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Abstract

Wavelets provide a new class of orthogonal expansions in L?(R¢) with good
time/frequency localization and regularity /approximation properties [Da2]. They
have been successfully applied to signal processing, numerical analysis, and
quantum mechanics [Ru].

We study pointwise convergence properties of wavelet expansions and show
that such expansions (and more generally, multiscale expansions) of LP func-
tions (1 < p < 00) converge pointwise almost everywhere, and more precisely
everywhere on the Lebesgue set of the function being expanded. We show
that such convergence is partially insensitive to the order of summation of the
expansion. It is shown that unlike Fourier series, a wavelet expansion has a
summation kernel which is absolutely bounded by dilations of a radial decreas-
ing L' convolution kernel H(|z — y|). This fact provides another proof of LP
convergence. These results hold in all dimensions, and apply to related multi-
scale expansions, including best approximations using spline functions.

1 Introduction and definitions

The purpose of this paper is to study convergence properties of multiresolution expan-
sions, and in particular wavelet expansions. For LP(R?) functions (1 < p < 00), we
show that such expansions converge pointwise almost everywhere, and more specif-
ically, on the entire Lebesgue set of a function f on R?. In addition, convergence
for wavelet expansions holds under various orders of summation, which might only
partly respect the ordering of wavelets by their dilation factors. Pointwise convergence
properties are also determined for expansions of L* functions. These results also ap-
ply to different forms of multiscale expansions, including expansions in Daubechies,
Haar, and other orthogonal wavelets, nonorthogonal wavelet expansions, and best
approximations using spline functions. The results given here are multidimensional.
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Our technique is to study bounds on summation kernels of the above expansions.
We study the pointwise (as well as the function space) relationship between the action
P; f of multiresolution projections P; on functions f, and the functions’ partial sums in
wavelets, yielding pointwise convergence (Theorem 1.3 (ii),(4ii)). We remark that the
present results are partially insensitive to order of summation. Specifically, they hold
for any order in which the sum over translations of a wavelet can remain incomplete
in a collection of scales whose range is bounded (see Theorem 1.3 (iv)).

The proofs herein center on bounds for the kernels Pj(x,y) of the partial sum
operators, and it is shown that these kernels are bounded by rescalings of L' radial
convolution kernels. We should add that such bounds for wavelet expansions are
nontrivial and arise from cancellations which occur in the sum representations of
the partial sum kernels. Naive bounding of the summation kernels by using absolute
values in their sum representations fails to yield the needed radial bounds for any class
of wavelets. This cancellation must be dealt with only in the examination of wavelet
expansions (in which there is no assumption on bounds for the scaling function).
This cancellation is implicitly taken into account in the bounding of kernels given in
the proofs of Lemma 2.9 and Theorem 1.3 (ii7). There, bounds on the positive scale
part of the kernel are exploited to derive bounds on the negative scale portion, which
would otherwise be unobtainable through naive absolute value-type bounds.

Wavelets with local support in time and frequency were defined by
A. Grossman and J. Morlet [GM] in 1984 in order to analyze seismic data. How-
ever, prototypes of wavelets are found in the work of A. Haar [Ha] and the modified
Franklin systems of J.-O. Stromberg [Stro]. In order to identify the underlying struc-
ture and to generate interesting examples of orthonormal bases for L?(R), S. Mallat
[Ma] and Y. Meyer [Mel] developed an optimal approach to constructing wavelet
bases through multiresolution analysis. P.G. Lemarié and Y. Meyer [LM] constructed
wavelets in S(R?), the space of rapidly decreasing infinitely differentiable functions.
Stromberg [Strd] developed spline wavelets while looking for unconditional bases for
Hardy spaces, and G. Battle [Ba] and P.G. Lemarié [Lel] developed these bases. These
spline wavelets have exponential decay, but only C" smoothness. I. Daubechies [Dal]
constructed compactly supported wavelets with C smoothness. According to the
construction, the support of these wavelets increased with the smoothness; in fact, to
have infinite smoothness, wavelets must have infinite support.

Meyer [Mel| was among the first to study convergence results for wavelet ex-
pansions. He showed that regular wavelet expansions converge in LP, 1 < p < oo,
and also in L for expansions of uniformly continuous functions; thus expansions of
continuous functions converge everywhere. The results in [Mel] were based on the
assumption of so-called regularity for the basic wavelets, which assumed certain min-
imal decay properties for wavelets and their derivatives. In addition, Walter [Wal],
[Wa2] established pointwise convergence results for regular wavelet expansions of con-
tinuous functions. In contrast, the present results assume only that the wavelets being
used be bounded by radial decreasing L' functions (modulo a logarithmic factor), or



that the corresponding scaling function be bounded by such a function (without such
a logarithmic factor). There are no regularity assumptions made in terms of differ-
entiability. Our classes of wavelets include the classes of so-called r-regular wavelets
defined by Meyer [Mel]. In this context we prove LP convergence, and convergence
on the Lebesgue set (and hence a.e. convergence) for all LP functions which have
wavelet expansions, and in particular for all L? functions.

The pointwise and LP results in this paper were obtained independently by the
first author [Kel] and the second two authors. Results on Gibbs phenomena obtained
by the first author [Ke2] and necessary and sufficient conditions for rates of sup-
norm convergence of wavelet expansions [KR] by the second two authors will appear
elsewhere.

Following Meyer [Mel], by a multiresolution analysis on R? (d > 1) we mean a
decomposition of the space L?(R?) into an increasing sequence of closed subspaces
Vi, 16

(1) VocVaacVocVicVa.. .,

with the property that the space Vji; is a “rescaling” of the space V. By this we
mean that
(2) f(2z) € V44 if and only if f(x) € V; for all j.

It is also assumed that
(3) Vi = {0}
JEZ
(4) UV =L*(r"),
JEZ
where the overline denotes closure, and that 1} is closed under integer translations,
ie.,

(5) flz)eVo = fla—k)eW
for all & € Z%. Finally, it is assumed that there exists a function ¢ € L?(R?) such that

(6) {dr(x) = ¢(x — k) }peza form an orthonormal basis for Vj.

Such a function ¢ is a scaling function. We remark that some of our results use
only conditions (1-5) (e.g., in Theorems 1.6 and 2.6), and we will state this when
it is the case. Let the space W; denote the orthogonal complement of V; in V4,
ie., W; = V41 ©V;. From existence of ¢ it follows (see, e.g., [D2]) that there is a
family {1)*(x)}rca of basic wavelets (whose cardinality depends on the dimension d)
such that ¢ (z) = 2992y (27z — k) (j € Z, k € 2%, X € A) form an orthonormal
basis for W; for fixed j, and form an orthonormal basis for L*(R%) as j, k vary. In
one dimension the cardinality of A is one, so that there is one basic wavelet ¥ (z).
Further, the class of wavelets {¢)*(x)}, forms a basis for the space Wy, and in general
{3 (x)}xx forms an orthonormal basis for W.
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Our results hold in arbitrary dimension. The most direct construction of multi-
dimensional wavelets is through tensor products of one dimensional multiresolution
analysis (see, e.g., [Da2],[Mel]). For example, in two dimensions a basis for W; is of

the form

h d A
Gk w;']]m T/ij}keZQ = {wjk}kew,)\e{h,u,d};

where

(7) Wz, y) = d(@)(y); v (x,y) = v(@)d(y); vz, y) = v()d(y)

and V3, (z,y) = 202z — ky,2'y — ky) (here (ky,ky) = k). This orthonormal ba-
sis generates a multiresolution analysis, and analogous bases can be constructed in
higher dimensions. Thus in general we will write, as a wavelet basis for L?(R%), the
collection {w;‘k}jez,kezd,)\em with A an indexing set containing 2¢ — 1 elements. The
following results will hold for any set {1/*} whose translations and dilations form an
orthonormal basis for L?(R?), regardless of whether they are constructed with tensor
products as above (see [D2], Ch. 10).

For the following, we will require the definition of a Lebesgue point of a function f
on R?. Essentially, it is a point & near which the values of f do not deviate too far on
the average from the value f(z), and thus can be considered a generalized continuity
point.

Definition 1.1 The point x is a Lebesgue point of the function f(x) on R? if f is
integrable in some neighborhood of x and

1

lim =5y [, 1)~ T+ )l dy =0,

where B, denotes the ball of radius € about the origin, and V denotes volume.

We remark (see, e.g., [SW]) that this set of points has full measure in R?, i.e.,
its complement has measure 0, so that convergence of a series on the Lebesgue set
implies almost everywhere convergence. Furthermore, all continuity points are also
Lebesgue points. Since the set of continuity points of a function can have measure 0
(as for example in the characteristic function of the rational numbers), the Lebesgue
set can clearly in some instances be much larger than the continuity set of a function.

