0)},cc¢ span®? in that there is no nonvanishing vettor (see
[KR1], before (2.2.9)) such th& (z,0)-d =0 for almostalE G. Thus we may apply
Lemma 6.5 to conclude that

/5 LGREEUE
Thus

Koi1/2(c) = sup (WA g = O(1/¢),

A J1>|¢>e

as desired.
Conversely, assume

K, i10(c) = O(1/c); (7.16)

we wish to show that thely ., »(c) = O(1/c) . Butif (7.16) holds, then

S0 (-2, 8| e dg = 0(1/0),

[€]>c "

/5 @ —0lel g =
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(c — 0), by the boundedness &f(z, £). Then by Proposition(4.1, )7 14 holds, and so by
Theorem 5.1 the best order of approximatiorHih riso — d/2 . Thugdy of this
theorem, which has already been proved, it follows that

Iri1p2(c) = O(1/c),

as desired. This completes the proof:of ( ).

Proof of Corollary 6 The implication (a) = (b) is clear, whilgb) = (¢) and
(b) = (d) follow from Theorems 1 through 3. Alda) implies that=0 , which by
Theorem 5 impliege) . Thu&) impli€s) (g) (d) , amd . On the other hand, by
Proposition 1.8(b) implies =0 and thgg) . By Theorems 1 througfr8, (dand
imply I — P : H® — L* is unbounded fos > d/2 , which implies ( ) and hence adso ( )
(recallE =1 — P: H° — L™ is unbounded fér < s < d/2) . In addition, by Theorem 1,
(e) implies ¢ ) and henceu( ).

8. Proof of Theorem8

Proof of Theoren8 :Note that the statement of the theorem yields positive convergence
rates only ift > d , which we assume throughout. Our assumption easily implies that
uniformly inx andy ,

|P(z,y)| < Klz—y|™. (83

Indeed, sinceP(z + 1,y + 1) = P(x,y) it suffices to check this for in the unit alibe
Forz € C, sincdo(xz — k)| < (1 + |k |)* we have

P(z,y)| = Y ¢l —k)d(y — k)|
k

<Ky (L [R) (L + |y — k)
k

Kl( DS )1+k ) (Ut Jy— kD)

ly—kI<lyl/2  |y—k|>yl/2

(y Y Aty k)T =" (1+/€)t)-

ly—k|<|yl/2 ly—k|>|y|/2
—t
< Kily|™,

recalling that > d. Thef .8)1 follows from the boundednesB(af, v).

In this case it suffices without loss to find a uniform local rate of convergence in the unit
ball B C R, since the same rate will hold in any other unit ball. We congidef]?, with
| fllzz, = 1. For such anf we writ¢ = f; + fo , wherg is supported3ih f , is
supported outsideB , anld: ||y < C  wifh independent of . Then
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1Enflloo < N Enfille + 1 Enfalloo-
The first term satisfies
||Enf1||oo S Kl . 277””1

with K independent of . The second term satisfiesafarB )

|&M=V%@wmwwmw@
=L/w@%wx—p%mwy—p%®ﬁ@m4
< K/N2nd|P(2”:c — [2"z], 2"y — [2"x])|dy
2B

=K | _ |[PQ2"z—[2"],y)|dy
2n+1B,[2nx]

SKJ'N [yl ~tdy
on+1 B [ona]

sm/mey
2

"B
< Kp270;

above[ -] denotes the greatest integer function applied componentwise to vectds, and  is
the complement oB. We have used the fact fhat L> , with nflérm  bounded by the
norm|| f2| |z, , sinceH$, C L™ , givem > d/2.

ul

Proof of Corollary 9:

(a) The assumptions of the Corollary imply- d/2 <t—d . kas o , therefore, the best
order of convergence i, is the same a#lin  ,si.es,(0 — d/2)") , by Theorem 8,
where ( — ) indicates the possibility of or its absence in the superscript. Since this
statement is independent ef> o , we conclude the optimal order of convergence is
(0 —d/2)).

