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Preface

The purpose of this work is twofold: to provide a rigorous mathematical foundation
for study of the probability distributions of observables in quantum statistical mechanics,
and to apply the theory to examples of physical interest. Although the work will
primarily interest mathematicians and mathematical physicists, | believe that results of
purely physical interest (and at least one rather surprising result) are here as well. Indeed,
some (89.5) have been applied (see [JKS]) to study a model of the effect of angular
momentum on the frequency distribution of the cosmic background radiation. It is
somewhat incongruous that in the half century since the development of quantum
statistics, the questions of probability distributions in so probabilistic a theory have been
addressed so seldom. Credit is due to the Soviet mathematician Y.A. Khinchin, whose
Mathematical Foundations of Quantum Statistieas the first comprehensive work (to
my knowledge) to address the subject.

Chapters 7 and 8 are a digression into probability theory whose physical applications
appear in Chapter 9. These chapters may be read independently for their probabilistic
content. | have tried wherever possible to make the functional analytic and operator
theoretic content independent of the probabilistic content, to make it accessible to a larger
group of mathematicians (and hopefully physicists).

My thanks go to I.LE. Segal, whose ideas initiated this work and whose work has
provided many of the results needed to draw up the framework developed here. My
thanks go also to Thomas Orowan, who saw the input and revision of this manuscript,
using TEX, from beginning to end; his work was invariably fast and reliable. Finally I
would like to express my appreciation to the Laboratory for Computer Science at M.L.T.,
on whose DEC 10 computer this manuscript was compiled, revised, and edited.
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Chapter 1

Introduction

81.1 Purposes and Background

The most general mathematical description of an equilibrium quantum system is in its
density operator, which contains all information relevant to the probability distributions
of associated observables. L&t be such a system, with Hamiltéhian calculated in a
reference frame with respect to whiSh  has zero mean linear and angular momentum.
Let 5 = % be the inverse temperature f 7" ( is temperaturekand is Boltzmann's
constant). If the operater®” s trace class the appropriate density operdtor for  is

P~ Yrest

Our general purpose is to obtain probability distributions of observables in from
spectral properties df . H has very dense point spectrum, distributions depend on it
only through an appropriate spectral measure; if the spectrum has a continuous
component there™?7  has infinite trace, so that the associated density operator and
probability distributions must again be defined via spectral measures. We will study how
distributions are determined by spectral measures and apply the resulting theory to the
(continuous spectrum) invariant relativistic Hamiltonian in Minkowski space and to the
(discrete spectrum) invariant Hamiltonian in a spherical geometry (Einstein space), to
derive probability distributions of certain important observables.

In some systems with continuous spectrum, a natural obtains through H et
of operators with pure point spectrum which in an appropriate sense approxifnates . In
order that subsequent conclusions be well-founded, it must be required that be
independent of the choice ¢}, within some class of physically appropriate or
“natural” nets. For example, # is an elliptic operator on a non-compact Riemannian
manifold M , a natural class arises in approximafing by large compact manifolds. The
well-developed theory of spectral asymptotics of pseudodifferential operators is useful
here (see, e.g., [H], [See]). The procedure of infinite volume limits has also been studied
and developed in Schrodinger theory (see [Si, Section C6]). In physical applications such
as to the Planck law for photons, this approximation procedure is appropriate since
distributions must be localized spatially, as well as with respect to wave propagation
vector.

In the systems we consider, many interesting observables are sums of independent
ones indexed by the spectrum of a (maximal) commuting set of observables. Thus in
cases of continuous and asymptotically continuous spectrum, the notion of sum of
independent random variables is very naturally replaced by that of an integral (over the



spectrum of observables), defined in a way completely analogous to the Riemann integral.
The theory of such integrals and associated central limit theorems will be developed
(Chapters 3-5), and then applied to particular random variables of interest.

A more comprehensive and abstract theory will be studied in Chapters 7-9. The
integration procedure will be part of a more complete Lebesgue integration theory for
random variable-valued functions. Connections will be made with the theory of random
distributions and purely random fields [V,R1].

The related work in this area has been done primarilifon  , with Lebesgue measure.
General information on random distributions is contained in [GV]. Multi-dimensional
white noise was introduced in [Che], motivated by study of so-called Lévy Brownian
motion in [L€]; the topic was further developed in [Mc]. A comprehensive theory of
generalized random fields was introduced by Malchan [M], using the notion of
biorthogonality of random distributions dtr'

The non-linearity of the Lebesgue integral in Chapter 7 is not essential, since it is
equivalent to an ordinary (linear) Lebesgue integral of a distribution-valued random
variable field, and equivalently an integral over a space of logarithms of characteristic
functions. Thus the integral is a simple and fundamental object. The probabilistic
content is itself novel and (hopefully) interesting, and these chapters have been written
largely as a semi-autonomous part of the monograph. Probability and statistical
mechanics are re-joined in Chapter 9.

There are two physical implications of this work which warrant attention. The first is
that non-normally distributed observables (such as photon number) can arise in physically
attainable situations, namely those in which spectral density is non-vanishing near zero
energy; the latter occurs in systems which are approximately one-dimensional, for
example, in optic fibers or wave guides. The second is that within the class of models in
which the density operator depends only on the Hamiltonian, the "blackbody spectrum” in
a large-scale equilibrium system of photons admits an energy density spectrum which
follows a classical Planck law, whose specific form depends only on basic geometry.
This work provides a rigorous basis for the study of blackbody radiation in general spatial
geometries, specifically the spherical geometry of Einstein space. This is a model of the
physical universe (see [Se2]), and is useful in mathematical physics, being a natural
spatially compact space-time which admits the action of the full conformal group.

Some of the results to be presented here are treated somewhat differently and in more
specific situations in an excellent foundational work by Khinchin [Kh], who treats
asymptotic distributions for photon systems in Minkowski space. The asymptotic
spectrum of the Hamiltonian there is approximated to be concentrated on the integers;
such a procedure suffices for consideration of energy observables for photons in three
dimensional geometries, although it must be considered somewhat heuristic. It is
however not adequate for treatment of more general situations (as will be seen here),
since the very volatile dependence of distributions on spectral densities near 0 is not
visible in such an analysis. In general terms, however, the present work extends many
ideas pioneered by Khinchin.

The reading of any chapter is perhaps best done in two stages, the first involving only
brief inspections of technical aspects of proofs, and the second involving a more



thorough reading. Technicalities are often unavoidable in the proofs of theorems whose
hypotheses are minimally technical.

We now provide a brief explanation of the structure of this monograph. The
remainder of this chapter provides a mathematical-physical framework. This includes a
description of Fock space, and a rigorous presentation of elementary results on quantum
statistical probability distributions. For example, we verify the common assumption that
occupation numbers are independent random variables. Some of these results may be
found (in somewhat less thorough form) in statistical physics texts. Chapter Two
presents some novel aspects of calculating distributions of observables (still in discrete
situations), and presents fundamentals of the continuum limit. The basics of integration
theory of random variable-valued functions are developed in Chapter 3. Chapters 4 and 5
give applications to calculating observable distributions, including criteria for normality
and non-normality, and Chapter 6 provides physical applications. Here explicit
distributions are calculated, and a rigorous Planck law is derived for Bose and Fermi
ensembles. It is shown that the Planck laws are essentially independent of the intrinsic
geometry of large systems. Chapters 7 and 8 develop an analogous Lebesgue theory of
integration, and Chapter 9 provides further applications, in the more general framework.

We dispose of a few technical preliminaries. Throughout this work (except in 89.5)
we make the physical assumption that the chemical potential of particles under
consideration is 0; this does not involve essential loss of generality, as the general case
can be treated similarly. Probability distributions are studied for particles obeying Bose
and Fermi statistics. The two situations are similar, and are studied in parallel. The
essentials of Segal's [Se3,4] formalism for free boson and fermion fields are used
throughout and are described below.

We briefly mention some conventions. The symi6|sN, C andR denote the
integers and the natural, complex, and real numbers, respectively. The non-negative
integers and reals are representedZby RBnd . CThe functions with compact
support are denoted bhy> . The symb®ls€ , , ¥d  denote probability measure,
expectation and variance. The point mass at 0 is representgd by ,=while [-]and
denote convergence in law (or weak convergence) and the greatest integer function,
respectively. The spectrum of an operator o(id) ; the words “positive” and “non-
negative” are used interchangeably, as are “increasing” and “non-decreasing”, etc.
The abbreviations r.v., d.f., ch.f and a.s., mean “random variable,” “distribution
function”, “characteristic function,” and “almost surely”. The notation w-lim denotes a
weak limit, i.e., limit in distributionN (a,b) denotes the normal distribution with mean
and variancé . X is anr.v. or a distribution, tHén denotes its d.f.

We use the notatioffi(z) = O(x) (z — a) if% is boundedzas> « . We use
f(z) =o(x) (x — a)if ;g)) —0asr —a.

A guestion may arise as to the dimensions of physical quantities. The system of units
will be entirely general, unless otherwise specified. For instance, the eflergy  and

inverse temperatur@ may be interpreted in any units inverse to each other. Also, a
preference for setting= 1 will be evident in various places.




81.2 The Free Boson and Fermion Fields Over a Hilbert Space

We now present relevant aspects of free boson and fermion fields in their particle
representations. No proofs will be supplied; a more detailed and general description is
given by Segal [Se3, Se4].

Let H be a separable complex Hilbert space; for notational convenience and without

loss of generality assunié s infinite dimensional. /FarN let
Ki=HOH®.. oH=QH (1.1)
1=1

be then -fold tensor product &  with itself, aW&B)( ) be the unitary representation of
the symmetric grou®,, of order @),  which is uniquely determined by the property

Vn(B)(O') (@33@) = ®$071(i) (O’ € X x; € H),
i=1 i=1

V;L(B)(a) thus permutes tensors. The (closed) subsﬁé@é consisting of elements left
invariant by{Vn(B)(o—) 0 € En} is then-fold symmetrized tensor produst H with
itself.
By conventiorVC(()B) = C.
Forxy,...,z, € H

n 1 n
i=1 nose, =1
n
is the orthogonal projection of0 z; intiﬁB) ; the latter is clearly spanned by vectors

i=1
of the form (1.2). Note that for; € H ande X,

\/xi = \/xa(i). (1.3)

The direct sum of symmetrized tensor products over all orders

L

is the(Hilbert) space of symmetrized tensargerH .
Any unitary U onH can be lifted to a unitaF;éLB)(U) kP = B which is
defined uniquely by

Kg

n

i=1

=1 i



F&B)(U) is simply the restriction ti” ofthe -fold tensor produdiof  with itself; we
append the convention tHééS)(U) : C— C istheidentity. We define

so that forx,, € IC,,,

(V) < @xn> = PrP W)z,
n=0 n=0
A self-adjoint operatodl ift{ is naturally lifted &0  as the self-adjoint generator of the
one parameter unitary groli(e*4)

~ | =
&=

Ly(el)] (1.5)

’
t=0

with the derivative taken in the strong operator topology.
The definitions for antisymmetric statistics are fully analogous to those above. Let

s(o) denote the sign of € 23, aridfF)( -} be the unitary representatidn,of 1, on
defined by

v,§F>(o—)( ®xi> = 5(0) @ w11 (0 €, z; € H).
i=1 i=1

Let ') denote the subspace of elements left invariar{%@f)(a) N ADIN' , with
1ch> = C, the collection

Ty Axo A ... /\:cnz/\:cz- = % ZVTL(F)(O-) <®x1> (x; € H);  (1.6)
i1 i=1

" oen,

spans/C,(lF ) Thepace of antisymmetrized tensorsvét is
Kr=€p K. (1.7)
n=0

If U is unitary on¥ , thel'"(U7) : K — k) is defined by

with T\ : C — C the identity,



I'p(U) = é L)

is the lifting of U ok . 1fA is self-adjoint ift{ , thedl'-(A) is the generator of the
unitary groupl'p(e#4) .