The results we use depend on previous results in Fourier analysis, and we will
require a notion which will help us exploit these results:

Definition 1.2 A function f(z) on R? is radial if f depends on |x| only. A real
valued radial function is radial decreasing if f(x) < f(y) whenever |x| > |y|. A
function f(z) is in the class RB if it is absolutely bounded by an L' radial decreasing
function n(x), i.e., with n(x1) = n(xe) whenever |x1| = |xa|, and with n(z1) < n(xs)
whenever |x1| > |xa|, and n(z) € L*(R?). We define P; and Q;, respectively to be the



orthogonal projections onto the spaces V; and W;, with kernels Pj(x,y) and Q;(x,y).
We define the projection Q;‘k to be the orthogonal projection onto the span of J)‘k(x)

with kernel
A

We will say that given f € L2,
(i) the multiresolution expansion of f is defined by the sequence {P, f},.
(i) the wavelet expansion of f is

(8) Z a;k¢;k(x) ~

JiksA

where the a?k are the L? expansion coefficients of f.
(iii) the scaling expansion of f is

(9) Y obde(x) + Y @ JkT/) ~ f,

7>0;k,A

where the by, a?‘k are L? expansion coefficients of f.

Note that any function in RB must be bounded, since it must be bounded by a
radial decreasing 7 function which is defined at the origin. We remark that the L2
expansion coefficients in (i1) and (i) (defined by integration against f) are defined
and uniformly bounded for any f € L”, 1 <p < o0.

The three expansions above converge pointwise and in L? under various hypothe-
ses, as is seen in Theorem 1.3 below. A priori, they are not everywhere or even almost
everywhere equal to each other at corresponding intermediate stages of summation.

When a function f € L?(RY) is expanded in a wavelet or multiresolution ex-
pansion (using the wavelet basis above), it is known that the series converges in L.
Holschneider and Tchamitchian have proved [HT] that the wavelet integral transform
of an L?(R?) function converges pointwise at continuity points. Further results leading
toward questions of simultaneous LP convergence have been dealt with in [Mel] under
certain hypotheses on the basic wavelet 1)* or the scaling function ¢. Certainly it is
not possible for any expansion of a function to converge correctly at all points, since
functions can be redefined on sets of measure 0 without changing their expansions.
So the question arises, what can be said about the pointwise convergence of wavelet
expansions? Do they converge pointwise almost everywhere for L?(R?) functions? At
all Lebesgue points? The answer is yes to both of these questions for a general class
of multiscale expansions.

Theorem 1.3 (i) Assume only that the scaling function ¢ of a given multiresolution
analysis is in RB, i.e. that it is bounded by an L' radial decreasing function. Then for
an f € LP(R?) (1 < p < 00), its multiresolution expansion converges to f pointwise
almost everywhere.



(ii) If ¢, € RB for all A, then also the scaling (9) (if 1 < p < o0) and wavelet (8)
(if 1 < p < oo) expansions of any f € LP(RY) converge to f pointwise almost every-
where. If further ¢ and 1 are (partially) continuous, then both of these expansions
additionally converge to f on its Lebesque set.

(iii) If we assume only Y (x)In(2 + |z|) € RB for all \, then the wavelet (for 1 <
p < 00) and multiresolution (for 1 < p < oo) expansions of any f € LP(R?) converge
to f pointwise almost everywhere; if further the ¥ are (partially) continuous, then
the wavelet and multiresolution expansions converge to f on its Lebesque set.

(iv) The last two statements hold for orders of summation where, at any stage, the
range of the values of j for which the sum over k and X is partially complete always
remains bounded.

In the last condition, a summation over k£ and A\ with a fixed j is partially complete
if it contains some terms, but not all with the given value of j. By the range of values
of j for which the k£, A sum is partially complete we mean the difference of the largest
and smallest values of j for which the sum is partially complete. Statement (iv)
requires that this range always be smaller than some constant M.

We emphasize that statement (4ii) of Theorem 1.3 makes no assumptions on the
scaling function ¢. If such bounds could be assumed they would make the proof (in
section 2) less complicated. A radial bound on the scaling function ¢ is not necessarily
guaranteed by the fact that one exists for the basic wavelet 1. We mention however
that it has been proved that in d dimensions certain classes of wavelet bases come
from a multiresolution analysis, i.e., are associated to a scaling function ¢. This
has been recently proved by Auscher [Au2] under general conditions on the Fourier
transform of the wavelet i) which do not require compactness or r-regularity for .
Lemarié-Riensset [Le2] has also proved this under different assumptions.

We also remark that the pointwise convergence results in Theorem 1.3 also hold
for functions f € L(R?) for the case of multiresolution and scaling expansions. That
this fails to hold for wavelet expansions is easily seen by considering the expansion
of the function f(z) = 1. In this case the wavelet expansion is identically 0, since
[ ¥(z)dr = 1. Tt is interesting to point out, however, that for an L> function f(z)
whose average value is 0 (in the sense that average values on certain rescaled sets
tend to 0 as the sets increase in size), it can be shown that the convergence of the
wavelet expansion to f(x) again occurs almost everywhere and on the Lebesgue set
of f if ¢ is partially continuous, using small modifications of the techniques of the
proofs of (ii) and (7) of Theorem 1.3.

The following result is a consequence of the proof of Theorem 1.3, and has been
proved earlier under somewhat stronger hypotheses, yielding stronger conclusions in
[Mel].



Proposition 1.4 Under the hypotheses of cases (i) to (iii) of Theorem 1.8 LP con-
vergence of the expansions of LP functions also follows for 1 < p < oco. This remains
true for any order of summation as in (iv) above.

Thus, for one and multidimensional multiresolution expansions (including wavelet
series), essentially all hoped for convergence properties hold. Questions involving
rates of convergence are considered in [KR].

We remark that the proofs that we give of Theorem 1.3 and Proposition 1.4
effectively use maximal function techniques through their dependence on Theorem
2.2, which is a variation on a standard result in harmonic analysis.

The convergence issues arising in multiresolution expansions parallel similar ones
which have come up in Fourier series and more general eigenfunction expansions.
Pointwise convergence (almost everywhere) of Fourier series for L? functions was not
established until Carleson’s work was published in 1965 [C]. In one dimension, L”
convergence of Fourier series holds for 1 < p < oo, but fails in general for p = 1
and oco. Hunt [Hu] proved that for f € LP, p > 1, convergence almost everywhere
of Fourier series also holds. Multidimensional results have been harder to come by,
and it is known for example that multidimensional Fourier series of LP functions
for certain ranges of p fail to converge almost everywhere (see, e.g., [SW], Corol-
lary VIL.4.5, and [Fe]). Using equisummability results [KRY], this implies similar
facts for Sturm-Liouville series as perturbations of Fourier series. Fortunately various
summability techniques (e.g., Abel or Cesaro) do guarantee convergence of multi-
dimensional Fourier series to be almost everywhere and in L? [SW] [GK2]. More
general multidimensional eigenfunction expansions have the same properties because
of equisummation results (see, e.g., [Ko], [KRY]). It has been shown however [KST]
that even Riesz summation does not guarantee convergence of higher dimensional
harmonic expansions in all L spaces.

Regarding LP convergence of wavelet expansions, Strichartz [Stri] has also studied
LP properties of the projections P, on larger function spaces (which include measures).
In addition, uniform convergence of spline and therefore associated wavelet expansions
is known to occur for continuous functions [deB] [Mel]. Similar results are known for
wavelet expansions of functions in Sobolev spaces H?®, given sufficient regularity of
the basic wavelet 1) forming the basis, or equivalently of the projection kernel Qq(z, y)
onto the span of the translations ¢*(z — k) of the basic wavelets ([Mel],[Wa2]).

The basis for Theorem 1.3 is the following bound on the kernel of the projection P,
onto the scaling space V,,. Unlike the case of Fourier series, these wavelet summation
kernels P,(z,y) fall into the class RB of kernels which are absolutely bounded by
dilations of an L' radial decreasing convolution kernel H(|z —y]|). Previous results on
this [GK1], are utilized to show the above-mentioned convergence properties. Under
the assumption that the scaling function ¢ € RB, this proposition is easy to prove,
though it is more technical and difficult when assumptions only on ¢ are made. The



following proposition together with fairly well known techniques in Fourier analysis
gives the theorem above, and assists in various cases of other theorems. It is related
to other properties of projections onto the basic subspaces V; given, say in [Mel],
which has stronger hypotheses on 1)* and stronger conclusions.