(b) For anyl <p; p <oo ands, >0 , the inclusioﬂi’;ul C Lg,uz holds fer
sufficiently large. Indeed in this casﬂngLgul > KHfHLiZu; is clear from the standard

Sobolev inclusion relations. In particuldr; , C Hy;  far  sufficiently large, so in the
scale{L? }, >0 , the optimal order of convergence is at least that in the{€gle-, and

thus the scald H*},~, , as seen above. The reverse inclusion (for sufficientlyJarge
shows that it cannot be greater, and so is the same as in thgfthple

Proof of Proposition 10: This proposition follows immediately from Theorem 5, since on
any compactk a function if;; . is a restriction of a functiodih  , and convergence
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properties for a functioffi oR  depend only on the propertigs of’ in , since the wavelet
is compactly supported.

We conclude by remarking that most of the present results and their variations hold in
general spaces of functions to which global versions of these theorems apply.
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Note: This appendix is not included in the published version of this paper.

9. Appendix for “A Characterization of Wavelet Convergence in Sobolev Spaces”
by Kon and Raphael

This appendix contains the technical proofs of statements in Section 3 of this paper.

The following is a standard fact whose proof (using the closed graph theorem) we
omit. BelowB? again denotes the unit ballRsf

Lemma 9.1 On a normed linear space (NLK) , two norms in which  is complete are
equivalent if whenevef,, — 0 in the first norm afif, } converges in the second norm,
thenf, — 0 in the second norm

Recall a seminormy- | on avector space  satigfigs| = ||| fl| [ X and
a € C, and satisfies the triangle inequality, but not necessarily positive definiteness. We
say seminornfj - || on a vector spake casplete if for every Cauchy seq{iénice there

existsf € X suchthaf, — f ,idlf,— f]|—0

Note that seminorm convergente— f  does not in general detefmine uniquely.

Lemma 9.2 A nonnegative seminorfn- || on a vector spAce is complete if and only if
whenever a sequengg,}  is absolutely convergent ¥i.éf,| < oo ), it fofloys

converges (i.e., there existss X  such %@fn — fH —0 ).

Lemma 9.3 Let{| - ||:}rer be a family of seminorms on a vector spdice . Assume that
forany{f,} C X, if foreach f, — h, € X inseminorm asdp|h.|; <oo ,then
T

mn — o0
there is amh € X such that, —-= _h inall the seminoriing|, . Thenif is complete
in each of these seminorms, it is also complete in the semijparex sup|| f||. , assuming
T

the latter is always finite.

Proof of Lemma 3.2(a) The forward implication is clear, and we prove the reverse. First
assumex >0 . Thenj| < 1/2 , we have

D [A(2x) - AR z)] | + AN ) (9.1)

1=0

Afz) <

N
< CQZ |2i+1x|—oz +A(2N+1LE)
=0
< (27°C/(1 =272 + ARV ),
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whereN = N(z) is the largest integer such tat"! x| is less than 1. This yields
A(z) < Cyl|x| ™, (9.2
with Cy, = 27¢Cy/(1 —27%)+ sup A(x), where we note that by the definition &f

1/2<|z|<1
1/2 < |21z < 1. Also noteA(2V*z)|z|=@ > A(2V*!z) sincér| <1 . On the other
hand, if1/2 < |z| < 1, then (9.2) also clearly holds, yielding the desired bound for all
r € B
On the other hand i < 0

o0

> A2 - AQ T )

1=0

o0

<CYY 27027 = Cylz (1 -2%), (9.9

1=0

|A(z)] =

yieldingCy = Cy/(1 — 2%).
(b) In this case

[A(z) — A(0)] = lim

N—oo

N . .
Z <A(2’lac) - A(2*1*1m)) + A2V 2) — A®0)

(27'z) — A(27" ')

< Gyl /(1 - 2%),

where the last inequality follows as(i@.3) .
(c) Here we again need only prove the reverse implication. Our assertion is equivalent to
showing that if A(z) — A(z/2)| < Di(z)]z|™ wherd,(z) is positive witl () —
0, thenA(z) < Dy(z)|x|® , wherd), has the same propertieBas
First consider the cage> 0. Then under our assumptions