Henceforth statements not specifically referring to the (anti-)symmetric constructions
will hold under both statistics; in particular this will hold when subsciipts Fnd  are
omitted.

Definition 1.1: The operatodl'(A) is thguantization of

The mapdI’ acts linearly on bounded and unbounded self-adjoint operators to the
extent that if P;} ey are mutually orthogonal projectiongfin A} ey C R , then

dr (iEij) — f:Ejdr(Pj); (1.8)

this fact will later prove useful. PhysicallyiC, dT'(A)) is the Hilbert space of states
together with the Hamiltonian of a many-particle non-interacting system each particle of
which has states i and time evolution governed by

If G = {g;};en is an orthonormal basis fokl  then orthonormal basesGpr  are
given by

BB — {\/gji ch <jo< .o <lny i € N} (symmetric) (1.9)
=1

B = {/\gji L <o < ... <jn; i€ N} (antisymmetric) .
i=1

The basisB’,(IB ) can be represented through the correspondence

n

\/gji = (m1>m27"') =n (gji € G)>

=1

wherem; denotes the number of appearances of on the left hand sideang n.
i=1

If we append the conventidaéB) ={1} ¢ C ,then
n=0

is an orthonormal basis féfz. We can thus write



N: {(ml,mg,...): m; EZ"'; Zmz < OO}, (110@)

1=1

whereA” = (0,0,...) corresponds to 1, the basiskfé?) =C.
Correspondingly, if

./v: [OJ BT(LF) C Kp,

n=0

there is a bijection
n
/\ gjl — (m17m27"') = n
i=1

note that non; above may be greater than 1, since 1 limits the number of appearances of
g; under antisymmetric statistics (see (1.6)). The collection

N = {(ml,mQ,...) :m; € {0,1}; Zmi < oo} (1.100)
=1
is a basis oy .

81.3 The State Probability Space

Let G = {g;};en be an orthonormal basis féf , with  the orthogonal projection

onto the span ofg; . IfAV is the basis df constructed in (1.10), and
n=(my,my,...) €N, then
dI'(P;)n = m;n (j €N). (1.11)
Consequently if{¢;},ey € R and’ =3 ¢;P; then by (1.8)
3=1

dF(C)n = (iqﬂ’@)ﬂ. (112)
j=1

Given a distinguished operator &h  such thap is non-negative self-adjoint and
(#3) trp = 1, dT'(C') can be interpreted as a random variabl@/on

Definition 1.2: An operatorp with propertie§) arid) iglansity operator /on
Through the probability measuf@ n)(= (pn n) on it forms shete probability
space(\N, P) corresponding tp . The ry(n) = (d['(C')n,n) (if defined) is thalue
functionof dI'(C') orof C .

If Ais self adjointorf{ 3 >0 , and %4 s trace class,

10



P~ e pirtd)

is a density operator. Iff = {g,},ey diagonalizds akd s as above, then the state
probability space(N,P) corresponding po is tli®ymmetric @ntisymmetric)
canonical ensemble ovet. Clearly any operatar’ which commutes with  defines an
r.v. in this way. These will be our object of study; of particular interest will be value
functions of number operatoré; = dI'(P;).

In physical applicationsd is a positive Hamiltonian governing time evolution of
single particles in a multi-particle system. Alf; = E;g; , thene G represents a
physical single particle state of enery; n = (my,my,...) is the many-particle state
with m,; particles in statg;(i = 1,2,...) . By (1.11), the observalije is the number
of particles in statg; , and its value function is interpreted accordingly.

We now derive necessary and sufficient conditions for existence of a canonical
ensemble overl , which we assume to be positivé in . The following proposition has
been implicit in the physical literature on statistical mechanics.

Definition 1.3: An operator is @reeif 0 is outside its spectrum.
Proposition 1.4: The operatoe ?'4) s trace class if and only if
(1) e P4 istrace class and is O-free under symmetric statistics.

(ii) e~P4 is trace class under antisymmetric statistics.

Note that if eithere #4 oe 444 s trace class, then hath  &NdA) have pure
point spectrum and finite multiplicities, singe= dI'(A)|x, . Thus previous assumptions
on A have involved no loss of generality.

We sketch an argument for Proposition 1.4. In the symmetric case, define the

function m; on\/ byn;(n) = m; . By (1.12)
fﬂZE n;(n
tre s =3 "¢ : (1.13)
neA’
On the other hand, when the product
focm-f(5e) o
j=1 j=1 \ i=0

is multiplied out, it coincides with (1.13), so the latter converges if and only if

11



o0

Z e PP < 00,

J=0

andnoE; are 0. The proof in the antisymmetric case is similar.
We thus have

o
I
-

(1 —e P51 (symmetric)

[
Il
—

K =tre P4 — (1.15)

5
I
r

(1+e7P%)  (antisymmetric)

T
I

Corollary 1.4.1: If e=#I(4) js trace class, thed has pure point spectrum and finite
multiplicities.

12



Chapter 2

Value Functions on a Canonical Ensemble

Throughout this chaptet is a positive self-adjoint (energy) operatér in , satisfying
(¢) or(ii) of Proposition 1.4. In particuldr has pure point spec{iigh, , and an
orthonormal eigenbasis = {g;}en , Withg; = E;9; . Assuffle is separable and (for
notational convenience) infinite-dimensional, and define the number opé&aterdI’
(P;) as before. The basi§" #&Ff correspondingzto is given in (1.10); its generic
elements will ben = (my, my,...) . Define

o—BdT(A)
If ais the value function ofI'(A) , ane; thatdf |, then
h(a) =Y h(Ej)n;. (2.2)

More generally, ifC' commutes witd  ar@g; = c;g;,dI'(C)  has value funcfion
=1

cjnj.

Definition 2.1: The r.v. n; is thej® occupation number in the canonical ensemble over
A.

Note that in the ensemble, according to (1.12),

1 *ﬁio:Ejmj 1 B> Em;
<e = n,n > = .

P(n) = (pn,n) = o BT I7a (2.3)
82.1 Physical Interpretation of Value Functions
The canonical ensemble ovdr  at inverse temperature) describes a non-self-

interacting system of particles in equilibrium at temperaitire ﬁ k  ( is Boltzmann's

constant) with particles whose individual time evolution is governed by the Hamiltonian
A. If the operatoC' , representing a physical observable for single particles, commutes
with A, dT'(C) is the observable representing "total amountCof . Precisely,

13



dI'(C)n = (imz(c%gz?) n, (2.4)

(Cygj, g;) representing the value 6f in the state
The value function ofdI'(C') is a random variable on the canonical ensemble,
representing the probabilistic natureddf(C') . By its definition

= imi(ng,gj). (2.5)

In particular, the occupation numbey  corresponding;to  is the r.gNom®) which
onn takes the valuer; , i.e., the number of particles in giate . The valje-oft';n;
onn isE;m;, and represents the "total energy" of the particles ingtate

82.2 Distribution of Occupation Numbers

If n; denote occupation numbers and tif= (ty,t2,...), 0 = (ny,ng,...) and

t-n =) tn,, then according to (2.3) the joint characteristic functiofrg ;e is
(I)(t) — ztn) _ Z 6ztn [)’En (26)
ne/\/

whereE = (Ey, E»,...) , and denotes mathematical expectation. The right side factors
to give

1 ﬁ — e P+~ (symmetric) 2.7)
(1 4 e BFiTis) (antisymmetric) '

Thus, occupation numbers; are independent r.v.'s with characteristic functions

~BE; ~BEj+it\~1
o) = { )G oy 25)
By inversion of (2.8),n; is geometric in the first case, with
Pln;=1)= (1 —ePF)e PPl (1=0,1,...), (2.9)
1 PP
E(ng) = g — V)= @ (2.10)
where V denotes variance. Under antisymmetric statistics is Bernoulli, with

14



i) =1
P(n;=1) = { El+e_ﬁE)f)_1' — 0 (2.11)
1 el
E(nj) = B 11 V(n;) = SN

The above distributions (specifically the independence of the occupation numbers)
explicitly verify facts which have been used in the physical literature for some time.
Rewriting of (2.3) shows that if

J\/}z{nz(ml,mg,...): |n|5§:mj:l}, (2.12)
=1

o0

the particle number value function = )" n;  satisfies

J=1

1 1 =B Ejn,
Pn=1)= % ZeiﬁE'” = — Z e 2 (leZ") (2.13)

nenN; 1<hi<.<a

under symmetric statistics, with< replaced by in the antisymmetric case. There
is a method of expressing (2.13) more simply for small valuels of which, however,
becomes more complicated &s  increases, and is not discussed here.

The total energy

A:Eﬁ:ZEjnj

is a discrete r.v. with

e Pd(b)

1 -
PA=b =g 2 ¥ ==
neN;

whered(b) is the cardinality of;, = {n e /' n-E = b}.
When A has uniformly spaced spectrumy =¢j , (physically interesting in one-
dimensional situations), these specialize in the symmetric case to

15



[
1 756 ‘m
P(n = l) = E— Z e mz::l] (214&)

Kp
-1
1 —ﬂ(‘fz .jm .
- X (e
Kp 1< < < Sz -1
-1 .
1 —ﬂez ]m e_/ﬁ(f.]lfl
— _ e m=1 _
Kp 57, 1—e
T
Kb <5, (1 —e7?)(1 —e7%)
1 ! . 0 .
= = e e H (1 —e W6yt = ¢ lhe H (1 —e 7%,
B j=1 j=1+1
Similarly in the antisymmetric case
,P( l) 1 l(éﬂ)ﬁ (1 —ﬂej) (2 14b)
n = = —— € - — € . .
Kp o

Note that the tail of the number r.v. in (2.14) is geometric under symmetric statistics, and
resembles a discretized Gaussian in the antisymmetric case.
It is easily seen in this case that

e’ﬁ‘lpl .
PA=dl) = T TS 2.15)
EK—F‘” (antisymmetric)

wherep,(¢;) is the number of ways of representing as a sum of (distinct) positive
integers. The asymptotics of the combinatorial functigns g¢and are tabulated in books
of mathematical functions (see [AS]).

82.3 Formalism of Asymptotic Spectral Densities

In many situations in which a self-adjoint operator has large or asymptotically infinite
spectral density, use of a spectral measure on the real line is necessary for interpretation
of sums indexed by the spectrum, or mediating more detailed spectral information. A
classical example occurs in Sturm-Liouville system$0ono) , whose “natural” spectral
measures for eigenfunction expansions are defined in terms of limits of spectral densities

of their restrictions to intervals (see [GS]). In the study of sums sueh=a3 n; , a

similar situation occurs if the spectruf;}  4f is very dense or continuous, edg., if
is an elliptic differential operator on a “large” Riemannian manifold. See Simon's
review article [Si, Sections C6, C7] for a perspective on this problem in Schrédinger

16



theory. Situations such as these certainly predominate in macroscopic systems. In such
cases, the appropriate probabilistic context for study of probability distributions in
canonical ensembles involves integrals (rather than sums) of independent random
variables with respect to appropriate spectral measures.

We begin with preliminary notions and facts. Hencefprih will denote the greatest
integer function.

Definition 2.2: A spectral measurgis a o -finite measure oR™ = [0, oo];
F(E) = ul0, E] is the spectral function of . The operater,  with point spectrum

consisting of the discontinuities f@ , each discontingity  having multiplicity

€

{@} — {@] is the e discrete operatorcorresponding o

The operatord, has eigenvalue density essentially givén by
The correspondence between spectral meagures and{ Agts o IS bijective.

Indeed, thee -netoffunctioms[@] converges uniformly’to , determjpning

€

We now investigate whesA  defines a canonical ensemble, using criteria established
in Chapter 1. We require the following convention: the domain of integration in a

Stieltjes integra[[ab g(x)df(x) includes endpoints, and

b b
/ﬁg@ﬂdﬂw)zlﬁa/gwﬁdﬂx) (2.16)

We begin with a technical lemma.