Proposition 1.5 (i) Under the assumption that ¢ € RB or that Y (x)In(2 + |z]) €
RB for all \, the kernels P, (x,y) of the projections onto V,, satisfy the convolution
bound:

(10) | P, y)| < C2™H (2™ |z — y])

where H € RB, i.e. H is in L' and radially decreasing.
(ii) This convolution bound continues to hold if Py, is replaced by the partially complete
sum

(11) Pot Y Q.

m<j<m+M
(ka/\)EKj

where the set K is for each j an arbitrary collection of k and A, and M is a fived
constant.

The above convergence statement for multiresolution expansions applies directly
to spline expansions as well. Given a grid K in R and a family of splines {¢;, =
2042¢(21x — k) }jezrex of fixed polynomial order which spans L2(R?), let P; denote
the orthogonal projection onto the closed span sp{¢;i}rer. Given such a family of
splines, what is the behavior of L? projections of functions onto it? Do they converge
pointwise as the mesh becomes small? In ILP? Of interest in approximation theory has
been the conjecture [deB| that for arbitrary sequences of meshes in one dimension,
the L? projections of a continuous function f onto spline spaces (of given order) on
these meshes converge in L*> norm to f.

We give almost everywhere pointwise convergence results for best L? approxima-
tions of functions in L?(R?) on a uniform grid.

Theorem 1.6 Let f € L*(R?). The best L* spline approzimations P;f of f in the
space of splines of order ¢ on a uniform grid converge to f almost everywhere and in
L?, for1 <p < 0.

Remark: Though almost everywhere convergence is shown to occur for multiresolu-
tion (e.g., wavelet or spline) expansions, such convergence can be arbitrarily slow even
for expansions of continuous functions. This is seen from the example of functions in
one dimension which have behavior of the form z¢ near the origin, for small ¢, whose
convergence can be made arbitrarily slow at the origin.

We remark that since our results are for multiscale expansions in general, the re-
sults as applied to wavelet expansions are not sensitive to such issues as orthogonality



of wavelets. Essentially any basis 1[)]513 will do as long as this family conforms to a
multiscale analysis, i.e., as long as there exists a family of closed subspaces V; C V1,
with ¢(z) € V; = ¢(2z) € Vj4, such that U;Vj is dense in L?(R?), and the functions
{1}k form a basis for W; = Vj,, © V;. This is because the partial sums of expan-
sions in the wavelets 1/);-‘/,c will have kernels P;(z,y) given by projections onto the spaces
Vj, regardless of the particular wavelet basis. The required conditions on the kernels
Pj(z,y) (that they be bounded as in Proposition 1.5) will involve L' convolution
bounds. These can be tested through the identity Pj(x,y) = [ Pj(z,y")o(y — v')dy’,
where ¢ denotes the delta distribution. That is, if the best approximation of a highly
peaked function (such as d(y — ¢')) in wavelets of order j' > j decays essentially in
an L' fashion, then we can expect the corresponding wavelet expansions to converge
to functions they are approximating almost everywhere, in L?(R?) (1 < p < o0), and
everywhere for functions in C'(R?). This type of condition can be directly tested (in
various ways) for wavelet, spline, and any other multiscale expansions. In particular,
the bounds we find below for kernels of scaling space projections P; of orthonormal
wavelet expansions carry over quite easily to more general non-orthogonal multiscale
expansions (see [Da2]). For these reasons of generality, we begin this paper with an
analysis of convergence properties of general multiscale expansions.

In addition, the scaling of the spaces V; by factors of 2 is also not crucial; the
arguments in this paper hold just as well for scalings by other constant factors, as
long as a multiresolution analysis of the function space results (see [Aul]).

Our approach here is to attempt to be as general as possible, since multiscale
expansions do not necessarily have to take the form of wavelet expansions. For years
much of the work in approximation theory has been based on the notion that mul-
tiscale expansions are useful and interesting. The connection of spline expansions
to wavelet expansions from the approximation theoretic viewpoint can be found in
[BM], [BDR], [Ch] and [CW].

The extension of this result to pointwise convergence of best L? approximations
by splines is essentially a consequence of the fact that such approximations can be
framed in the context of multiresolution expansions, for which in fact there exist
orthonormal wavelets with the same convergence properties.

Our approach in this paper is to look at the kernel of the partial sums of wavelet
expansions. Namely, if P, denotes the orthogonal projection onto the scale space
Vi (in this case in one dimension), then we will show that under the present general
hypotheses, we can write its kernel P,,(x,y) in the two forms

(12) Po(z,y) = 3 5@ vhy) =Y bmk()bmir(y) ,
j<mik,A k

with pointwise absolute convergence of both the above sums for fixed j. This kernel

of course converges in some sense to the delta function 6(x — y) as m — oco. We will

show that this occurs in such a way that



(13) [Pl y)| < 2™ H (2|2 — y)),

i.e., that P, (x,y) is bounded by dilations of a convolution kernel given by a radial
decreasing L' function H(|z]).

This fact can be easily illustrated in the simple case of one-dimensional Haar
wavelets. It is most easily seen from the fact that in this case the scaling function
¢ = Xo,1) is the characteristic function of the unit interval, and the basic Haar wavelet
is given by:

1, ifo<z<1/2
‘Z’(x)_{ -1, if1/2< <1

with ¢ = 0 elsewhere. In this case the projection onto the basic subspace V{ can be
written in the two forms

(14) PO(xa y) = Z ¢($ - k Z 1/)]1@ 'QZ)ﬂc

Jj<0;k

modulo questions of pointwise convergence of the above expansions, which in this
simple case are not difficult to verify. Using the first representation in (14) it is easy
to show that P, is radially bounded as indicated above. First, note that the sum
> o(xz — k)¢(y — k) is supported in a diagonal band of width v/2 in the z — y plane:
k

INSERT FIGURE
Figure 1

Clearly the function P, (x,y) (being also uniformly bounded) satisfies the desired
radial bound (10) for m = 0, with, say, H(x) = x[1,1j(«). The fact that (10) holds for
all m then follows immediately from the scaling properties of the spaces V,,. Namely,
since the V,,, satisty
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fl@) eV & f(2772) €W,
it follows from this scaling property that the projection kernels satisfy the L? scaling

property
P, (x,y) =2"Py(2™z,2™y),

from which (13) for all m follows immediately. For the proof of convergence it is also
necessary to prove that the integral /Pm(x,y)dy converges to 1 a.e.[z], but this is

also easy to prove using the first representation in (14).

Since one is sometimes given only properties of the basic wavelet 1, it is also
of interest to derive the bound from the second representation (14) of P, (z,y). In
this case, the bound (say when m = 0) of course still holds, but by virtue of a
more interesting phenomenon. Namely, if one naively tries to bound the second
representation in (14) by bounding the absolute values of the summands, the best
bound obtainable is of the form

Puwy) < 3 ARG < —2

j<m;k |'/Ll - y|

(the problems with getting a better bound occur in this case at oo rather than the
origin). The improved L' bound only follows from the fact that there is a lot of
cancellation going on in this sum, as there is (in a more complicated way) for general
sums of the form (12). In this case, the cancellation can be followed more or less
explicitly because of the piecewise constant summands, with the result that Py(z,y)
is again zero almost everywhere (or everywhere depending on how the Haar wavelet
is defined at its points of discontinuity) outside of the band in Figure 1. Thus the
kernel here not only is bounded by an L' decreasing convolution kernel at oo, but is
again identically 0 outside of a finite band.

This cancellative phenomenon occurs for all wavelets under minimal hypotheses
detailed later. It is interesting that for compactly supported wavelets, the cancellation
results in zero values of the kernel outside diagonal bands, (see the above example)
at finite stages in the summation (12). Thus, for example, in the case of Daubechies
wavelets, this cancellation also occurs, leading to support for the kernel P, (x,y) as
in Figure 1. In this case the cancellation also occurs, leading to support for the kernel
P,.(x,y) as in Figure 1. In this case the cancellation is much harder to see explicitly
however.

Once the above radial bounds are established, the approach in this paper is to use
a variation on a standard result in harmonic analysis (see Theorem 2.2) to obtain a.e.
and LP convergence. It is possible also to obtain a.e. convergence, for example, in
the case of Haar expansions, by using the above L' bound on the summation kernel
P,, to bound it with the Hardy-Littlewood maximal operator.