N

Az )g [A(zi ) — A2 2)]| + ARV L)

N
Z 2z+1 |2z+1x’ Q+A(2N+1 )

whereN is chosen as above. We now redefitie) to remain an integerafor all , but so
that asz — 0 we havé,z/2 < 2¥*1z < K,z'/2.  Then by part (a), since we know at
least thatd(x) = O(|z|™*) ,

AN z) < K2V 2|7 < Kylz|7? = o(|z|™®).
Consider the ratio (recaVl = N(x) )
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N . . ) )
ZDI (21+1x)|2z+1x|7(1 (21+1x)|21+1x|fo¢
=0

o —al— —a(N+1)
e S (20t |
1=0
< C, sup Dy (2"'z)
0<i<N
:vjo i
ThusA(z) = o(|z|®) , as desired, i > 0.
Now assumex < 0 , and thdf0) = 0. In that case,
Afz)| = |> A2 2) - AR '),
=0

<Gy Di(27'z)27 ™
=0

= sup D;(27"z) Cylz|~*/(1 — 2%)

1<i<oo
= o(|z[™),

as desired.
Below is a more general version of Theorem 3.4, with proof included.

Theorem 3.4 The following statements are equivalent for- 0 and a positive function
f(x) on the unit ballB? oR? witlh < ¢ <1 (where all integrals are restricted to the unit
ball

(@) ')I'he mtegralf sodw f(x) = O(c™®).

(b) fc/2<\x|<cdx f( ) =0(c).

(c) fc/2<‘l,|<cdx |$|af( ) = 0(1)-

(d) For some (or allp < o [, dz f(z) lz|? = O(cP~)

[and for3 > «a, [dx f(z)|z|® < ).

(d) For some (oral3 € R [ o0, .42 f(2) lz|% = O(c’~*).

(d") For some (or allp > a f,, . .dz f(z) |z|? = O(cP~).

(d") For some (or all) 6>a, and some (or all)yy withy + 8 —a <0
Jdef(@)|z]’(c+ |2]) = O(c*7)

[and forg > a andy + 8 — a > 0, theiciLr(mjfdxf(x )|z|%(c + |z|)Y  exists and is finite

(d™) For some (or allj3,y € R [ o i da f(2) 2]’ (c + |z])7 = (c'+5 @).

(e) For any functiong(|z|) € Lc  such thaf'dz z [Yg(|z|) < , it follows that
[dz g(|z]) |z|* f(z) < oo, for some (or allC' > 1.

Statements in brackets] may be included or excluded without changing the equivalences.
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In addition, O(-) may be replaced by -) simultaneously in all of the above
statements excluding (c), and the equivalences ob/(a)-( ) (i.e. all statements excluding ( ))
continue to hold.

Proof of Theorem 3:4 We first prove the statements above are equivalent without the
bracketed inclusions. Whenever we apply Lemma 3.2, we implicitly exténd to have
value 0 for |z|>1. That (a) (b) follows from Lemma 3.2, choosing
Ale) = f\x|>cdx f(x). To show (b)= (c) assume (b) holds. Then

/ dxc®f(x) = O(1).
c/2<z|<¢
However,

[ aseprs@s [ dlapi@ s [ deesn) (04
c/2<|z|<e c/2<|x|<e c/2<|x|<e
so (c) follows. This argument can be reversed to yielex(c) (b).

The equivalence of:( ) and’( ) is proved in essentially the same way as that of ( ) and
(o).

To show ¢ )= € ) assume:( ) holds and det> 0. Assufde || g(z) 4 do for
someg( 4 ) € Lo . Letting;, = sup g(p) ,antk the same quantity veitip  replaced

2—k§ps2—k+1

byinf ,

wf ki@ [ degelel )
27k <2 R 2k < |z <2 kH1

<s | i [z]" ().
Q—kg‘m|§2—k+1

Sinceg(|z]) € Lo , we have for sonté > 1, 1/K < g(bp)/g(p) < K  forlb < 2.
Thus if|€2| is the surface area of the unit spheké in  dimensions,

sk < Kig

27k+1

< K-2’“/2 dp g(p)

-k
2k 1-d
=K da x|~ g(|z|)
|Q| 2*k§‘x|§27k+1
2K

N W 9k <|g|<2—k+1

dz || g(|]).