Lemma 2.3.Let f(-) andg(-) be defined da,b], g(-) be monotone non-increasing
and non-negativef(-) be monotone a(d ) be Stieltjes-integrable with respect to

f(-)and[f(-)].
Then

b b
\/gmuﬂm—/g@mvwnsm@. (2.17)

This holds if “a” is replaced by ¢~ ", b” by “b=" orif [a,b]is replaced by
[a, 00).

Proof: Assume without loss thgt(-) is non-decreasing, andfthat is continuous on
[a, b]; some inessential complications occur if the latter fails. Assbimexc (otherwise
f andg can be appropriately extended), and let

a<z <x<ax3< ..., (218)

where{z;} are the discontinuity points [gf( - )] . {lf;} is empty the assertion is
trivial. Otherwise let

17



Sl = [a,xl], 52(331,332], Sg = (il?g,il?g],... .

Then

/a o(a)af() =3 /Skg(x)df(x); / g@)dlf@)] =Y glan), (219)

k=1
and
olz) > / o(@)df (@) > glars)  (k=1,2,...). (2.20)
Sk+1
Hence
€p) — z)df(x)| < gla). 2.21
> gt kzz/skgmf()_g() (2.21)
The fact that
/S g(2)df (z) < g(a) (2.22)

and the first inequality in (2.20) imply (2.18), the remaining assertions follow similarly.
[

Corollary 2.4: |If instead of monotong is of bounded variation, then

b b
‘ / g(@)df(z) — / g()d[f ()] < 2g(a).

Theorem 2.5: Lety be a spectral measure and.  the corresponding -discrete
operator. Letf(-) be a non-increasing function. TH¢A,) is trace class if and only if

/OOO f(E)du(E) < oo. (2.23)

Proof: If f(A,)is trace class, then

wra) = [ sl

F(E)] ,
while 6

/ Y pEyduE) = [ f(E)d(@) (2.24)

0-

If F'(-)is bounded on0, o) , the last expression is finite. Otherwise, the lemma implies
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’ oof(E)d{F(E)} < e oof(E)d[F(E>]+f(o—):e(trf(A€))+f(o—)<oo.

0- € 0-
Conversely if (2.23) holds, then

wpay = [ f(E)d[@] <[ rmyd (@) + £(07) < co. W (2.25)

0~ 0~

Corollary 2.6: The operatorf(A,) is trace class for some 0 if and only if it is for
all e > 0.

Corollary 2.7: The operatoe—?4< is trace class if and only if
/ e PEdu(E) < .
0

Definition 2.8: A spectral measure isffee [if{0})= O.

Note thafu is O-free if and only il is O-free for all This fact together with
Corollary 2.7 and Proposition 1.4 completely characterizes those spectral measures which
define canonical ensembles.
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Chapter 3

Integrals of Independent Random Variables

In the limit of continuous spectrum for a Hamiltonian , sums of r.v.'s indexed by the
spectrum, such as value functions of quantizations of observables commutiag with , are
most profitably represented as integrals for both notational and conceptual reasons. We
now develop a theory and properties of these to the extent that they are useful later.
These results will be in a more natural probabilistic setting in Chapters 7 and 8, where
integrals of r.v.-valued functions over a measure space will be studied.

83.1 General Theory of One Parameter Families

ForE >0, letX(FE) be a one-parameter family of independent r.v.'ssand a spectral
measure oriR* . We integraf€ with respecfuto  as follows. For each let
F. ={E}jcs. be positive numbers (not necessarily distinct) such that the cardinality
Nc(a,b) of Fon{[a,b]} satisfies

€N¢(a,b) - pla, b (3.1a)

forall 0 <a<b (b may becc ). To avoid pathologies, assume also the existence of
numbersi/, k > 0 such that for any interdal whose measure exdéeds

eN(I) < ku(I). (3.1b)
Definition 3.1: {F.}.~0 is a spectral-net.

Given a functiony ) on positive , we define the probability distribution

X(E)o(dp) = w- lim ¢() Y X (Ee)

R+

with sums on the right defined only if order-independent. The limit is in the topology of
convergence in law, with the integral defined only if independeft, of

If fis real-valued oiR*, the Riemann-Stieltjes integrafof with respeetto can be
defined as

of, FE)n= ('EJLOZ F(E)(AE) (3.2)

with P a partition ofR*™ into intervald\E; FE; € AE;, u(P) = supu(AE;) , and the
limit is defined only when independent 8f ahd , as well as order of summation (i.e.,
convergence is absolute). In evaluating the right side of (3.2) and all similar sums we
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apply the convention: if. has an atomft> 0 , a partifion  may formally divide
into degenerate interval§AFE;},; , each consisting of just the pgint , such that

Y (AE;) = u({E}); the union of such an interval with an adjacent non-degenerate
J

interval is also allowableP is areven partition f(E;) = u(E;) , except possibly
when E; is a rightmost non-empty interval, which is allowed smaller measure.

Theorem 3.2: If X(E) is a real number (i.e., a point mass) for edch , then(E)du
coincides exactly with [ X (E)du

Proof: Assume thag [ X(E)dp exists, and &t = {E.;},;, be a spegtral -net. For
n € Nlet P, = {AE,;}:.;, be a sequence of even partitionsof following the above
conventions, such that P,) —= 0 . The indexing 5ett N may be finite or the whole

of N. Fori € I,,, IetEm, E'. € AE,, satisfy

X(E") — % < X(E) < X(By) + % (E € AE,)), (3.3)

and define

Z ,u AEm

i€l,

= > X(E)u(AEy), By =) X(Euw)u(AE).

i€l i€l

If 1+ has compact support thép s finite, and by (3.1) and (3.3), the distance between the

numbere ) X(E,;) and the interval, — a,, B, +a,] approaches@ as 0. Since
jeTe

ap —
n—oo

[An + apn, By — n—>oo / X d,uv

and the result follows here, since the -fiét  was arbitrary. For the general case, we
must show

e Y IX(E| — 0,

‘EEj‘>d

uniformly ine. LetP = {AE;} be an even partition &*  such that

Z!X Mu(AE)) < C (3.4)

for any set of E; € AE;. By (3.1b)
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eN(AE;) < kmax( M, u(AE;)),

so that

e 37 IX(Ey)| < kmax(M, u(AE;)) sup|X(E)|.
E eNE, EEAF;

SinceP is even and by (3.4),

€ Y IX(E)I <k Y sup |X(E) maM,u(AE;) 0, (3.5)

|E|>d AEjN[dool¢ EEAE;

convergence being manifestly uniform én
Conversely, assuméX (E)du  exists. LBt= {AE,;}  be a sequence of partitions
of Rt with u(P,) — 0, and letE,; € AE,; . There exists an even partition

P* = {AFE?} such that
Q=Y sup |X(E)|uAE;]) < oo

j EGAE*

hence if u(P,) < pu(P*) , then

D sup |[X(E)u(AEN) < 3Q. (3.6)
j BeAk,

Let F. = {E,} be chosen such that for eath there is an integer  (depending only
one) andg such that

a) The cardinality of(i : E.; = E, ;} |S[@] wherg-]  denotes the greatest
integer function, and for ea¢hE,; = E, ; for sope .
b) I Jo={j: w(AE,;) < enc} then) | X(E, )|w(AE,) < ;- -
jeJe
c) ne o> monotonically.
Then if J¢ is the complement of

€Y X(Eq ZX W) W(AE, )

(AEn;)

€

e[

H(AEnsj)}‘

< ZIX w) (A ) + Y | X (Eaj)le
jeJ JeJE
w(AE,
S — + Z |X ej Ej) (37)
Te jee Te
<

1
7’1,_6 {1 + 3@} Ej)o 0,
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the above holding fore sufficiently small. Thus/ X (E)du exists and equals
[X(E)du, completing the proof.l

As is clear from the standard central limit theorem, expectation of r.v.'s does not scale
under independent sums in the same way as some other “linear” quantities, such as
standard deviation. For this reason expectation will in general diverge in the formation of
integrals (in whichp(e) may be non-linear), while all other linear parameters converge to
define a limiting distribution. To avoid this inessential complication, we assume
henceforth that integrals involNe -mean random variables.

Definition 3.3: If Y is an r.v. or probability distributiory,*” denotes the convolution of
Y with itselfn times.

Recall that a distribution functioh  &able if for evény b, anda, >0 , there
exist constants and> 0 such that

F(ayx + by)xF(asx + by) = F(ax +b). (3.8)

Note that stability implies infinite divisibility..

Proposition 3.4: If Y = [ X(E)¢(du) exists and is non-zero, théh  is stable,

L, = lim 29 (n=1,2,3,...)
e—0 (ne)
exists, andl,Y*" =Y.
Proof: Fixn and let{e,} be a sequence such that < . Consider a spectral -net

Fe ={Ee,}jes. such thatF,, consists ofs  with each element repeated times. For
kE=1,2,3,..., let

Yop—1 = ¢(nex) Z X(Ene,,;j)

€T,

Yo, = QS(Ek) Z X(Eﬁk,j)a

j€Jq,
wherene; indicates a product.
Then

P(er)

Letting k — oo, we conclude that
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[, =lim
koo ¢(ney,)

exists, and that,Y " =Y. R

Corollary 3.5: If Y of Proposition 3.4 has finite second moment then it is normal.
Proof : The normals are the only stable distributions with finite second moment (see
[GK]). &

The following theorem generalizes Liapounov's theorem (see, e.g. [Ch]) to infinite
sums of random variables, and will be instrumental in subsequent limit theorems. Recall
that convergence in law of a ngX; }c; of random variables or distributions is denoted
by X; = M N(m,o?) is the normal distribution with meam  and variamte

Theorem 3.6: For eache > 0, let{ X;},<j<x. be independent zero-mean r.v.'s on the
same probability space arfd. — > (. =00 ).lLe

G =e(1Xgl),  oh=g(X2),
’Y?ZZ’YSJ'; 03=ZUEJ~
jEK, =K.

Then if x v 0, thesum_ X, isasymptotically normal:
© je.

1
—Y X, = N(0,1). (3.9)
O¢ ; e—0

Proof: Letk. < K. be an integer such thét)

VY

<

and (i7)
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j=ke+1

&

K.

> <03j>
— — 0.
e—0

a

2
J=1

ke

The sum)_X.; is asymptotically normal by and Liapounov's theorem:

J=1

Xej
kFl - = N(0,1)
> (o2)°
7=1
By (i7) the same holds for
ke
Xej
=1
1. = ] T-
( K. ) ) 2
g°.
= 7
The remainder
K,
fot1 Xei
U=

satisfiest (U?2) — 0. Hence

Qe =T+ U > N(©0,1). B

Theorem 3.7:If p[;° E(X?)dp and g [;° E(]X|3) dp < oo, then

Dol

[ x@an: = no.),
wherev = g [;° E(X?)dp .

Proof: LetF, = {E.;};c; fore > 0 be a spectral -net,add; = X (F,;)
7e; be as above. Then
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3 ZS |X€J'|3 625 |Xej|3 3
-l ( ) = — ( ) —0- e(x >dﬂgzo. (3.14)

7 (;@)% (G;S(ij))% - (ff(!XP)duy

Hence

%Z Xe;

1
/X(E)(du )2 —mezZXEJ = lim ————— v

e—0 2
2
(e202)

J

= vIN(0,1) = N(0,v);

DI

the second equality follows by Theorem 3.2, and the third by Theorenli3.6.

83.2 Background for Singular Integrals

Now we prove a result central to the singular integral theory in Chapters 4 and 5. A
singular integral[ X (F)¢(du) is one whe& X?(E)) is singular. Since such integrals
fail to exist in general under the current definition, we make one which is more useful.

Definition 3.8: Let X(F) be a one parameter family of independent rv.B®on  pand
ao -finite measure oR™.  Ldt(E) = u([0, E]) , and for each-0  Jet= {E£;} 2,

be the ordered set of discontinuities{ﬂg@] , @ jump discontinuity ofrsize  being listed
n times. We define

s [ X(E)¢(dp) = lim (e iX (3.15)

R+ e=0 ]:]_

Theorem 3.9: Suppos@(e) ang(e) are functions and
——>O, S/E |X| d(dp) < oo, 0 < S/S(X2)1/12(du)EU<OO.