We also remark that these results imply some interesting observations regarding
expansions in discontinuous wavelets such as Haar wavelets. In such expansions,
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unlike the Fourier case, everywhere pointwise convergence for representations say of
continuous functions may depend critically on the definition of the basic wavelet at
the points of discontinuity. In one dimension, the Haar wavelet can be defined to be
partially continuous, namely either left- or right-continuous. By Theorem 1.3 either
of these definitions will result in everywhere convergent expansions of continuous
functions. Correspondingly (see Lemma 2.11) the kernels P,,(x,y) in this situation
will converge to 0 everywhere off the diagonal.

This type of reasoning also extends to higher dimensional expansions (say by
tensored Haar wavelets), but with many more interesting possibilities. For example,
the condition that the higher dimensional Haar wavelets be partially continuous in
several dimensions results in several ways of defining them at their discontinuity
points, depending on the choice of the set A of directions along which the basic
wavelets are required to be continuous. It is easy to see that defining the value of
a Haar wavelet at its points of discontinuity is crucial in determining whether it
will accurately represent continuous functions everywhere. According to Theorem
1.3 there are at least two ways of defining a one-dimensional Haar wavelet in order
that Haar expansions of continuous functions converge everywhere. The analogous
process in two dimensions actually leads to a larger number of possible definitions for
Haar wavelets, which nevertheless lead to expansions which converge everywhere for
continuous functions.

We finally remark here that basic wavelets 1) which are not partially continuous
(see below) can often be redefined on a set of measure 0 so as to have this property.
In any case, essentially all wavelets which have been constructed so far (including
the discontinuous Haar wavelets) have the property of being redefinable to satisfy the
condition of partial continuity, so that, for example, expansions by them of continuous
functions can be made to converge everywhere, and the corresponding summation
kernels P, (z,y) converge pointwise everywhere to 0 off the diagonal D = {(z,y): = =
y}-

We add that in any case the kernel P,,(z,y) diverges on the diagonal D as n — oo,
as is standard for summation kernels of orthonormal expansions.

2 Proofs of Theorems in Section 1

In order to maintain generality, we will state the aspects of our results that apply
to all multiscale expansions, sometimes including situations where there is no scaling
function ¢ whose translates form an orthonormal basis for 5. We will specialize to
the case of standard wavelet multiresolution analyses (which include the existence of
a scaling function) at the end. Let P; denote the orthogonal projection onto V;, and
(); = Pj11 — P; the projection onto Wj.

Conventions: The word decreasing is synonymous with non-increasing. For nota-
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tional convenience, we assume that any index labeled k is in Z%. We will follow the
notation of the multiresolution analysis in the introduction, and use the abbreviation
VY, = 2042927z — k); ¢p(x) = ¢(x — k). Whenever they exist, we will assume that
the functions ¢ and 1 are in the class RB defined in the introduction.

We remark that at any finite stage (say at level j in the scaling) of the summation
of a function in wavelets, the number of different values of j in the sum is already
infinite. These infinite sums (for fixed j) are shown below to converge absolutely, and
hence are fully order independent.

Given a function f € L?(R%), let

(15) f~ Y aigi(a)

Jik,A

be its multiresolution expansion.

Definition 2.1 We denote by

(16) m = Z a]kﬂj

j<m;k,A

the partial sum of the expansion of the function f.

Note that in definition 2.1, the order independent convergence of the sum over k
for fixed j follows from the assumption ¢ € RB.
Our strategy will be to study the representation of f,,(x) given by

(1) Fnl@) = [, Pule,y) f)dy,
where

The second sum converges absolutely under our assumptions, and the fact that the
first sum also does will be proved later (see Lemma 2.9). The integral (17) is also
absolutely convergent, which will follow from the fact that P, (x,y) is bounded by
a convolution kernel H as in Proposition 1.5 of the introduction, which will also be
proved later.

Note that Py, (z,y) is just the kernel of P,,, the projection onto V,,,. We will focus
on the kernels P, (x,y) and Q,,(z,y) of the projections P, and @Q,,, respectively, i.e.,
the reproducing kernels of V,,, and W,,.

Our strategy is to use the following theorem [GK] regarding properties of kernels
bounded as in Proposition 1.5. It is a variant of theorems on scaled convolution
kernels from Fourier analysis [SW].

13



Theorem 2.2 (GK) Assume there is a kernel K,(x,y) with
/Kn(x,y)dy = C, with C a constant, and such that |K,(z,y)| < cpH (calz —yl),
where H(|x|) is an L'-radially bounded decreasing function and d is dimension. Then
for any f € LP(RY) (1 < p < o0), we have /Kn(x,y)f(y)dy — Cf(z) at any z

n—oo

which is a Lebesgque point of f, and hence almost everywhere. Further, the convergence
to f above also occurs in LP (1 < p < 00).

Our main result here (Theorem 1.3 in the introduction) is that wavelet expansions
converge pointwise almost everywhere for all f € LP(R4). In addition, if the projection
kernel P, of the basic subspace Vj (or, say, the basic wavelets 1)* or scaling function ¢)
is (are) partially continuous (see Def. 2.3), we will show that corresponding wavelet
expansions in addition converge at Lebesgue points of the expanded function. On the
other hand, continuity of the reproducing kernel (or ¢* or ¢) is not the most general
condition to guarantee convergence at Lebesgue points. We will need the following
definition:

Definition 2.3 The function v is partially continuous if there exists a set A of vec-
tors a € R with positive measure such that lir%v,/)(x +ea) = Y(x) fora € A. A s
e—

called the set of continuity directions of . If ¥(x,y) is a function of two variables,
then 1 s partially continuous in x if for each fixed vy it is partially continuous as a
function of x, with set of continuity directions A, such that A = N,A, has positive
measure.

Remark: In one dimension, any function v of bounded variation can be redefined
on a set of measure 0 to be partially continuous (e.g., right-continuous). This follows
from the fact that ¢ can be written as a sum of monotone functions, for which right
limits exist, and which can be redefined on sets of measure 0 to be right continuous.

Lemma 2.4 Let {¢,}, be a sequence of partially continuous functions, and A, be
the set of continuity directions of ¥,. If A = N,A, has positive measure, then a

uniformly convergent sum 1 = Z@/}n s also partially continuous.
0

PrRoOOF. This follows from the fact that for y € A the limit lir%w(a: + ey) and the
e—

uniformly convergent sum commute, which is proved in the same way as the fact that
a uniformly convergent sum of continuous functions is continuous. O

14



Lemma 2.5 Suppose that f(x,y), defined on R, depends on the two wvariables
r €RY, y € RY. Then if f(x,y) is partially continuous in x and if for every x there
s a 0 such that

19 ,y)| dy < o0,
(19) o max |f ()l dy < oo

then [po f(x,y)dy is also partially continuous.

PROOF.
Note that if a € A (see Definition 2.3) and, (without loss) |a| < 1, then

(20)

m/f(x+ea,y) — f(z,y) dy‘ < lg%/lf(x+6a,y) — flz,y)ldy - 0,

li
e—0
where we have used the Dominated Convergence Theorem, with bounding function

2-m<a§(|f(x+ea,y)|,which is in L', O

We emphasize that in the following theorem, in the interest of generality, we have
assumed only that we have a multiscale analysis satisfying conditions (1-5), i.e, the
existence of a scaling function ¢ is not to be assumed. The proof can be simplified if
we assume the existence of a scaling function.

Theorem 2.6 Suppose only that the kernel Py(x,y) of the projection operator Py
satisfies a convolution bound of the form

(21) |Po(z,y)| < H(lz —yl),

where H(|x|) is an L' radial decreasing function (without any assumption on existence
of a scaling function). Then

(i) P — I strongly in LP, for 1 < p < oco. Thus for f € L?, the approzimations
P, f converge to f in LP.
(ii) For f € LP(R?) (1 < p < 00),

(22) Pnf(x) — f(x) pointwise almost everywhere.

n—00

(11i) Pp(x,y) can be redefined on a set of Lebesque measure 0 so that (22) holds for
every Lebesgue point x of f (for 1 <p < c0).

(iv) If furthermore Py, (x,y) is continuous (or more generally partially continuous) in
x, then the convergence in (ii) holds for all points x which are Lebesque points of f.

PRrROOF. We will show that statements (i) and (ii) follow directly from Theorem 2.2,
if we can check the hypothesis that [ P, (z,y) —_ 1for almost every z. Note that by

the scaling properties of the spaces V;,, we have V,,,,, = SV,,, where for f € LP(R?),
(23) Sf(x) = 27 f(2x)

15



where the normalization 242 makes S a unitary operator. Thus it follows that P, =
SP,,_1S~!, so that the kernel

(24) P (z,y) = 2¢Py_1 (22, 2y) = 2™ Py(2™x, 2™y).