Thus

48



[z gtaial =Y [ da g(Jo)||° £ ()
=1 Q—ks‘ﬂsg—lﬁl
< sﬂ/ dx |z|“f(z
o] delel @)
X 2K
< [su dz |z|®f(x — dz x| %g(|x
< (sup [t >);|Q| el o)
2K _
— (‘sup daf|:c|‘“f(fc)) 2B g el (1)
k21 Jo k< |rj<o b €|
< 00,
implying (e).
To show ¢)= ¢), assumee() for som& >1 . We wish to show

fc/%'ﬂgcd:rlﬂo‘f(a:) = O(1), or equivalentlyb;, = f2,kg|m‘g2,kﬂd:r|x|0‘f(a:) = 0O(1) as the
integer k becomes large For this it suffices to show that for any positive summable
sequencday} , the sequence

{ak/ dx |:L‘|°‘f(ac)} (9.5)
2—k§‘1.|52—k+1
is also summable. Further it suffices to show the collection of sequences for which this
holds includes the summable sequeriecas satisfying

1/C§ak+1/ak§0. (96)

Indeed ifb;, # O(1) (i.e., is unbounded), Igf;, }  be a subsequence satisfying4b;, .

We could then choose a family of sequenges} , defineg, by 2-'C k- ,and then

definea; = > ¢i..  Since for each the sequenge  (as a functién of ) satisfigs 96 , it
I

follows thata;, does as well. Furthermore, clearly is summable. And finally we would
have

Zakbk > Zaknbkn > Z (chkn>4nbko > chkn4nbko = 22—n4nbko = 0Q.
k n n l n n

Thus it would be false th&9.5) is summable for alla,,} satisfying. 96 . This shows that
it suffices to show9.5) is summable for all summabie;,}  satisfyin@ 6 .

Given an arbitrary summablday} satisfying. )9 6 , there exists a function
g(Jz]) : R? — R such thata;, = | PR dr|z|~%g(|z|) . Indeed lgt be chosen so
p~'g(p) is constant on each dyadic inter2af < p <2*1  and eqifats/|Q| , where
Q2 is the surface of the unit -ball. In this case
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/ dz 2]~ g(|z]) = 9] dp p~'p2 an /|9 = ay.
2*k§|m‘§27k+1 1

2—k§p32—k+

Then

/d:c|a:|_dg(|a:|) = Z a < 00.
=

For any constarit < b < 2 we have

pta(p) = 2"ar/|)]
for 27% < p < 271 ‘while (bp)~'g(bp) = 2¥a;/|Q| or 27 a;_,/|Q2]. Then

Flg, |
,-19(bp) (bp)~'g(bp) {Z)zkii

glp) — p'9(p) or 1’
while
1 2k71ak—1
— < a < maxC/2,1
20 — {or 1 < max(C'/2,1)

implying that forl <b <2

56 < '9b0)/9(p) < maxC/2, 1),

and so

1
— < < :
50 < 9(00)/9(p) < max(C, 2)
Further, lettingg = 2 above, we hayen)2'g( p)2= * /| ,so

(20)'9(2p) _ 2" 'ajy

ptglp) 2
and so
1
1 (20)1 9(2p) < Q’
2C pty(p) 2
and
1 _ g(2p)
— < <L,
C = glp) ~
sog(p) € Lc-
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Since we are assuming ( ),

> o [ delal" f() =Y [ i 27Hal~ g(|2])|2 12|  (2)
=1 2—k§‘1.|52—k+1 =1 2—k§|x‘§2—k+1

<>/ dz [zlal~ g(Je)|] ol £ (2)
b1 2 klal <ok
< 00,

proving (9.5) is summable for an arbitrary summable sequéagck sati$f§ifg Thus
/ dlale f(z) = O(1),
2—k§‘1.|52—k+1

implying (¢), and showinge( ¥ o ).