Then [ Xy (dp) = N(0,v).

Proof: By the hypotheses,

Hence
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se(1xP)

0 (3.16)
(Zee)

and ) X.; is asymptotically normal by Theorem 3.6; the variance(ej)_ X.; is
j j

¥?(€)3 £(X?;), completing the proofll
J

Corollary 3.10: If3l— k> 0 and
N L N e S
then

S/XWN=N@w

83.3 Distributions Under Symmetric Statistics

Given a spectral measure and a spegtral Fpet | the opdrator  with spEctrum
induces a canonical ensemble under the conditions outlined in Chapter 2. For a net of
operatorsC, = g(A.) , (withg a function oR* ) we now consider asymptotics of
corresponding value functioms ; applications will be deferred until later.

Definition 3.11: Let Gz denote the functions o oR™  with two continuous
derivatives near = 0 , locally of bounded variation, such fi@t)|(e®” + 1)} is non-
increasing fot  sufficiently large. Fgre Gz , those non-trivial spectral measures which
are O-free and satisfy

0 < /O N g (E)ePPdu(E) < oo (3.17)

for n=0,1,2,3 are denoted by?,s . Thosec R,3  whose spectral functions have
three continuous derivatives near 0 compfigg.

The monotonicity condition on|g(E)|(e’F +1)~! implies the same for
|g(E)](e”® — 1)~

The first and secondn =0) conditions Qne R, 3 guarantee existence of a
symmetric canonical ensemble, while the extra oneSpa is required to control
asymptotic behavior of. . Lel/;3 denote the spectral measures for which  has an
asymptotic distribution. Here and in Chapters 4 and 5 we showgthat U, s
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Proposition 3.12: Let f(-) and g(-) be non-decreasing and non-increasing,
respectively, withg(a) possibly infinite, afida) =0 . Then

b b x’
0< [ g@it@ - [ g@dlf@) < [ g@f, (3.18)
where
2 =min(inf{z : f(z) > 1},b),
bmaybex ,and ¢ ” and b ” may be replaced bya™ ” andb* 7, respectively.

Proof: The proof is the same as that of Lemma 2.5 up to (2.20). We have

> / s 2 Y / o] 2 Y / s, 619

since the facf(a) = 0 implies that

| st@)if@) = gt

Sk

for all k£, includingk = 1 . Equation (3.19) immediately gives (3.18) whenoo . The
case of finiteb follows similarly, as do the replacementsof “ ” ahd “” by “ ”and

“7. 1

Proposition 3.13: Let|g(x)| be of bounded variation and non-increasing for large |,
with f non-decreasing. Then

/ab g(x)d {M} _ l/ab g(z)df(z) +0O(1) (e — 0),

€ €
whereb may be infinite, and— o=, b — b~  are allowed.

Proof: Assumeb < oo . Sincggy has bounded variation, it suffices to asgume is
monotone. Ifg is non-increasing, the result follows from Lemma 2.5, the general case
following similarly. If b = co we may assume thay| IS non-increasing, since any
interval in which this fails may be disposed of by the above. In this case Lemma 2.5
again applies, completing the prool
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Letting f(xz) = = above, we obtain

d b
E:g@@:é/¢@m+ouy (3.20)

k= [%]—1—1

Theorem 3.14: Letg € G5, andu € S, 3, and one or both of the following hold:
(1) F'(0) = F"(0) = 0; p € Syp
(46) 9(0) =0; p € Ry,

whereF" is the spectral function of . L&t  bedhe -discrete operator corresponding to
i, andec. = g(A.) . Then the value function  @F(C;) satisfies

Je <c€ . @> = N(0,v), (3.21)

€ e—0

where
m :/ g(BE)(e?" —1)"Ydpu, v :/ g(E)ePE (P —1)2du.  (3.22)
0 0

Proof: (i) Letn.; denote occupation numbers on the symmetric canonical ensemble over
A.; then

Ce = Z Q(Eej)nej

andn,; ~ y(e ?Fa) , wherey(e=#¥) denotes the geometric r.v. with parametér . Let
{X(E)}¢~o denote independente="*) r.v.'s, and

X(E)=X(E) - EX(E)). (3.23)
Then

ot

s/oo E(lg(E)X(B))(du)t < S/Ooo 9°(B)|E(X(E) + £(X(E)))*(du)i.(3.24)

A calculation shows

O(e™F) (B — o)

e recxmnr) - {065) B

Hence the right side of (3.24) is bounded by
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>$>IU‘

) 00
o / )t + e /5 ¢ 7| (E) | (dp)’,

where 6 >0 is chosen such that) ¢ is not an atom pof (ii) for some
K >0,F(E)<KE? (E <¢), and (ii7) F is continuous fdf <6 . The second term

is 0 by Theorem 3.2. Fdr,; <9, @ =4 , andthus

1
€7\?
Ee' > T )

so that the first term is bounded by

(3.25)

N -1
. 5 €] . 1 T 1 -
IEILT(IJ clet g (E) < le@o 1 Ket E j o= IEILnOe4OGn €) =0. (3.26)

Fo=0 (3)'<s

Hence, the left side of (3.24) is 0, while

o< [ e(@E®P)du=. [ PEVEE)D

By Corollary 3.10 withk = = and=

N

%
/ E)(dp)? = N(0,v), (3.27)
with

00 2E BE
U:/ g(E)e”
0

(77 =1

Thusc, is asymptotically normal.
To calculate the asymptotic expectation f , we assume initially gilgat> 0
Then

S(Ce) = Z (eﬁEq _ 1 ( Z Z) eﬂEq _ 1

E,<6  E >6

with 4 chosen so that it is not an atom of , and the absolute value of the summand is
decreasing i’;; foE.; <6 . By Proposition (3.13) the second sum on the right is
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5/500 eﬁgE(E:)1d F(GE) B %/;O eggE(b:)ldu +0(1), (3.28)
while
Eej 8 E E 1 ) E
E.<5(egée]- _)1) :/0 (eﬂgbg_)l)d f(e ) _ Z/0 %du—{—h(e), (3.29)
where

E'(€)
pal<e [ om

€ efE —1) H

andE'(¢) = inf {E ) > 1} . IfF is 0 in a neighborhood of 0 then (3.28) holds
for6 = 0. Otherwise E'(¢) 0 and

Ei(e) Ei(e) F(E:(e))

c 1 c 1 c 1

h < — ——dF(F) < - —dF(F) = - de'
h(e)l < 6/0 (efE —1) ( )_6/0 E (E) 6/0 Ey(€) <

for somec > 0 and sufficiently small. The equality obtains as follows.FLet be thrice
continuously differentiable foEl <. F(-) is an inverselof(-), sifdteF;(¢) =¢

(0 < e < F(n)) (note thatF" is not generally invertible @ 7] , since it may be constant
on intervals). Hence equality follows formally by the change of variablesF'(E) ;a
rigorous argument involves the definition of the Stieltjes integral as a limit of sums over
partitions. Since’'(E) < KE?* (E € (0,7]),

Hence,

F(Ey(e)) !
/ L g <380 5. (3.30)
0

Combining (3.28-30),

E(c.) = 1/000 egE(E:)ldH o(e*%) - % + 0(5%) (e—0). (3.3

€

This calculation is much simpler if0) =0 (and hengd’) = O(E) near zero). By
(3.27) and (3.31),
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oo

= g(E)X(E)(du)t +0 = N(0,v),

€—>OS 0

completing the proof of7)

(#3) In this casg(E) = O(F) (E — 0) ,and

Ry = { 96T (o) (3.32)

with the same bounds fér(g2(E)X'2(E)) . Hence asymptotic normality of  follows by
Corollary 3.10, withk =1, [ = By Proposition 3.13,

Gl I

*_9(E)
E(ce) = /0 eﬁgE—ld €

00 eﬁE
Vi) = 1 | EF pdut o),

€ el — 1

completing the proof.l

83.4 Antisymmetric Distributions

Definition 3.15: The classH; is defined in the same wayGas (Definition 3.11),
without the condition on differentiability. Foy € Hs, 1,5 iR,3  without the O-
freedom condition.

The relaxed conditions above still allow proof of central limit theorems for observables
under antisymmetric statistics, since antisymmetric occupation numbers form a non-
singular family. In this case.; is Bernoulli (see §2.2), with moments easily bounded by

k
E(figF) < 5((%- + (ePPa - 1)—1) ) =0(ePP9) (k=0,1,2,...) (3.33)

where
-1
ﬁej = Nej — g(nej) = Nej — <€ﬂEfj + 1) .

By Corollary 3.10¢ = z g(Ee;j)ne; 1s asymptotically normal. By Proposition 3.13,
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F(E)

([ 9(E)
E(ce) = /0 (eﬂgE n 1>d

00 eﬂE
Vi) = ;[ Sppdnt o) (o).

€ ePE +1

Applying Proposition 3.13 to (3.34), we have

Theorem 3.16: Ifg € Hs andp € T, 3, then

where
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Chapter 4

Singular Central Limit Theorems, |

The integration theory of Chapter 3 deals with non-singular integrals in that, e.g.,
< JE(X?)dp is finite. This section, from a probabilistic standpoint, is an illustration of
the singular theory for the family of geometric r.v.'s arising under symmetric statistics.
The non-normality of these integrals, demonstrated in Chapter 5, is closely connected to
the "infrared catastrophe" of quantum electrodynamics.

The most convenient formulation (with a view toward applications) is in the language
of limits rather than integrals. By Theorem 3.14, we may assumeg(that 0

84.1 The CaseF'(E) =akFE? g(E)=1

With the assumptions of §3.3 still in force, this falls into the category of “weakest”
violations of the hypotheses of Theorem 3.14. We have

By =% vee) = o) *+0(2), (4.1

o0 =/l

(a definition which will hold henceforth); hence Theorem 3.14 cannot hold here. The
asymptotic distribution of, , though normal, has a new nature in that, after normalization
to standard variance and meap, is asymptotically dominated by occupation numbers
n.; Whose spectral valuds,;  are arbitrarily small. Normality is in fact not universal in
this situation, as will be seen later.

Note that in all “singular” sumg of r.v.'s to be considered, leading asymptotics will
depend only on spectral behavior near the origin; parameters related to global spectral
density will not contribute. We now consider a prototype.

where

Lemma 4.1: If F(E) =aE?(E > 0), andg(E) = 1, then

R. = ¢le) (ce - 3:;2) = N(O, %) (4.2)

Proof: Assume without loss that=1 . The characteristic functioR.of is
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Dp, (1) = E(e) 5( ol )
o) 2 1_65\/_
< >H{1_6M }

k=1

so that

IN®p (t) = — z;zﬁ/@z + i{ln( \/J) - In(l — e(*ﬂ\/ﬁﬂ'(ﬁ(e)t)) }

1
(4.3)
The branch of the logarithm is determined by analytic continuation from the real axis for
k large. We rewrite (4.3) as

— itg(e)m?