Therefore by Theorem 2.2, (i) and (7) will follow if we can show

(25) /Rd Py(z,y)dy =1

for almost every z, which is proved below. For by (21) and (24) it will follow then
that |P,,(x,y)| < 2™ H(2™|z — y|), and that /de(x, y) dy = 1 for almost every z.
R

Before continuing we note that the kernel P, is translation invariant, in that

(26) Po(z+k,y+k) = Po(x,y)

for z,y € R?, k € 7% This follows easily from the fact that if 7}, denotes translation
by k € 2% i.e., Ty f(z) = f(z — k), then

= Tifg(x) € Vo : |If(z + k) — g(2)||, = min}
= Tfgle+k)eVo:||f(z+Fk) —g(z+ k), = min}

(27) = Ti{g(z+k) €Vo:|f(z) —g(x)||, = min}
= {9(z) € Vo : [|f(z) — g(2)[|, = min}
= Pyf(x).

Thus T, PyT, ' = Py or equivalently, (26) holds.
To show (25), assume it is false. Then there exists a set Ey C R? of positive
measure such that for x € Ej,

(28) ‘/Po(x,y)dy—l‘ > €

for some € > 0. Note that the set Ej is invariant under integer translations, since P,
is integer translation invariant. Further, defining F,, by

(29) ‘/Pm(x,y)dy—l‘ > €

for x € FE,,, we see by the scale invariance of the kernels P,, that modulo sets of

measure 0,
(30) E,={2""z:x € Ey},

Since the sets E,, are invariant under translations by 2=™k for k € Z% and each E,,
is a rescaling by 27 of Fj, and Fjy is an integer translation invariant set of positive
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(and hence infinite) measure, it follows without much difficulty that for any ball B,
of radius r about the origin,

(31) p(Em N By) -

n—

> C

for some constant C' > 0, where y is Lebesque measure.
Consider the characteristic function x,(z) of B,. We have

() [ Paen)dy— [Py dy=[  Puleyidy 0

ly|>r

for x € B,, by (21). On the other hand,

(33) / Pz, y)x:(y) dy = xr(2)

n—oo

in L?, and hence in measure. Therefore, for any € > 0, the set of x in B, for which

(34) ‘/Pm(x,y)xr(y)dy - 1‘ > €

goes to 0 in measure as m — oo. Therefore, the set F,, of x in B, for which

(35) ‘/Pm(x,y)dy—l‘ > €

also goes to 0 in measure as m — oo by (32). This contradicts (31), showing that
indeed, (25) holds. This, together with Theorem 2.2, implies (i) and (ii).

Statement (iii) will hold by Theorem 2.2 if (25) holds for all . This holds a.e.,
and clearly by a redefinition of P,,(x,y) on a set of measure 0, it will hold everywhere.
Furthermore, this redefinition can be accomplished so that the radial bound (21) still
holds. Thus, (iii) follows.

If P,,(z,y) is partially continuous in z, its integral in ¥ is also partially continuous.
Indeed, to apply Lemma 2.5 we note that

Pu(zy)|dy < H(lz—y|)d
o max [P (2, y)] dy [ max H(lz—yl)dy
36 = / max H(|z|)d

(36) o o max_ H([2) dy

= max H(|z|)dy < oo.
L max H(|z]) dy
The last inequality follows without difficulty from the fact that H € RB. Since
the integral in (25) is partially continuous and 1 a.e., it must follow that it is 1
everywhere, as desired, proving (iv) for P, (z,y) partially continuous, by Theorem
2.2. O

We will now go on to prove that under the assumptions ¢(x) € RB or ¢(z) In(2 +
|z|) € RB, the hypotheses of Theorem 2.6 are satisfied.
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Lemma 2.7 On R?, let f(z)In(2 + |z|) be absolutely bounded by an integrable radial
decreasing function n(|x|). Then if F is a closed set not containing 0,

(37) i/F?d F(2)] de < oo

PROOF. We can assume without loss that F' = R? ~ B,(0), where p > 0, and B,(0)
is the open ball of radius p centered at 0. We then have (letting 2 denote angular
variables and w, be the surface volume of the unit sphere in d dimensions)

i/ﬁﬂ?a‘d‘f@jx)‘dx < i/dQ /00 dr 127 (297) [ In(2 + 2i7)
(38) = deQJd/ dr r¢ 1 )/ln(2+23 )

= wdz ” dr i n(r)/In(2 + r)

27 p

= wd/o dr Z: X[mm](r)rd_ln(r)/ In(2 +r)

< c/ dr In(2 + r)rd 1y (r)/ In(2 + 1)
0
< o0;
note that last integral in the last sum converges by the hypothesis that n(|z|) € L'.
The next to last inequality follows from the fact that 332, Xp2ipe0)(r) equals the

cardinality of the collection of nonnegative integers j such that 27p is less than or
equal to 7, which is bounded by C'In(2 + r). O

For any two sets A and B, we define the distance d(A, B) between them as
d(A, B) = inf |z — y|. We define the diagonal of R x R as D = {(z,7): z € R¢}.

yeEB

Lemma 2.8 (i) If ¢ € RB, then the kernel P(z,y) = Y ¢(z — k)p(y — k) satisfies

(39) [Pz, y)] < Ho(lz —yl),

where Hy is a bounded radial decreasing L' function. Further, the convergence of this
sum is uniform on R??. This sum forms the L? kernel of the projection Py onto V.

(ii) If Y*(z) € RB, then Q(z,y) = Y. ¢ a — k) y — k) converges uniformly

kEZHN
and absolutely on R*?, and is bounded. Further, if Y*(x)In(2 + |z|) € RB, then
(40) Rz, y)| < Hy(lz —y|)/In(2 + |z — y])

where Hy(|z|) is a bounded radial L' decreasing function. This sum Q(x,y) is the
kernel of the orthogonal projection QQy onto Wj.
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PROOF. (i) To prove uniform convergence, let us write |¢(x)| < n(|x|), where n(|z|)
is a radial decreasing function with n(|]z|) € L*(R?). Then, defining

(41) M = sup |¢(z)] ,

zcRd

we can write

(42) Z‘qﬁx— (y — k\ < MY |pz—k

kezd kecZa

< CM/n(|x|)dx < 00.

The last inequality following from the fact that the sum can easily be estimated
by the integral since 7 is bounded, radial, and decreasing. Thus the sum is clearly
uniform in x and y.

To show the bound (39), note first that since P(z,y) is invariant under the trans-
lation (z,y) — (z + £,y + ¢) for £ € Z¢, we can assume that

(43) reby={r:0<2;<1, 1<i<d},

with Ej the positive lattice cube with the origin at one vertex. We then have for
x € Ey and y/4 > diam E, = diameter of Fy = Vd:

Py)l < X |ol—k)oly — k)|

< k:gyn(xk)n(yk)+k§gn(fﬂk)n(yk)

(4) < T otk n(151) + PR 1 ([3] - diamEy) uly - #)
< () >|k§|:§|n|x_k| +|k2|:|n<‘%‘—diamEo>U(|y—’f|)
() coea (2 ) £

k>[5

IN
3
i

A
i
=

I
=
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where in the third inequality we have used z € Ej,. In the last two inequalities we
have again used that x € Ej, and hence that |z| < v/d, together with |y| > 4V/d,
which was assumed above.

To show that this infinite sum indeed represents the kernel of the projection Py, we
note simply that the operators defined by finite partial sums of the series for P(z,y)
converge strongly to Py, and using standard arguments it follows that the pointwise
uniform limit P(z,y) of these partial sums is the kernel of the operator P,. This
completes the proof of (i).

(77) The proof of uniform convergence is identical to that in part (i). The proof
of the bound (40) follows exactly as the proof of (39), except that n(|z|) is replaced
by n(|z])/In(2 + |z|). O

In the following two lemmas, we separate our summation kernel into two parts,
one corresponding to negative and one to positive scales. We first bound the positive
scaled part, and from this we bound the negative scaled part.

Lemma 2.9 If *(z) - In(2 + |z]) € RB for each X, then in any set F C R* x RY

with F 0 D =0, the positive scale kernel My, (z,y) = > ¢ (2))(y) satisfies
0<j<mik,\
My (x,y) - r M (z,y), where M(z,y) is bounded by

n—

(45) |M(z,y)| < Ha(lz = yl),

with Hy(|z|) a radial decreasing L' function (possibly infinite at 0). Further, the
convergence of M,, to M is uniform and absolute in F' if F' has a positive distance
from the diagonal D = {(z,y) : © = y}. Furthermore, the absolute sum satisfies

(46) > |[eh@) kW) < Hs(lz - y)

0<j<msk,\

for some other function Hs with the same properties as Hs.