We have thus showed equivalenceof (b), ), @), ( ), and ( ).fForx , Lemma 3.2
implies ) and {’ ) are equivalent. If( ) holds for some R , then by the same
arguments as earlier (showing equivalenceof ( ) and ( )) it holds féralR , proving the

equivalence ofd ) andi( )ifind{ >« as well. To show equivalencel'df ( )d&nd ( ),
note the implicationd” ¥ (d’) is clear. The reverse follows once we observe that if ( )
holds, then (recalf (z) may be assumed 0 outside the unit ball)

-1
lim / dz f(z) |z|® = lim / dz f(z) |z|°
k=00 || 2k k=00 k;k 2K <[] <2k 1

—1

< lim C - 20— <
T k—oo ka o0

sofdaf(z)|z|” < co. Therefore ifA(c) = [, _.dz f(z)[x|’, we havel(0) =0, and so
by Lemma 3.24(c) = O(c#~®) .
That @) is equivalent tod( ) is clear sinceef2 < |z| < ¢ , thenz|, and ||
are all of the same order.
To show ¢ ) is equivalent tal(” ) itis first cleal”( ) impli@§’( ). Now assume
(d™). Thenifd > a andy+ 3 —a < 0 , it follows that < 0 , so that

/ da f(2)|zl? (¢ + |2])" = / A @l el / da f(z) |2 (c + |z])"

|z|>c

< Cﬂ//x|<c dx f(:c)|sc|ﬁ +/ dz f(x) |x|ﬁ+7

|z|>c

= O(T7) + O(c7+)

as desired, where we have uséd ( ) afid ( ). Thusthe ( )-( ) are equivalent.

To prove that we may also include the bracketed statements in ( Ydnd (), it
suffices to prove the statement in bracketsdin () follows from the unbracketed statement
there, and similarly ford” ). First assume the initial partdof ( ) holds, i.e., that for some (or
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all) 8 <, [, dz f(2) |z|? = O(c?~®). Then by what has already been proved (i.e., the
equivalences of the unbracketed statements}, 3 o ﬁx‘@d:cf(:c) |z|? = O(cP~?), SO

[dz f(x)|z|® < co. Similarly, if the initial part of ¢” ) holds ang+ 3 —a >0, then
we have by the dominated convergence theorem

iz t@al 4 lal) =, [dof@)lal < o

where the right side is finite by the fact that the bracketed padt of ( ) holds as shown above.
Note the left side is always finite | > « , again by the bracketed partiof ( ). This
completes the proof of the equivalence of statements:( )-( ).

To complete the proof we now assume statements (a)-(d Yhave replacged .by
The equivalence of (a) and (b) then follows directly from Lemmac3.2( ). The equivalence
of parts (b), (c), (d"), and (d"") follows from the fact that)tiplied by appropriate powers
of ¢, the left sides of the expressions in all of these parts have the samé order i.e., are
equivalent as functions ef ). The equivalence of (d) and (d') is proved in the same way as
that of (a) and (b). The equivalence of (d’) and (d") again follows from Lemmaa 3.2( ). To
show that (d"™) and (d"") are equivalent, it is fistnediate that () = (d™). To prove
the reverse implication, assume that (d"") holds. Then the proof of (d") follows identically
to the proof of (d""} (d™) in the previous case above. This completes the proof.

N
Proof of Lemma 9.2:AssumeX is complete. K ||f.|| < oo, letv => f,. Then
n n=1

{gn} forms a Cauchy sequence, and so siice is complete therg? is a such that
N

Conversely assume that wheneg€el|f,,|| < oo it followyf,, converges. Then if
{f.} is a Cauchy sequence Iét be a subsequence satigffing f.| <2°F for all
n>n. Thenf,, = fu, + > (fau, — fa,_,)- By our assumption since the infinite sum

2<k/ <k

of the norms in the previous expression is finjtg, — f| T 0 for sgreeX . Thus
by the triangle inequalityf,, — f||,—=, 0 and is complete.