INn®gp (t) = e

B
+ <In<1 — e‘ﬂ‘/g> — In(ﬂ@))

k=1

2

(In (1 . e<—ﬂ@+i¢<ﬁ>t>) —In(BV/ek — igb(e)t))

]
+ {ln (8Vek) —In(5/ek - wb(e)t)}

k=1

s {m (1 e 2V) in(1 - o-ovEs00) }
k= [;

H{ h(BV ek — i (e) }

el
o=
[E—

+ {ﬁf—lnﬁf—w } (4.4)

o
Il
-
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I i {1(5\/&) — 1BV ek — i¢(€)t)}a
k

where

hw) = In[ L2, I(z) = In(1 — ).
(=)

In the first sumek ranges frofh  do0 , so that

kul {h(ﬁ@) — h(BV/ek — ms(e)t)} (4.5)
PG
- { > h/w@)(w(e)w}(l +0(6(e)) (e —0).
Similarly
(4.6)

o0

1BV ek) — In(BV el — z‘¢(e>t>}

EaNg
—N

={ >, l’(ﬁ@)@'é(é)t}(HO(cb(E))) (e 1 0).

k:H+1

Note thath’(8./z) = OYit1="" i hounded and monotone decreasingafar [0, 1]
By/z(ePV-1) ’

as isl'(8/z) = ﬁ , forz € [1,00) . Thus (3.20) applies to the sums in (4.5) and

(4.6), and (4.4) becomes

In®p (1) = ‘ﬁfg?”z +{1 / h'wﬁ)dwou)}(l+o<¢<e>>>z’¢<e>t

i {l/wz’(g\/z)dx + O(l)}(l +0(g(e)))ig(e)t

€)1

£
+ { In(3v/ek) — In(Bv/ ek — z‘¢<e>t>}

k=1

(4.7)

_ it ot { [ — B;de}mow(e)))
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4 igb(e)t)
- In (1 — (e — 0).
2" v
For smalle the arguments of all logarithms are figaic C , SO that branches are defined
by analytic continuation. |
Forz € C andlz| < 3, In(1—z) = —z — %2(1 +xS(z)) , wher&(-) is bounded.
Noting that

st _ ot
S G (4.8)
we have
4 o) _ (i) | (s
;In 1_5\/@ :—; NG + ;2524@ (1+0(1))
—ig(e)t H 1 o (€)*t? H 1
“ e 2\vi) e (E)urew 69
_ _;Q\S/(?t (2 % +0(1)>+¢§?;f <| % +O(1)>(1+0(1)) (c — 0).

Finally, replacing[%} by% we have

:

[

k=1 pe 202
thus
itp(e)m®  ig(e)t | ©* 2 2ip(e)t ¢
INn®r (t) = — — = - — 1) (4.10
Ner()= St 3 (T g g o) (410)
t2
= - 1) (e = 0).
N +o(1) (e —0)
Since ¢ # is the characteristic function N(O, %) , the Lévy-Cramér convergence

theorem completes the proofill
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84.2 The Case(gF’)'(0) >0, gF'(0) =0

In this case the “leading behavior” @f arises from its sifiall terms and can be
analyzed with use of the previous lemma. Recall that the convolution of distribution
functions is defined by

(F#Fy) () = / Fi(x — y)dFy(y), (4.11)

with the obvious extension to probability laws.

Lemma 4.2: Let{X;}°, be a collection of independent r.v.'s did }>°, be another.
Let S=3> X; and S'=) X; converge ae. IFy, < Fx/(r) for alt, then

Fs(aj) < FS/(SC).

Proof: This follows by direct calculation for finite sums, and in the general case from the
fact that almost sure implies distributional convergeniie.

The setés3 anfl, sz are defined in Definition 3.11.

Theorem 4.3: Letg € G andu € S, 3 , withy(0) > 0 and” the spectral functionof
Assume that”’(0) =0 anf”(0) =2a >0 . Then

ol )+ x(o42)

with m given by (3.22).

Proof: We prove this in three parts, first assumigg= 1, F"(0") <0 , and then
sequentially eliminating the second and first conditions.

. Assume

Then

and sincew € S, 3,
F"(E)<0 (0<E<)) (4.12)

for someX > 0 . Let
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FNE) = { ?Ef)); g § ’A\ , (4.13)
1 be the spectral measure definedmy( - ), ahd= ) n); the corresponding total
occupation number. Define j
g = | B | | e = FAE) | (4.14)
€ €
and let 7 = {E};}1<j<c be the ordered discontinuities &f(-) , the size of a

discontinuity being its multiplicity iF; . Lef® = {E%}1<j<  be the discontinuities of
[“TEQ] , SO that
o €J

Let A7 and A? be self-adjoint operators in Hilbert space with speEfra  Find
respectively, again with multiplicity. Note that

aE?
€

0<

_H.(E)<1 (EE€R), (4.16)

since fora,b € R,
0<la+0b]—{[a] +[b]} <1

Furthermore, ifE; ;) > E¢; , then, foE¢; < E < EZ; ) |

€j !

E2
contradicting (4.16). Thus,

By < EY (2<j< ). (4.17)
Also, by (4.16),

B¢ < E; (1<j< o). (4.18)

Let {n}icjco @nd {n¢}i<jcoc be the symmetric occupation number r.v.'s
corresponding tol? and?, and

n: = in:j, ne = ing (4.19)

total number r.v.'s. By Lemma 4.1 and the definitiodlof
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Note also that by (4.15),

(4.20)

5{<ﬂi’5/(§)n21>2} = ﬂ%a(e)z{v(n?l) +8((n61)2)}
_ ﬂ%(e)?( eXpVE) 1 )
© \(epsyD 1) (exgpym) 1)

1
= O — 0
(|Ine|) e=0"

W = ﬂqb(e)n?l = 0o,
\/5 e—0

with 6, the point mass at 0. If we define

so that

then (4.21) and (4.20) imply

@t = qe - we =22 <n271 o ) = N(0,1).

VG 3

The d.f. ofn®. is

€J

[] []
F(z) = ZP(nej =k) = Z (1 — e_ﬁE?f) e PREG = 1 — e FE I

k=0 k=0

which is monotonic in & . By (4.17) and (4.18),

Foy (@) < Fo () (G2
Fn()SF() (>

€]

2)
1)

We decompose

Fr=rFruFn,

where the setF!  corresponds to the dlscontmwtle%ﬂﬁ@] Jard

[w}the intersection ofF*’  and!’ s listed twice /it . Let
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(4.21)

(4.22)

(x € R),

(4.23)

to those in



SeI = {.7 E:] € f:]}a SeH = {] E:j S F:H}a (424)

and define

x] * «IT *
n, = anj’ n:t = Z M- (4.25)
jest jest
Note thatn?’ <n§”> is the total occupation number corresponding to the d.f.

_F\(B)

€

F(E)

(F:”(E) ! (aE* — FA(E))).

€

By their definitions,n} anch! , are identically distributed.

By (4.12-13), F*//(-) is monotone non-decreasing. Sjnees s :

F*][ c Slﬂa
and
(F*1y(07) = (F1)"(0%) = 0. (4.26)
By Theorem 3.14 and the abgve
. € . m*II
Q" = vy <”EH - T) = N(0,1),
where
o0 1
«IT __ 2
m —/0 eﬂE—ld(aE FME)),
S ﬂd(aEQ — FNE))
B 0 (eﬁE —1)2 .
The r.v.
n®! = Zn‘;] (4.27)
=2

hasi* termy,_,, while the" termeft in (4.19%i§ . Thus by (4.23) the d.f. of the

['* term ofn! is bounded from above by that of the corresponding temn in . Hence by
Lemma 4.2, letting",(z) denote the d.f. af ,

Fpi(z) < Fai (),

and similarly, by (4.24),
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Fra(x) < Fye ().

Since these inequalities are preserved under renormalization of expectations and
variances, we have by (4.20)

Foi(x) < Foi(x);  Fo:(2) < Flui (), (4.28)

where

. _BoE)( ., ar’
Q€ = <n€ — w) .

Thus by (4.28), and (4.22),

Fae(x) < Foi(2) < Foai () - Fyon (@), (4.29)

and by (4.29),
QF = N(0,1). (4.30)
But by the definition of)} ,

2 _ 9p2, +IT «11
Q0 = ﬁf/(ae) <nj] _am 3??27% ) n ﬂf}(g) (n*H _ me ) (4.31)

_ ng(e) n*] . (I7T2 B 3627’)’1,*]] + ﬂ \% U*II¢(€) Q*II
Ja \" 37 Jae v

The coefficient of)*/! approaches 0 and so the second term converges infjaw to . Thus
by (4.31),(4.30), the independencenpf ~ and  , and the identity/ of n)and

B(e) (nA_ aw?—:w?m*ff) - NOD).

\/E ¢ 3€ﬂ2 e—0
Now let
n> = ne —n) (4.32)

€ €

Using by now standard arguments, we conclude

< (@(A) - m>(A)> = N(0,1), (4.33)

where

Equation (4.32) implies
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\/E € \/E € 3e3?
Bole) [ - m*T m  ar?
* \/E<€(>\)_( € ?_36ﬂ2>>.
By the definitions,
2 00
m*T 4m — g—; = /A ﬁdF(E) =m~(N), (4.35)

since

am?

o0 1
- d(aE? = ==—.
/0 efl—1 (a ) 352

Because“% — 0 , the last term in (4.34) converge§to by (4.33) and (4.35). On the
other hand, the first term on the right of (4.34) converges to the standard normal, so that

B () (n - T) = N(0,1) (4.36)

\/E € e—0

completing part I.

Il. We now eliminate the restriction dii”(0)  and assume onlygiifa} = 1 . In this
case there clearly exists a spectral functigt( - ) corresponding to a distribution
p? € S1 4 such that (1) F(E) — F°(E) is monotone non-decreasing fibe R (2),
(F°)'(0%) =0, (3)(F°)"(0T) =a, and(4) (F°)"(0") < 0. The construction of such a
spectral function involves finding one with sufficiently negative third derivative which is
constant for all values of larger than some sufficiently small nurBbher 0 . The
function F° satisfies the hypotheses of Part I.

Analogously to (4.14), define

F(E)

€

F(E) - F°(E)

€

Fr=

€

(4.37)

Let 7 = {E;}1<j<o be the ordered set of discontinuities’of  afd= {E;}i<j<co
that of[@] . As before

F(E)

0<

- F(E)<1 (E € R),

€

so that
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E;<Ej  Eiy < Eq (4.38)
Let
Ne = Zn‘-j’ n. = Zn; (4.39)
=1 =1
be the total symmetric number of r.v.'s obtained fio(k ) Bh@d) , respectively, and
n! = n. —ne. As before we conclude from (4.38) that
Fr(2) < Fpe(2);  Fri(2) < Fri(2), (4.40)
where
PGL (n m))
Va
with R andR! corresponding similarly to? amd , respectively.
We make the decompositioF* = FnF*L | wher&! corresponds  to

discontinuities in[@] andgr ! tothoseﬁ (E)_GFO(E)} . ket anid  be defined
analogously to (4.25). By Theorem 3.14,

€ m*II
Tl (n:H _ ?> = N(0,1), (4.41)
with
- /OOO eﬁE )y d(F(E) - F'(E)); (4.42)
= [T aEm) - FE)

By the conclusion of Part |,

where
m* = / N 5E1 dF°(E)
g et —1
Hence
R = N(0,1). (4.43)
Asin (4.21),
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w.= 298, s (4.44)

Tle1
Ja

Since Fy1)(+) is continuous, a net of probability distributions which converges to
Fy0,1)(-) pointwise does so uniformly i . Thus by (4.44),

se = SURFN(1)(7) — Fri(z) | —0 0,

z€R
and
|FrexFw (x) — FyoaycFw, ()] = / (Fre(x —y) — Fyon)(z — y))dFw,(y)
(4.45)
< s [ @ = s =0
Also by (4.44),
Fnoy* Fw.(x) P Fro (),
so that
FrexFy, () 0 Fnoqy(z). (4.46)

Thus Lemma 4.2, (4.44), (4.40), and (4.43) imply
FrexFy (z) < FrieFw,(z) = Fr(2) < Fr(z) — Frnon(z) (2 € R),

so that, with (4.46), we have

R. = N(0,1). (4.47)

lll. In the general case we may assufite # 0 , by TheBrbfn Then
Ce = g(O)?’LE + (CE - g(O)nE).

By Theorem 3.14 (with a slight modification if the integrandoaf  below is not
asymptotically monotone),

vil ((CE — g(O))nE — %) 6?0 N(0,1),

where

00 N 00 . QGﬁE
S P OIS R D
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Together with the result of Part Il, this gives

i) o),

completing the proof.l
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Chapter 5

Singular Central Limit Theorems, Il

This chapter deals with the most singular families of geometric r.v.'s arising under our
hypotheses, those from spectral measures with non-vanishing density near 0. The
singularity of this situation fundamentally changes both the results and the proof of the
associated limit theorem. The normal distributions of integrals appearing in previous
cases are now replaced by an extreme value distribution whose parameters are entirely
determined by spectral density at 0. This will be shown in the prototypical case
du(FE) = dF(FE) = dE, and in general through an approach like that of Chapter 4. The
approximately linear behavior df(E) at 0 will be exploited to decompose into two
independent r.v.'s, to the first of which the prototypical case will apply, and to the second
Theorem 4.3.