PROOF. We have ' . .
(47) Mp(z,y) = > 29Qo(2x,27y).

0<j<m
Thus, by Lemma 2.8,

(48)  |Mp(zy)l < >0 2Hi(2e —y))/In(2+ (2 o - y)) = Ha(lz — y]) .

0<j<00

We see by Lemma 2.7 that the restriction of Hy(|z|) to F is in L', if F' has a
positive distance from the origin. The fact that this function is radial and decreasing
is clear from the same property for the scaled function H,(|x|)/In(2 + |z|) in the
above sum. Uniformity of convergence of M, in F will follow if we can show that
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convergence of the sum in (48) is uniform. However, this follows from the fact that
the functions 2/¢H (27|x|) are decreasing in z, and that therefore if convergence occurs
at any point z = x — y, it occurs uniformly at all points z; with |z;| > |z|. Clearly,
however the sum converges for arbitrarily positive |z| (by Lemma 2.7 and since the
terms are monotonic in z). Therefore it converges uniformly for |x — y| = |z] > € for
any positive €, completing the proof of the first statement. The proof of the second
statement follows from the fact that all of the above inequalities hold when absolute

values are inserted around the terms t;y ()15, (y) in the sums. O

Let us define Q;(x,y) analogously to P;(z,y) by
Qj (1‘7 y) = 2de0 (2]'1., 2]y)

Thus @); is the projection onto the wavelet subspace W;. Below, we show that the
kernel of P, has the expected form in terms of the wavelets 1%, (note that this kernel
P(z,y) has already been expressed in terms of the scaling function ¢ in Lemma 2.8.

Lemma 2.10 Under only the assumption Y Mx) € RB the negative scale part of the
kernel N(z,y) = ¥ <o U3 (2) U5, (y) converges uniformly and absolutely on R* x RY
and is a bounded kernel. N(x,y) is the kernel of Py, the projection onto Vj.

PROOF. By an argument exactly as in (44), we have

kX; [ ()0 ()] < Hi(lz = y])

for some (bounded) radial decreasing L' function H;(| - |). Therefore,

(49) > @) ()] < 32 Hy(2|e —yl) < C D2,
§<0sk,A <0 <0

where C' = sup, H(|z|), which implies that the sum defining N(z, y) converges abso-
lutely and uniformly in 2 and y, by the Weierstrass M-test.

To show that N(x,y) is the kernel of F,, note only that the sum
Y icomr Ui (@) (y) = X<0Qj(x,y) converges uniformly to its limit N(z,y), and
that the operators represented by the partial sums converge in the strong operator
topology of L?(R%) to P,, so that by standard arguments it follows that N(xz,y) is
equal (almost everywhere) to the kernel Py(x,y) of Py, as desired. O

Lemma 2.11 Under only the assumption ¢*(x)In(2 + |z|) € RB for all A, the sum
(50) Puo(z,y)= > Qi(zy)

—00<j <00

converges uniformly and absolutely on any set F with a positive distance from the
diagonal D, and is equal to 0 almost everywhere in F. If the kernel QQy is continuous
(or more generally partially continuous) in x, then Py (x,y) = 0 everywhere in F.
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PROOF.
We write
(51) POO(ZU,Z/):ZQj(l',y)+ZQj(£U,y)-
<0 >0
Uniform (and in fact absolute and order independent) convergence of both sums away
from the diagonal follows from Lemmas 2.9 and 2.10. Define

(52) My (z,y) = O<Z Qj(z,y)
and
(53) N_p(z,y) = . ; OQj(x,y).

Suppose now that it is false that the sum off the diagonal is 0 a.e. Then without
loss we may assume there is a set A of positive measure in ~ D on which Py (z,y) >
€ > 0. Let By, B, C R? be closed balls with By N By = (), and A((B; x By) N A)) > 0,
where ) is Lebesgue measure in R? x R?. Let fi(z) and fo(x) be bounded nonnegative
functions supported in B; and By, respectively. Then letting P, (x,y) = M,,(z,y) +
N(z,y), and denoting by P,, the operator with kernel P, (z,y), we have

Punfy —  fo,

n—oo

with the convergence in L?, so that

| 5@ Ps(e ) hy)dyde = lim [ fi(@)Pule,y) foly)dy da

m—o0

= lim /f1 P f2)(w)dx

m—00

= /flegxdx:().

The first equality follows from the uniform convergence of the integrand on its right
side (on its support, i.e., on By x By). This proves that P (x,y) = 0 a.e. on B; X By,
contradicting the assumption that Py (x,y) is not 0 a.e. on A. Thus Py(z,y) =0
a.e. off D.

If Qo(x,y) is partially continuous in z with a set A of continuity directions (for
all y) which has positive measure, then the sum defining Py (z,y) is a uniformly
convergent sum of partially continuous functions (in z) with a common set A of
continuity directions, and hence is itself partially continuous off of D, by Lemma 2.4.
Since the sum is 0 a.e., it follows that the sum in fact vanishes everywhere off D. O

We are now ready to prove Theorem 1.3 of the introduction.

PROOF OF THEOREM 1.3 AND PROPOSITION 1.4: We remark that we will assume
in the proofs of statements (77) and (4ii) that all summations are carried out in such
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a way that for a given scale j, all terms at scale j are added before any terms at the
next scale j + 1 are added. That is, strictly speaking these proofs hold for orders of
summation in which all terms at each scale 7 are summed simultaneously, and the
values of j increase by 1 at each successive stage of the summation. This assumption is
then relaxed into the form in statement (iv). We now give the proofs of the statements
of the Theorem.

Proof of (i):
Here we assume only that the scaling function ¢(z) € RB. Note that the function

P(z,y) =Y _¢(x—k)p(y—k) is the integral kernel of the projection P, onto V; (Lemma
k
2.8). From (39), (25), and Theorem 2.6, we conclude that for f € L? (1 < p < o0),

Pnf —_ [ almost everywhere. Note in particular that for f € L, the kernel
P,.(x,y), being radially bounded by an L' convolution kernel, can be applied to f
via

Puf = [ Pulw,y)f(y)dy.

By Theorem 2.6 and the properties of P,,, it follows that P,, is a bounded operator
and that in addition P, f — fin L?, proving () of Proposition 1.4

Proof of (ii) for scaling expansions:
We first consider the claim about the scaling expansion

(54) fuo v D beple — k) + Y apd(e).

0<j<mik,\

Note first that if ¢,¢* € RB, then the coefficients b, = /¢(x — k) f(x)dx and

a%y, = J ¢y (z)f(x)dz are uniformly bounded by the Hélder inequality and the fact
that ¢ € L'NL> and f € LP. We claim that (54) converges absolutely and uniformly
for any f € LP. Indeed the first sum is absolutely bounded by a constant times
[ ¢(y)dy (since the coefficients by are uniformly bounded), and the second sum, which
is summed over a finite set of 7, is absolutely convergent by the same type of argument
which bounds the first sum, and the fact that the a?k are uniformly bounded.

Note that since P, has a kernel P,,(x,y) which is bounded by an L' convolution
kernel H(|z — y|) in RB (by part (i) of this theorem), P, is a bounded operator in
all L? spaces, 1 < p < co. It is also easy to show in this case that the representation

(55) Pu(z.y) =Y oz —k)dly—k) + Y. ¢h@)eh(y)

0<j<m;k, A

also converges absolutely (see the argument of Lemma 2.8).
Further, we claim that for 1 < p < oo, Py, (z,y) defines a linear projection P,
(see proof of last statement in Lemma 2.8 (7)). For 1 < p < oo, this can be seen by
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the fact that this is the case in L? and that L? N L? is dense in LP. For p = oo, this
follows from the fact that it is true in L', together with a duality argument.

It is also not difficult to show by using the form (55) of P, (x,y), together with
the uniform absolute convergence of (55), and the dominated convergence theorem
that f,, = P,f almost everywhere. Thus by (i) of Theorem 1.3, the partial sums
fm = Pnf converge to f a.e. (I < p < oo) and in LP(1 < p < o00), proving the
first assertion of (7i) for the scaling expansion, and the corresponding assertion for L?
convergence in Proposition 1.4.

If ¢* and ¢ are partially continuous, then by Theorem 2.6 (iv) and the uniform
convergence of the sum defining P,,(x,y), we conclude that P,,(z,y) is partially con-

tinuous in z, so that /Pm(x, y) f(y)dy converges to f on its Lebesgue set.