Proof of Lemma 9.3 Assume these hypotheses andgt f,,|| < co. Then for each
S Ifall- < oo, and sincd| - ||, is completey_f,  converged if|. By our assumption

N
I3 fo = £l ,— 0 for all~ for some fixedf .
n=1 0

Note if g, — g in ther norm, thefg, |, — llgll>. Indedd.| < |lg]| + |lg. — ¢ll, and
lgll < lgnll + lg — gnll- Thusiff =>"f, in||-||- (recall such sums are not unique), then
n

£l < SN full7, since
n

N
Zlfn

e i
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Now

proving completeness df - ||.

Proof of Corollary 3.5: Define the norms associated with the above statements as follows
(subscript refers to statement):

1fla=supes f_ delf@); 1o = supe ., delf(2)]
c€l0,1] €[0,1]

C

1£lle = SUp f, e ycd el f(@)l; [Ifla= supea= [, de|f(2)] o)
cel0,1] c€[0,1]

1l = sup e [ el f@)l |2’ [flle = supend [ de| ()] [¢]?

c€[0,1] ce[0,1]
Il = stp 1= ol e+l

c€l0,1
Il = SUD ey gy Al @Il (e fe)'

1Flle = Selipmfdwg(lxl) [ (@)].

These are norms since the triangle inequality can be verified for all of them, and they are all
positive definite.  Further, defining as each norm's domain the space of functions
f : B* — C on which it is finite, each of these norms has the same do#nain by Theorem
3.4. We claim each of these norms is completelon

The proof of completeness is similar for all the norms. To ghojy is complete for
example, notd f||, is equivalent to the norm

I/lly = sup2 *e / dz|f (@),
2~k <|z| <2k

keZ+
where Z* denotes the nonnegative integers. Defining the seminorm
N fllpe e = 2’ko‘f2,k,1<|x‘<2,kd.r | f(z)|, we see this seminorm is complete, being equivalent

to anL' seminorm. In addition, ff, is a sequence which converges in each seltiform
to h,, andsug|hg||s+ 1 < oo , then clearly there ishee A such that> h in the norm
k
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| - llo x> h being equal tdhy, in the interval **! < |z| <27*.  Thus by Lemfa the
norm|| - ||, is complete, and hence sd ig|;.

To show|| - || is complete on the domain , define for each pogjtive |with= 1
the norm| f||., = [dz g(|z|) |z|*|f(x)|. ThenA is complete in this norm, since it is a

weightedZ' norm. If we havé, — h, in each of the noimg. , , then sincegeach is
positive, it follows that the function’s, must all be the same/i,es h for somenfixed
Thus by Lemma 9.3 - || is complete i The proofs of completeness for the other

norms follow similarly.

By Lemma 9.1 in order to prove equivalence of the norms on their common ddmain it
now suffices to show that if, — 0 in one of these norms and converges in a second, then
f» — 0 in the second norm. Since convergence in all the norms iniglies  convergence on
compacts not containing 0, it is easy to see that the same limit must be obtained in all the
norms if it exists. Thus the norms are all equivalent, proving the equivalence of (a) - (e).

To prove equivalence of (e) and (e'), note that for fixed , defining the space

Ke={g9€ Lc: |9l < oo},

eachf, defines a linear functiong] Kpa , defined by
Fi(o) = [ dogllal) o o).

By the uniform boundedness principle, the farjily, } is uniformly boundéedon if and
only if it is uniformly bounded for eache K-.  However, uniform boundednegs gf
on K¢ is equivalent to (e), while uniform boundedness for gachCq is equivalent to
(e), proving equivalence of (e) and (e').
That the bracketed statement in (d) follows from the unbracketed statement follows
from the fact that we have already showed that (d) implies (d"), which completes the proof.
In (d"), ify+ 6 — «a > 0, then it follows from (d") that

/ dz fo(z) |z’ (c + |z])? < Kge™Pe. (9.6)
c/2<|z|<c
Summing the left side far=1/2" , with=0,1,2,... , we gg{dqu(x)|x|5(c + |z])7.

On the other hand, the right side of (9.6) adds up to a finite number, giving the bracketed
part of (d™). This completes the proof.

54