The extreme value distributionis that with d.fe¢" . The normalized distribution,
with zero mean and unit variance, has d.f.

exp( - e<%”7)), (5.1)

where v = .577... is Euler's constant. For applications of this distribution to the
statistics of extremes, see [G].

85.1 Asymptotics Under Uniform Spectral Density

In this sectiorr., 1, ang are defined as before. We will require the following simple
lemma.

Lemma 5.1: Let{F.(-)}o be a net of probability d.f.'s, and
F.(x) g F(x) (x € R), (5.2)

whereF'(-) is acontinuous d.f. {Iz.(-)}.~o is any netof d.f.'s, then
limsupF,(z) * G.(z) = limsupF(z) x Ge(z)  (z € R); (5.3)
e—0

e—0

(5.3) holds as well for the lim inf.

Lemma 5.2: If F(FE) = bE forsomeb >0 ,ang(F) =1, then
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bl (%)
ReEE Cec — —————— #6767’_.
€ e—0

Proof: We may assumie=1 . The logarithm of the ch.iRpf s
iR, 30 5e 1 — e=fe
In®p (t) = In (5 (6 t< T )>> T ZI (1 —e ﬁE]-Het) (5.4)

where the branch of each term is principal for> 0 , and determined by analytic
continuation fromt > 0 elsewhere. Fixing

itIn(Be)

In @Rf(t) = 3

+ ) (n(1—e™9) —In(Bej) — In(1 — e 7977) 4 In(Bej — ite)) (5.5

+ (In(Bej) —In(Bej — ite))

+ (In(l — e Py —In (1 _ e(ﬂejJriet)) )

Let

T

h(z) = In (“”), I(z) = In(1 — ),

with branches as before. The function. ) is analytic at all points within unit distance
of the real axis interval0,1], anf-) is analytic at all points within distapce  of
[0,00). Denote these regions of analyticity by, and , respectively.t ¥e and
let| < 3. If z€[0,00), then

I(z —iet) = l(x) —ietl' (z) + R(x),

(z iet)
ln( 1—e=7 ) 1

( (ct)? T et|
e’—1

where

R(x)
(iet)?l'(x)

48



The termO (%) satisfies

O(e;:t:ll) <C

(e—iet_l) - ’
et—1
for someC' > 0 and sufficiently small values of the argument, and

o= -1 1 (5.7)

remains bounded for all> 0 , uniformly ine D; (in fact independently of ). Thus if
t # 0 is fixed, f#)__is pounded uniformlyim  fare D; aad sufficiently small, and

(iet)2l' (z)
i (IN(1 — e P8y — In(1 — e Peitiety) (5.8)
=[]+
= { Z ietl'(ﬁej)}(l +O(e)) = { Z eﬂ:t— . }(1 + O(e)) (e = 0)
=[x]+1 =[]+

which clearly also holds it =0 .
Similarly, one can show that forc R

3]
Y (In(L — ¢ %) — In(Bej) — In(L — ¢ P9 4 In(fej — iet)) (5.9)

=1
o1
=< : - — 1 :
zet; 51 Bej (1+0(e)) (e—0)
The summands in the last terms of (5.8) and (5.9) are decreagiag in , and Proposition
3.13 implies
= iet it =
[

and
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1
E

| i

Finally,

]

—
|
D)=

oo - -(IL) (T (5-%)) o

J=1 J=1

o) o8] 50 )

where we continue our convention on branches. Stirling's expansion gives

INT(2) = (z— %>|nz—z+ %In(%) +0<’%>, (5.13)
it 1 1]t
it 1] 1
:Inl“<1—5> + ([E +§>{In<

+%m[i]—ﬁ+g—§+0@ (5.14)

o))

7=

1
=InT’
(|5

€

—_

uniformly for argz < A <« . Thus

_ InP(l - %) B+ 0(e) (e —0).

Combining (5.5) and (5.8-14)

IN(®p () = InT (1 - %) +o(1),
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so that

it it
Pp, (1) 21“(1— E>(1+0(1)) 31“(1— E) (5.15)
The right side is the Fourier transform of the distribution withed £, , and the proof is

completed by the Lévy-Cramér convergence theordin.

85.2 Asymptotics for Non-Vanishing Densities Near Zero

Theorem 5.3: If p € S, 3, F'(0) =b > 0, andg(0) > 0, then

Bz
mie _o (0B
R, = €| c. — (<) = e ¢’
€ e—0

where
m(e) =m+ % In(%) , (5.16)
_ [~ _9(0) *g(E) —g(0)
_ /0 S d(F(E) - bE) +/0 S dF(E)
Proof: I. We assume initially that £) =1 and
F'(E)<0 (0<E<\ (5.17)
foral > 0. LetF”(0) = —a, F*(E) be asin 4.13, and
A
H, = @ bEeﬂ . (5.18)

Let F; = {E}}1<j<co be as in Theorem 4.3, af = {E?;}1<jc.c  be the discontinuities
of [%}, e, EY =9,

We have

~H(E)<1 (E€R") (5.19)

and

Efj SE; (1£j<o0), Eiiy)< E?j (2<j<00). (5.20)
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Let {n};}1<jcoo @nd{nl}1<jc0, i andn? correspond as beforeAb  &id (see
4.19). By the lemma,

_ e 21
QE e + 56 6?0 € (5 )
Let
W=l nls =t
j j
n’, :ank; n* :ank (e>0, j=2,3,4...). (5.22)
& = g =
The d.f. of en?; is
Fo (@) =1- L8 — 1- e 1 (5.23)
and thus
Webj = eni’j = 1—e 7. (5.24)

e—0

We subdivideF* as in Theorem 4.3 infg!  afAg! with &l defined as
before. Since

bE — FE)
_—— — 0
FA(E) FE—0 ’

for j € Nthereisam > 0 suchthatdf<e ,then

*] A ]
bE:, — FNEZ)

€

since

A
E: :inf{E’:F &) Zj}.

Thus ife is sufficiently small andl s fixed

E; e FY (j <keN). (5.25)
SinceF’(0) = b and by (5.17), there exist; >0  anhd 0 such that<sf E,,,
bE — LE®> < FME) < bE. (5.26)
Let j € N, ande be sufficiently small thati) equation (5.25) holds for Some and
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(ZZ) E:] < Ey. Then

: FANE
Ejj:Ejf:mf{E’: (6 ) zj}.

Together with (5.26) this implies

B = % L0 (e —0). (5.27)
Thus, as in (5.23),
Fen+(;y) =1- eiﬁ[%—kl} <%+O(€2)> — 1 — ef%x. (528)
< e—0
Let D(«) denote the exponential distribution with distribution functiene ** and

D= D(f)p(g)p(g)

Then by (5.24) and (5.28)

WP =en’, = Di; W) =en’, = D (jEN). (5.29)
¢ ej €—0 €j €j e—0
Let
b _ bj m(e)
Qe € <ne € )
n? =nb —nb,, n =nf—n*,
€j €]
and
Qv = (ni”f - —m(€)>, Qi = (n:’j - m(e)) (5.30)
€ €
By (5.20)
ne )anz;j(:E) (e>0,z€eR, j=2,3,...),
and hence
F @) <F @) (k=j+1), (5.31)
so that
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F J(2)<F y(z) (k=j+1). (5.32)

Let

Be
Q:=c¢ (ni‘ - %) (5.33)

Thus by Lemma 5.1

limsupFy. (z) = limsupFy:+F ,(z) = limsugip«F v(x)
e—0 e—0 €j QM e—0 Q’

<limsupFpix F v(z) = limsupF’ v+ F (x), (5.34)
e—0 Q* em0 WM QY

= limsupFyu () (xeR, jeN, k=j5+1),

e—0

where we have also used (5.29), (5.31), (5.32), Lemma 4.2, and (5.30).

We haveQ?’ « W) = Q! , and thus

€ !

Q’Qb,y(t)‘bwgg(t) = D (t) (e>0,teR, jeN). (5.35)

€

By (5.21) and (5.24),

. . -1
(I)Qz;(t) — I <1 — @>, @Wb_(t) ejo (1 — %) (t €eR, jeN),

_8, .
the right sides being characteristic functions of * m@f;) , respectively. Thus
bit bit ;
D i(t) — [1-——=|T(1- = | =d/1). 5.36
g<>ﬁ0< @7)( ﬁ> 16 (5.36)

Since Q)g( -) is continuous at 0,

where

and
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limsupF,,(z) < F(x) (z €R, jeN). (5.37)

e—0

Thus by (5.34) and (5.37)
limsupFy, (x) < F/(z) (j € N). (5.38)

e—0

On the other hand, by (5.36),

. 76,%5
Since the left side of (5.38) is independenj of
8,
limsupFg. (z) <e " . (5.39)
e—0
By (5.20),
Fnz;j(:n) < Fu (2) (e>0,z€R, jeN), (5.40)
so that
Combining (5.21), (5.41) and (5.39) yields
_B, —8,
e’ = Iirré Fp(z) < IimiQf Fo: (z) <limsup Fg: (z) < e’
€— €— e—0
so that
8,
Fo:(x) g e’ (x € R) (5.42)
and
8,
QF = e°". (5.43)
We now form
n' =nt + (5.44)

wheren’! andh! are defined as in (4.25). By arguments identical to those following
equation (4.26),n is identically distributed with}, the occupation number

corresponding té’e—A . We have analogously (by Theorem 4.3)
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Q1 — \(/6)55( T ﬁ) 6?0 N(0,1),
where
N d(bE — FN(E)),
0
€
ole) = [Ine|
By (5.33),

Hence by (5.45) and (5.43),

e(ng_ (%

Let

As in (4.33),

with m~ () andv”(\) defined as before. Thus,

_m(e) — el n o i
) o= 5

m*II b

€ 195}

(5)-

+e <n>()\) —

By calculation,

«IT

65

hence the second term in (5.50) converge&to . By (5.48) and (5.50),

56

)

(5.45)

(5.46)

(5.47)

(5.48)
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(o m)
e = o(e) ( ¢ € )i?o ' (5.52)

Il. We eliminate here the restriction dr’(0) . As in Theorem 4.3ulet S 5 have
spectral functiod(-) such thdt) F(E) — F°(E) is monotone increasing, ifii)
(F%Y(0) = b, and (ii7) (F°)"(0) = —a < 0. LetF*(-) be defined by (4.37). We
employ the definitions between (4.37) and (4.40). Equation (4.38) holds here also, and
yields

Fp(z) < Fge(x) (x €R, € >0), (5.53)

Rjze(n:—m£€)>, R6:e<ne—m£€)>.