In addition, /Pm(x, y) f(y)dy is a partially continuous function in z by Lemma

2.5, using the fact that P, (x,y) is bounded by 2™ H (2™|z — yl), so that, e.g., for
m = 0, we have

< — = H*(|lx —
max |Po(z,y)| < max H(|z —yl]) = H'(jz —yl),

with H(]-]) and hence also H*(| - |) contained in RB N L>®(R¢). Further, in this case
fm is also partially continuous in the same set of directions by Lemma 2.4 and the
fact that the sum defining f,, converges uniformly, so that f,, = [ Py (z,vy)f(y)dy
everywhere, and therefore the partial sums f,, also converge to f on its Lebesgue set,
as claimed. This proves the claims in (i) regarding the scaling expansion.

Proof of (ii) for wavelet expansions: To show that under the hypothesis of (i) the
wavelet expansion converges almost everywhere for f € LP(R?) (1 < p < o0), note
first that using Lemma 2.10 to prove uniform and absolute convergence of the sum,
we can conclude (again using the arguments in the proof of (i)) that

(56) Po(z,y) = Y vh@)v)y) = Q;(x,y)

J<0;k,A j<0

is the kernel of a linear projection Py in LP (1 < p < o0). The fact that certain
statements in the rest of the proof of (ii) also hold for p = oo will be pointed out
here, but will not be needed for the remainder of the proof of (i), for which we now
only assume that 1 < p < oo.

For f € LP(R?), the partial sums of (8), given by

(57) Jm = Z a?k ]/\k:(x)7

j<m;k,A

can be shown for 1 < p < oo to converge uniformly and order independently for
fixed finite m. Indeed, note that the sequence {a;-k} is uniformly bounded, using an
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argument like in Lemma 2.8 (4i), we have (setting m = 0 for convenience)

sup Yy |ag (@) < C'sup Y- [ehg(2)

T <0k, T <0k,

(58) =Csup Y 2Py (20)]

T j<0oik,\

< Cz2jd/22sup2|@/))‘ (x —k

7<0

< ORIy
<0

J
< 0.

Since we have absolute convergence, the partial sum (57) is automatically order-
independent with respect to all indices of summation.
Next we wish to show that (for 1 < p < c0)

(59) Jm = Pnf

almost everywhere, where f,, is now defined as in (57), and Py is the L? projection
with kernel Py(x,y) defined above. The difficulty in this is that we are no longer
working in L?, but with an L function f. Thus we first note that

,y) =2 Qi(x,y),

j<0

where (); is the orthogonal projection onto W;. The absolute convergence of this sum
follows from the absolute convergence of (56), together with the representation

(60) Qj(z,y) = Y i) (y)
kA
To show that f,, = P,,f, it suffices to show that fo = FPyf. To do the latter, we write

fo(z) = Pof(z) = lim > a?kwjk(l“)—/ lim > Qj(x,y) f(y)dy

M—— M—— :
TP M0k 7T M<j<o

It is not difficult to show that for a finite M,
(61) Za]kd}]k /Q] 4y y

for f € L?. Indeed, for fixed x we can represent Q);(x,y) in the form (60), and then
use the dominated convergence theorem, with dominating function

le DIF W < H(lz —y)If ()]
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where H(|z|) is a radially bounded L' function (which is also in L*). Clearly, this
function is in L' in the y variable, since f € L” and H(|-|) € L” for all 1 < p < oo,
where p' denotes the dual Holder exponent to p (with 1/p 4+ 1/p’ = 1). The identity
(61) can clearly be extended to finite sums over j, so that we have

Y @@= X Qe f)dy
~M<j<0ik\ ~M<j<0
(in fact, this also holds for functions f in L*). Thus

/ZQj(x,y)f(y)dyz/_Z Qj(fr,y)f(y)der/ Yo Qilz,y) f(y)dy

3<0 ~M<j<0
(62) = [ ¥ Q@ fwdy+ Y i),
j<—M —M<j<0:k,A
Letting M — oo in (62), we have first:
(63) I [ ¥ Qi) Fwdslly = 1| [ P-aslw) )yl
j<—M
where Py;(z,y) is the kernel of Py, as defined above. Now note that since

|Par(,y)] < 2MH (2% — y))

for a L' radial decreasing function H(|-|), we have (again letting p' denote the dual
Hoélder exponent)

| [ Pua,y) f@)dylly < | [ 2 HE o = y))|f )|yl

< 12" H Y 2]y |1 f (@)]],-
Note however that for any p' > 1,

(64) 1M H Y 2Dl =

— 00

by standard scaling properties of functions. Thus we conclude

||/P7M(fv,y)f(y)dy||p — 0.

M—=o0

Hence letting M — oo and taking LP limits on the right side of (62), using (63), we
conclude that

(65) [ Qi@ fdy = Y @),

where the right hand sum is interpreted as an L? (1 < p < oo) limit as j — —oo. How-
ever, clearly the LP limit of the right hand side is the same function as its pointwise
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limit (which exists, as we have established above). Therefore (65) can be interpreted
as a pointwise equality as well. We thus conclude from (65) that for f € LP(R?),

(66) Ri= [Bleypiwdy= Y awn) = h

j<0;k,A

where a}, = /z/)jk(y) f(y)dy. By scaling it follows that (59) holds, as desired.

Now it is easy to show that the wavelet expansion f,, e f a.e., since by (59) it
is only required that we show that P, f e f a.e., and the latter has already been
shown above in the proof of the first statement in (i7) (note that the assumptions
used in the proof of the first statement in (i7) are the same as the present ones).

If ¢y and ¢ are partially continuous, then it follows that P, is partially continuous,
since the sum (56) defining P, converges uniformly (see Lemma 2.10). Therefore by
Theorem 2.6, P, f converges to f on its Lebesgue set. Further, by the same argument
as in the proof of the first part of (i7), | P, (x,y) f(y)dy is partially continuous in z
(by Lemma 2.5), as is the partial sum f,, (by Lemma 2.4). Since these two coincide
a.e., they coincide everywhere, and so we conclude that f,, — f on the Lebesgue
set of f, as desired, for f € L?.

Proof of (iii):

We remark here that for wavelet expansions, the absolute value type bounds which
have implicitly been used in the proofs of the above results do not work here (note we
are not assuming anything about bounds for the scaling function). In the formation
of the summation kernel P;(x,y), cancellations must now be taken into account. This
is implicitly accomplished below by the invocation of Lemma 2.9, together with the
observation (via Lemma 2.11) that the negative scale part N(z,y) of the summation
kernel is just the negative of its positive scale part M (z,y), off the diagonal x = y.

Assume Y (z) In(2 + |z|) € RB for all A\. Then as in (i), the kernel

j<m;k,\

converges absolutely and uniformly for m finite, as does the partial expansion

(67) Jm = Z a;\k }\k(x)

j<m;k,A

of a function f € LP, using the fact that for all X\, ¥* € RB as well. Thus it is not
difficult to show exactly as in the proof of (59) above that for f € LP(R?) (1 < p < 00),

(68) f= [ Pulay) f)dy

almost everywhere, with P, (z,y) as above. Note that according to Lemma 2.9 and
the scaling properties of wavelet sums, we have for m > 0

(69) Pp(r,y) = N(2,y) + My(z,y).
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According to Lemmas 2.10 and 2.11, Py (z,y) — 0 uniformly a.e. in any set F
with positive distance from D = {(z,y): 2 = y}. Because M,,(z,y) = M(z,y) by
Lemma 2.9, it follows that N(z,y) = —M(x,y) for x # y. Since by (45) M(z,y)
is radially bounded by an L' convolution kernel H;, the same is therefore true of
N(z,y), for x # y. Note however that My(z,y) = 0 (since its defining sum is empty),
so that

(70) | Po(z, y)| < Hi(lz —yl).

Thus by Theorem 2.6, it follows that the multiresolution expansion of f converges to
f a.e. and in LP. Therefore by (68) the same holds for the wavelet expansion. Further,
if ¢ is partially continuous, then it is easy to show that as in (i7), the partial sum (67)
is as well, and that [ P, (z,y) f(y)dy also is. Thus the two coincide a.e. and hence
everywhere, so that, by Theorem 2.6 (iv), the wavelet expansion (67) converges as
m — oo on the Lebesgue set of f, as desired. Proof of L? convergence (for 1 < p < 00)
here and in case (77) follows from the fact that the wavelet partial sums coincide a.e.
with [ P, (z,vy) f(y)dy, and the result in (i) of Theorem 2.6.