We use arguments like those in (5.26-27) to conclude

where

Je . JE
Ee = 7t O(e?), B = BT O(e?).
Thus, as in (5.27-29),
Wy=en, = D, W* =en', = D, (5.54)
€] €] €—0 €] €j €—0
wheren v andn*, are defined asin (5.22). Asin (5.34),
€J €j
lim ig\f Fp:(z) < lim ig\f Fri(x), (5.55)
where
R/ =¢ nj—M n =n. —ne..
€ € € ) € J
In (5.55), we have used Lemma 5.1, and
FRWV_(J:) < FRZ(x) JeN k=j+1), (5.56)
where

oL n _nv_m(e)
RE_O’(E)<€ € € )

and R;‘Jy is defined similarly. By Lemma 5.1 and (5.55)
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lim ig}f FrexFy,(z) < Iimigf P+ Fy, () :Iimirgf Fr (z) (5.57)
where
We; = en; (e >0, jeN).
Definen?! andn?!! asin (4.25), with respect to the decomposition

Fr=F" v 7,

where F*! corresponds to the discontinuities [ﬁ@] anf! to those of

[M} By Theorem 4.3,

‘%755 (@H - m:”) = N(0,1), (5.58)

with m*/7 asin (4.42). The measyié satisfies the hypotheses of Part |, so that

x] Bz
e(njf - m—(f)> = e 7, (5.59)
€ e—0
where
Te)=m" + M = /OO L WF(E)-bE).  (5.60)
m(€) =m 3 ’m_oeﬂE—l . .
Combining (5.58) and (5.59) yields
*]
R =€ <n2‘1 _m (€)> +e (njn _me) + m*I(e)>. (5.61)
€ €
We have

m(e) . m*](e) _ m*II

so that by (5.58), the second term on the right of (5.61) converggsto , and

Bz

R = e ", (5.62)

e—0

By Lemma 5.1, (5.57), (5.53), and (5.62),

Bz

e’eT*FD(ﬂ) = liminf Fg.«Fyy, () <liminf Fg, () <limsup Fg,(z) (5.63)
b

e— e—0 e—0
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e—0
The limit j — oo yields
FD(%) (:C) j_>—o>o Fgo(x) (5.64)
so that
B
R, =e°"’

lll. We finally consider general for whigh is notidentically 1. We have

Ce = 9(0)ne + (CE - g(O)nE).

By Theorem 3.1,

¢(€) (ce — 9(0)ne — %) = N(0,v1), (5.65)
with
Hence
e(ce - m€<€>> . ((ce — g(0)ne) — %) be (Q(o)ne _ M) joe_”(%ba
(5.66)

completing the proofl
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Chapter 6

Physical Applications

In this chapter we examine particle number and energy distributions in certain
canonical ensembles. The means of energy distributions provide generalized Planck
laws; the classical "blackbody curve" will be shown to apply in several situations.
Normality of observables is however not guaranteed, and the extreme value distribution
arises in one-dimensional systems.

To simplify the discussion, we consider only particles with chemical potential 0
(whose energy of creation has infimum 0), e.g., photons and neutrinos. We study these in
Minkowski space and Einstein space (a spatial compactification of Minkowski space; see
Segal [SeZ2]), two versions of reference space. The canonical relativistic single particle
Hamiltonian in its scalar approximation will be used in both cases.

We study Minkowski space ensembles in arbitrary dimension. The Hamiltonian is
continuous, and a net of discrete approximations based on localization in space will be
introduced. Einstein space will be considered in its two- as well as its (physical) four-
dimensional version. The approach in these cases can be used to establish photon number
and energy distributions in a large class of Riemannian geometries, once the relevant
wave equations are solved.

86.1 The Spectral Measure: An Example in Schrédinger Theory

We begin with remarks about obtaining the spectral measure for an operator  with
continuous spectrum, acting in Minkowski space. An illustrative example of such an
infinite volume limit is in [Si].

Let H be an operator of?(R") . Letz  denote the characteristic function of
Br ={z : |z| < R} and7r be its volume. Suppose that forgadl C>°

Ag) = Jim 73" Tr (xrg(H))

exists. This defines a positive linear functional(i , and there is a Borel méasure
defined by

Ag) = / g(Ndp(N).

This measure is thegensity of states. It is the spectral measure associated with an infinite
volume limit, and the term is reserved for situations involving Schrédinger operators.

If His a Schrodinger operator (relevant in our context for the statistical mechanics of
non-relativistic particles), we give a criterion for existence of a density of states [Si].
Assume the dimension. ~ of space is greater than 2, and define the space of potentials
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=01 & Jiz—y|<a

K, = { V:R" =R :lim [sup |z — y|_”_2|V(y)|dy] = o}.

The space&,, are more relevant to properties of Schrédinger operako#sl than
areL” orlocall? spaces. We have

Theorem 6.1:(see [Si]) LetH = — A+ V(x) act onR™ , with/ € K,, . The density
of states exists if and only if

L, (t) =lim 75 Tr(xge )
R—oo 7
exists.
This density of states is the physically appropriate spectral measure for statistical
mechanics.

86.2 The Spectral Approximation Theorem

Let g € G, andp € S, 5 be a spectral measure with spectral fundtion)  A.let
andn;; be the -discrete operator and occupation number r.v.'s corresponding to . Let
{Ac}. be a net of discrete operators with correponding occupation numbers , and

o0

Ce = Zg(Eej)nEja (61)

J=1

with ¢, defined similarly. We now ask, How similar must the specttd.of 4nd  be in
order thaic, and. coincide asymptotically in law?
Let F. = {E;}%2, be the spectrum of, N(a,b) the cardinality®fN [a,b] , and

Ce(aa b) = Zg(Eej)X(Eej)nej
k=1
be the truncation of, witly(E£) the characteristic functioiagb] . We make similar

definitions forF,, N!, and. , with respect#f . We will assume that there are positive
extended real function8;(¢) arfg(¢) such that

N V((0,E(€)))
O AR
o V(e (0,F(e)))
) B AR ejol
7 — 0
(#i7) El(e)gs’lEJgEg(E) NOE | o

(iv) N.(0,E) < MN'(0,MoE) (0<E < E(e))
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for someM;, M, > 0 , independent ef .
We omit the proof of

Theorem 6.2: Under these assumptions, if(0) =0 then add have the same

asymptotic law i.e.,
1 !/
R.=——|c - m (6.2)
V(ce) €

R = 1 (Ce B m(e))
V(ce) €

have identical (normal) asymptotic distributions, where

> g(E)
m/:/o Sy, (6.3)

and

and
m(e) —m' = o(1) (e — 0).

Corollary 6.2.1: Conditions(z) and (iz) may be replaced by the generally stronger
ones

(i) eV(ci(0, Er(€))) — 0

(i7")  eV(cL(FEs(e), o0)) — 0.

86.3 Observable Distributions in Minkowski Space

We now construct the canonical single particle Hilbert space ferl -dimensional
Minkowski space; the constructions on other spaces are made similarly. All particles will
be treated in scalar approximations, so fields will be approximated by scalar fields, and
spins by spin 0. Distributions will be studied in the frame in which expected angular and
linear momentum vanishes.

We letn dimensions correspond to position

(ZL‘l,ZEQ,...,ZL‘n) =X

and one to time, =t . Total space-time coordinates are
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(T, @1, ..n s y) = T

the speed of light is 1 here.
The field¢( - ) of a single Lorentz and translation invariant non-self-interacting scalar
particle satisfies

Ap(F) — pu(Z) = m*¢(), (6.4)
wherem is mass, subscripts denote differentiation, and
0? 0? 0?

A= ——S+-—+... .
8x%+8x% * ox2

Sincem = 0 by assumption, we hae)(z) = ¢ (7)
The single particle spad¢  consisting of solutions of (6.4) is formulated most easily
in terms of Fourier transforms. We hage- ) € H  ¢(f-) s real-valued and

6(7) = (2m)} / e B () d, (6.5)
Rn+1
where
k= (ko,ki,....kn), dk=dkodki...dk, (6.6)
and
k-5=kowo— ) ki

Above, F'( -) is a distribution
F(k)dk = {8(ko — [K[)f(k) + 6(ko + k) F(—K)}k "k,

where

JK) € L*(R"™); (6.7)

vk

k=(ki,....kn), |k|= (Z/&) &k = dkdks. .. dk,, (6.8)

§(-) denotes the Dirac delta distribution, afig- ) is the complex conjuggté-of
The inner product of (- ), fo(-) € H (weusgd-) afid-) interchangeably) is

f1(K) f2(K)

= k. .
(f1, f2) . K ————d (6.9)

Since (6.5) is hyperbolic, solutions correspond to Cauchy data; we have
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fk) =

1 . .

A K[ emoos—i [ e aunt. (610

2(2m)>2 R R

The state space thus consists of admissible Cauchy data, with time evolution dictated by
(6.6). Since solutiong(-) are real, the most convenient representatién of , which is

complex, is as Lebesgue measurable functiphs)  R'n satisfying (6.7), with inner
product (6.9). In this representation the Hamiltondas %% is multiplicatiok by

The operatod has continuous spectrum, necessitating a discrete approximation in the
formation of a density operator. To this end, we localize in space, replating with the
torusT” . Asymptotic distributions are largely independent of the compact manifold used;
the sphere will prove to give the same asymptotics.

Let A, be the single particle Hamiltonian on the Tofifs of V0|l:$-lglé%i , with
spectrum

F. = {E<Zz§> : (iy.nnyin) € (Zﬂﬂ} = {E,;}.. (6.11)

(We neglect the 0 eigenvalue, which is without physical consequence.) The particle
number and energy r.v.'s correspondingito  in its canonical ensemble (at given inverse
temperature) will be

ne(a,b) = > neg, Adab) =Y Egne.

aSEstb (ISEEJ'SI)

Definition 6.3: K ( - ) denotes the modified Bessel function of the second kind, of order
1.

LetA. be the -discrete operator corresponding to the spectral mgasure with spectral
function

T2 E"
n+2
r(%)

which is the volume of an -dimensional sphere of radius

F(E) = (E>0), (6.12)

Lemma 6.4: Letl,(x) be the number of non-zero lattice points within a sphere of radius
x inn dimensions. Then

a) There is a numbéd,, such thatr) < M,z"
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b) For eachn

— (6.13)

Proof: Statementa) clearly holds far large and small, and both sides are bounded for
intermediate values. Assertigh)  states that the ratio of the volume of a sphere to the
number of its lattice points converges tol.

For brevity and convenience we define the following real functions, which are
fundamentally related to asymptotic means and variances in canonical ensembles on
Riemannian manifolds. They are quantities determined by "global” properties of the
appropriate spectral measyre , and thus arise in those less singular situations in which
asymptotics are determined by the totality.of  rather than its behavior near 0.

Definition 6.5: Forn =0,1,2,... we define

b n—1 b n—1,0F
E E" e
:l: = _— :l: = _—
m,, (a,b) = /a T dFE, v, (a,b) /a (eﬂEil)QdE'

The Riemann zeta function is denotedby) , and

SE]

nm
n+2 )
r(=2)

In the (important) study of total particle number and energy, we will consider
vE = vE(0,00) andmE = m(0, 00) , which can be calculated explicitly:

ay =

m;:w (n=2,3,4,...)

1g:£@%%;2 (n=3,4,5,...)

i = {HO =277 (n22)

" L(n2)57% (n=1)
L(n)¢(n—1)(1 -2 (n=3)

v =< B72n2; (n=2)
(28)7 (n=1).

Theorem 6.6: Under symmetric statistics,
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1) fa>0 orifn>3,

€ e—0

\/E<ne(a, b) — iy (a,0) + 0(1)> = N(0, a,v, (a,b)) . (6.14)

(2) fa=0,b>0andn =2,

e |, _agmy (a,b) +0(1) ki
‘/||n6|< (0, b) : ) jON<0, ﬂ2>. (6.15)

B) Ifa=0,b>0andn=1,

2 2 T T
e[ n(0,b) — =In(1—e ) — =|In(Be)| | = 20 TK (2¢ 7). (6.16)
56 56 e—0
Note that (6.16) is entirely free of the global parameters of Definition 6.5.

Proof: We first show the hypotheses of Theorem 6.2 to be satisfied in cases (1) and (2).
Let N. andN/ correspond as before4p  and , and

Ei(€) = \/e|Inel7, By (e) = oo.

In case (1) (ia = 0 ), the lowest eigenvalueAlf is

Eél = 0(6%)7
while
N/(0,FEy(e)) = O <E12€(6)> = O(\/|In e|). (6.17)
Hence
V0, Bi(€)) < O(e *y/[Ine]). (6.18)
In case (2),
V(r,(0, Ei(e))) < O(e 1/IIne]). (6.19)

Equations (6.18-19) prove (6.14). Lemma 6.4 gives (6.15) and (6.16); hence the first two
cases follow from Theorem 6.2.