The bound on Py(z,y) in (70) then also implies, by Theorem 2.6, that for 1 < p <
0o, the multiresolution expansion of f converges to f a.e. If ¢ is partially continu-
ous, then so is Py(z,y) as shown above, so that by Theorem 2.6 the multiresolution
expansion of f converges to f on its Lebesgue set for f € LP (1 < p < o0).

Proof of (iv):

To prove (iv), we will show that the wavelet sums in statement (ii7) converge order
independently as stated, since the proof for scaling expansions (i) follows similarly.
Thus in the case of a wavelet expansion, assume that at stage ¢ in the summation
process (—oo < t < 00) there is a finite collection j; < jo < ... < j, of values of j for
which the sum over k and A is incomplete. Recall that by assumption j, — j; remains
bounded at all stages in the summation. We separate the partial sum for f at stage
t by:

[o¢] (o0}
_ A A A A
(71) fi= Y apyg+ > @Gk V5ik>
J<gsk,A 1<i<g;(k, N\ EK;

where the set K; consists of those pairs (k, A) which have been summed for j = j; at
the " stage of the summation.
We then write:

(72) ft = leflf + Ptfa

where P!f is the linear projection taking f to the second sum in (71). On the other
hand, the kernel of the projection P'(x,y) is bounded by

Pla,y)l=] > @k

1<i<q;k,ANeK1
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< Y @)
1<i<q;k, \eK;
< > Je (@) (),

J1<5<g1+M;k,\
= Y. Qzy),
n<j<in+M
where

Q(z,y) =

2 k(@) (1)

and M is the maximum value attained by j; — j, over all stages ¢ of the summation
(recall M is bounded by hypothesis). Unless otherwise specified, the sum over k£ and
A above is over all £ and .

On the other hand, by an argument exactly as in (44), we can show that

Q7 (2, y)| < 2H (2] —y]),
where H(]-]) € RB is a radially bounded L' convolution kernel. It thus follows that
[P, y)| < 2 H (2 |z — y]),

where H; € RB; the above bound on P(z,y) follows since each term in the sum
defining it is bounded in this way (again we note that the range M of the summa-
tion defining P! remains bounded). Since, by the above, the sum defining P'(x,y)
converges absolutely, we also have

/Pt(a:,y)dy = > () /w—ﬁc(y)dy =0

J1<g<ji+M;k,A

Y

by the dominated convergence theorem and the fact that [ ?k(y)dy = 0. Thus by
Theorem 2.2, we have that P'f .0 almost everywhere. On the other hand, by
(i) we have Pj,_1f — f a.e. Thus since as ¢ — oo we have j; — oo, we conclude
by (72) that
fo=P'f+Pyf o f

almost everywhere, as desired.

The proof that LP (1 < p < 0co) convergence to f also occurs with the orders of
summation mentioned above follows similarly, using the fact that for f € L, P'f —

n— 00

0 in L?, by Theorem 2.2. O

Proof of Proposition 1.5: All the statements in this proposition follow from the proof
above of Theorem 1.3. O

Remark: The condition that i satisfy some weak continuity property in order for
convergence to 0 to occur everywhere cannot be removed, as can be seen in the simple
example of Haar expansions on R, which are discussed in section 1.
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3 Special classes of wavelets

The ideas in the last section will now be used to explore properties of specific classes
of wavelets on R', namely the decay properties of their summation kernels P;, and
convergence properties of expansions. Let ¢;.(zv) = 29/2¢(2/x — k) for a scaling
function ¢(x) of a multiresolution analysis. Then by the results of the previous
section, if ¢ € RB, then

Z ¢]k ¢]k

is the kernel of the orthogonal projection into the multiresolution space V;. Following
Meyer [Mel], ¢ is regular if there exists a ¢ > 0 such that |¢(z)|, |¢'(z)| < ¢/(1+ |z])?
for all z € R. Note that for any regular wavelet ¢, we have ¢ € RB, so that all results
of the previous section apply. We will examine here more specific properties of the
kernels of certain classes of regular wavelets.

P.G. Lemarié and Y. Meyer [LM] constructed scaling functions and wavelets in
S(R), the space of functions ¢(x) with rapid decay, satisfying |D™¢(x)| < Cpun (1 +
|z[)~ for all m and N, with the proper choice of constants C,,x. Here we consider
somewhat larger classes of scaling functions with polynomial order of decay N, i.e.,

(73) o(x) < C(1+|z))~"

for some C' (all of which of course include the above class). For such classes, the
summation kernels satisfy the following bounds.

Theorem 3.1 If the scaling function ¢ has polynomial order of decay N with N > 1,
then for some constant C,
2J

. < <02,

ProOF. It suffices by the scaling properties of P proved in section 2 to prove this
bound for P,. By our previous results and the assumptions we have (redefining
constants C' wherever necessary):

|Po(, )| < Ckzz(l +lo = k)N + [y — &)Y

Without loss of generality, we can assume that y < z. The above sum can be bounded
by an integral, yielding

|Po(,y)| < 0/R(1 Fle—2) N1+ |y —2)) Ve

(z+y)/2
<o =) (O fy - 2]) Ve

30



+C 14z — 21+ |y —2))"Ndz
(z+y)/2

< - [T 0y -2
FOOF o=y ¥ [ (e =) Vs
< Cl+la—y/2)™ [+ N

o0

O+ |z — y|)*N[ (1+|2]) V2
< Cl+ (=Y,

where the value of C' has been readjusted above wherever necessary. O

An interesting class of wavelets is the spline wavelets on LP(R). These wavelets
were developed by J.-O Stromberg [Str6], G. Battle [Ba], and P.G. Lemarié [Lel] .
The multiresolution space V; for such wavelets is defined as a spline space:

V;={f € L’(R): f € C" " and f is a polynomial of degree N in [I/27, (I4+1)/27], | € Z}

Again, a scaling function ¢ can be constructed, and Pj(z,y) = 3 ¢jx(2) ;1 (y). Thus
it is again useful to obtain bounds on

Pif(@) = (@) = [ [f(y) = F@)IPy(a,y)dy,

via a bound on P;j(z,y).

These wavelets have exponential decay, that is, |¢(z)| and |¢)(z)| are bounded by
Ce~l as || — oo for some a > 0. With this condition, a bound on the kernel can
be found.

Theorem 3.2 Let Pj(x,y) be the projection kernel onto the subspace V; defined
above, for spline wavelets of order N. Then

(75) |P;(z,y)| < Cu2le=?lv=y],

The proof of Theorem 3.2 can be completed in a similar way to that of Theorem
3.1, with the replacement of the function W by el It is clear from the proof
of Theorem 3.2 that it in fact holds for any scaling function which is exponentially
bounded.

We remark that as shown in the previous section, almost everywhere convergence
follows directly from bounds such as in Theorems 3.1 and 3.2. Further, results on

rates of convergence can also be obtained from these [Kel].
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Finally, similar results are also true for periodic spline wavelets on L?[0,1). Here,
¢ and 1 are the same functions as those for the splines defined on the line. To
periodize these wavelets, we define 1;;, and ¢;;, as follows:

in(x) = 223" (2 (@ +1) — k), din(x) =223 ¢(2(w + 1) — k).
1€7. l€7,
In the periodic case, the summation kernel P, (z,y) is slightly different from that on
the line, namely,

m 29—1 2m—1
(76) P x y =1 + Z Z w]k 'Q/)]k Z ¢mk ¢mk )
7=0 k=0

Without proofs, some of the pointwise convergence results for this case will be
presented. Proofs can be found in [Kel].

Theorem 3.3 Let the kernel P, (x,y) be defined as in (76), with ;. the periodic
spline wavelets. Then

(77) [P, y)] < Cu2mem "o,

where ||x|| is defined to be the distance from x to the nearest integer.

Using this bound, convergence results can again be obtained.

Theorem 3.4 For f € L'[0,1), x in the Lebesgue set of f, the periodic spline wavelet
expansion of f converges to f(x) at x, i.e.,

m 27—1

(18)  Jim Paf(r) = [ fdy+ Jim 33 < foune > o) = f(x).

] 0 k=0
In particular, convergence holds almost everywhere. Furthermore, if f is uniformly
continuous, then the convergence is uniform.

The same statement regarding orders of convergence which is given in Theorem 1.3
(7v) also extends to this situation, as stated below:

Corollary 3.5 The result of Theorem 3.4 also holds for more general orders of sum-
mation in which the range of values of j for which the sum over k is incomplete
remains bounded.

(See the remarks after the statement of Theorem 1.3 regarding the definitions of
complete and incomplete sums).
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