Ifn =1 anda = 0, A, has spectrum
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Fe ={e, €, 2¢, 2¢, 3¢, e, ... }. (6.20)

Hence by Theorem 5.3 and the double multiplicities, the left side of (6.15) converges to
the convolution ot  with itself, which is on the righll

If n. = n.(0, o), the distributions are explicitly

ﬁ(ne _ nie(mmt + 0(1)> = N (0, nic(n — D2 Df) (6.21)

6nr<n7+2)6 ﬂnl‘*(n—;?
if n>3;
3
|I:e| (” - %) E?ON<O’ %)
if n=2; and
c <n _ é]ln (g@;) = 20T K (267)
if n=1

For0 <a<b< oo, letAa,b) represent the total energy of bosons in the above
ensemble whose energies lie between tand .

Theorem 6.7: In a boson ensemble in+1 -dimensional Minkowski space, the
asymptotic energy distribution is given by

Je <A6(a, p) — CaMnii(a:0) + 0(1)> = N(0, v, o(a,b)).  (6.22)

€ e—0

Proof: The hypotheses of Theorem 6.2 can be verified as abovk.far b) ; the result
then follows from Theorem 3.14 and (6.128

Definition 6.8: If A.(a,b) denotes a symmetric or antisymmetric energy r.v.,

_ E(Ad(a,b))
De(a,b) = £(A.(0,00)) (6.23)
is the energy distribution functiorcorresponding 3. (a,b) . If the limit
D(a,b) = lim £Ac(a:0)) (6.24)

=0 E(Ae(0,00))’

exists, it is theasymptotic energy distributionof the net. [D(0,F) is absolutely
continuous,
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d(E) = diE D(0, E)

is theasymptotic energy density of the net.

Theorem 6.7 gives the asymptoticse@A.(a, b)) : Af= A.(0,00) ,then

\/E<A€ _ mk(n + Dt +0<1>> = N(0,v),

Eﬂn+1p<n7+2) €e—0
where
_ n(n+ DI¢(n + )2 . (6.25)
ﬂn+2r<n7+2)
Corollary 6.9: The asymptotic energy density of the Minkowskt 1 -space boson
canonical ensemble is
En n—+1
dp(E) = b (E > 0). (6.26)

(PP —1)n!¢(n + 1)

We now find the asymptotic fermion distributions correspondindi.to

Theorem 6.10: Letn.(a,b) be the fermion number in the Minkowski space canonical
ensemble. Then

€ e—0

¢E<n6(a, p) — QM (,0) + 0(1)> = N(0,anvi(a,b)). (6.27)

Similarly, for fermion energy,

\/E<A (a b) _ a”m:br-&-l ((I, b) + 0(1))

= N(0,anv, 5(a,b)). (6.28)

€ e—0

Hence if A, = A((0, 00)

ﬁ(Ae _ntnd(n+ Dri(1 =27 + 0(1)> = N(0,v), (6.29)
eﬂ”HF(”T“) €—0

with
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n(n+ DI¢(n + )73 (1 —277)
/3n+2p(n7+2)

Corollary 6.11: The fermion ensemble in Minkowski- 1~ -space has asymptotic energy
density

(6.30)

Enﬂn—&-l
dr(E) = (efF + 1)n!¢(n+1)(1 —277)" (6:31)

86.4 Distributions in Einstein Space

We now consider distributions in two- and four-dimensional Einstein space,
U? =8 xRandU* = S® xR . In four dimensions the single particle Hamiltondan
is the square root of a constant perturbation of the Laplace-Beltrami operator for which
the wave equation satisfies Huygens' principle.

We first consider Einstein 2-space, with

= — .32
€= (6.32)
whereR is the radius of the spatial portish . Cleakly  has spectrum (6.20), and the
R — oo asymptotics follow directly from Theorems 6.6-10.

Since the discrete pre-asymptotic operatpr  is of more direct interest here, we will
analyze associated distributions more carefully. We define two combinatorial functions.

Definition 6.12: If 0 <a < b < oo, andl € Z™ , then

b= Y J] e+ (6.33)
n(-)eP(ab) a<i<h
where
Bya,b) = {n( ) € N+ Y inli) = z}, (6.34)
a<i<b
and NV, Iis the set of all functions( - ) : Z* N [a,b] — Z% . Defiqﬁ)(a, b) as the
number of ways of expressidge Z*  as a sum of integers in the inferval , No single

integer being used more thamce

We present the following without proof.
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Theorem 6.13: If 0 < a < b < oo andA.(a, b) is the boson energy in Einstein 2-space
at inverse temperaturg > 0 , théx.(a,b) is concentrated on

= {e] : ] c Z+}, (635)
and
N a.ble— P
P(A(a,b) = ) = P(@0e (lezZb), (6.36)
Kp
where
= H e Py~ (6.37)

If A, represents fermion energy, thpl(ﬁ) IS replacedl(@y Japd by

0
= [J@+e ) (6.38)

7=1

The R — oo limits of the two-dimensional distributions are specializations ofithel
casesin 86.1.

Proposition 6.14: As %:R—>oo, the asymptotic energy densities of bosons and

fermions in Einstein 2-space are

63 12E3?
dp,(E) = ————; dp,(E) = —————.
5 (E) (efF —1)m2’ r(E) (ePF + 1)72
We now consider distributions in Einstein 4-sp&cex R . The Hamiltadjan acts as
= 8T (where 7 is time) on the Hilbert space of solutions of the invariant non-self-
interacting scalar wave equation. It has spectei,) = {ne : n € N}, ne having

multiplicity n?.
Proposition 6.15: If 8 > 0 thene #5(4) gng—A4lr(4)  gre trace class.

Proof: By Proposition 1.4 it suffices to shaw?®4 s trace class; we have

o ) ﬁe 1
tre P4 = Z]Qe_ﬂe] = eﬁe—j—3 < oo. N (6.39)
‘= (e 1)

Note that
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Kp = tre 0040 — TT(1 — e 0e) 7 (6.40)

1z

.
Il
—

(1+ %)

2

Kp = tre P40 —

.
Il
—

For completeness we derive the exact distribution of energy in terms of the following
integer-valued combinatorial functions.

Definition 6.16: If 0 <a <b<ooandl € Z*, let
() _ n(j) + 572 -1
p’(a,b) = > ( 11 ( 2 , (6.41)
n(-)eR(ab) \a<j<b
where
Ri(a,b) = {n( ©) € Ny Z n(i) = },
a<i<b

Cc

d) denotirg choaeke (j.t(ézf(a,b) be the

number of ways (without regard to order) of expressiagZ™* as a sum of integers in
[a,b], each integej  being used no more tjtan  times.

with MV, as in Definition 6.12, anté

Theorem 6.17: The Bose energi\.(a,b) in Einstein 4-space at inverse temperature
B3 > 0, is concentrated oeZ™, and

p(a, b)e=

P(Ac(a,b) =€l) = e

(leZ"); (6.42)
in the Fermi casg’”’ s replaced by’ , alig ~ Foy.

We now consider asymptotics of Einstein-space distributions. Denot by ¢ the -
discrete operator corresponding to the spectral measure  for Which = %3 . Let
N(0, E)) be the cardinality of 4.) N (0, E) , with the analogous definition g0, F)
relative toA, .

Lemma 6.18: If e > 0 andE > 0, thenV,(0, £) < N5(0,2E).
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Proof: We have

4F3
5(0,2E) = | — |,
€ ( ) 362
while
L, e ([E
N(O,E) =Y #A==|=|||=|+1]|2]=]|+1]). (6.43)
= 6| ¢ € €
We have
E E ’ E ’ 4E3
€ € € 3€
and equations (6.42-43) imply the resulk.
Lemma 6.19: Let n.(0, E) be the boson number correspondingAto in Einstein 4-
space. Then
V(n:(0,/¢)) —0 (6.45)
and
(0, F
sup /( ) -1 —0 (6.46)
E>\/e 63(0’E) €0
Proof: We have
[cﬁ Pe(6))3 d 1
V(ns(0,/€)) = < IV (647)
= (eBel6)} _ 1)2 =1 (Be(65)%)?
85\/E /51? 2
< — x 3dx
— (Be)? o
3elee s
= T’
from which (6.45) follows. Equation (6.46) is implied by
E3
5(0,F) = | — 6.48
4(0,B) = | = (6.48)

and (6.43).
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Lemma 6.20: If 0 <a < b < oo, then
Ne(a,b)

SN 1
N/, N'y(a,b) e0 7
and
EV(nl(E,00)) —0 (6.49)
uniformly ine .

Proof: The first assertion follows from (6.46). The second follows from the existence of
fixed ¥, E* > 0 such that

E
N.(E,E') <2 gg,(?, E1> (e<e, E*<E<E <),
and the fact that
V(s (E, o)) 0 (6.50)

uniformly ine. ®

Theorem 6.21: The boson number in Einstein 4-space satisfies

@<n€(a,b)—m(6>> — N(0,v),

€3

where

b 2
m(e)z%/a egf dE +o(1) (e —0) (6.51)

and

1 b E2 OF
v=3 | b
2 a (eﬁE - 1)2

If n. represents fermion number, each—* is replaced by “

Proof: This follows in the Bose case from Lemmas 6.18-20, Theorem 6.1 and its
Corollary, and Theorem 3.1
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Theorem 6.22:The Einstein 4-space asymptotic boson and fermion number and energy
densities are identical to those in Minkowski 4-space. Precisely, equations (6.14), (6.22),
and (6.27-28) still hold.

Corollary 6.23: The asymptotic energy densities of Bose and Fermi ensembles in
Einstein 4-space are

15E3 64
dB4(E) = (GﬂE - 1)7_(_4

120E3 34
dF4(E) = ﬂ

7(ePF 4+ 1)t

86.5 Physical Discussion

The requirements of localization in physical (as well as momentum) space result in
the approximation in 86.2 of the Hamiltonian for massless scalar particles in Minkowski
space. There seems to be no direct way of discretiZiid) without refereAdce to
The r.v. n. is interpreted as boson number inman -dimensional torus of volume

V= @ If n > 2 the expected number per unit volume is asymptotic%& ; the
same density occurs for Einstein 4-space (Theorem 6.2%).=Ii the mean density of
photons in the energy intervi, b] s asymptoticéiﬂ%ﬂ (e —0) , and thus large (and

R-dependent) in Einstein space and infinite in Minkowski space. Since asymptotic
density is independent &f , the divergence clearly arises from bosons with effectively
vanishing energy; this is an effect of Bose condensation, in which large numbers of
particles appear in the lowest energy levels. The corresponding spatial energy density is,
however, finite according to Theorem 6.7, which gives mean density

Es E
Dnzé/ o dE.
2opir(ng2) o -1

This divergent density of low-energy bosons with finite corresponding energy density has
an analog in the "infrared catastrophe” of quantum electrodynamics (see [BD], §17.10), in
which an infinite number of "soft photons” with finite total energy is emitted by an
electrical current. The extreme density is correlated with the lack of normality in photon
numbers.

The energy distribution of bosons in a Minkowski- 1 -space canonical ensemble in
(6.25) is the “Planck law” for such a system. An observer of scalar photons measures the

proportion of photon energy in the frequency interval, v+ Avj to be

h(v+Av
f]w(+ )dB(E)dE, with h Planck's constant.  Analogously, (6.31) gives the

corresponding law for fermions; in an ensemble consisting of neutrinos, the proportion of
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. _ _ E+AE
total neutrino energy observed[ifi, E + AE] is trﬂs dr(E)dE . Note that the

Planck laws for Einstein 4-space coincide asymptotically with those in Minkowski space;
this obviously also holds in one dimension. This indicates that the cosmic background
radiation expected in an approximately steady-state model of the universe is largely
independent of the underlying manifold. The specific correspondences in this chapter are
a consequence of the physical identity of Minkowski space and ihe- o limit” of
Einstein space of radius
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Chapter 7

The Lebesgue Integral

In this chapter we introduce a natural and useful generalization of the notions in
Chapter 3. Lebesgue integration of r.v.-valued functions on a measure space is the
maximal completion of Riemann integration. The step from Riemann to Lebesgue
integration shifts the focus from the domain to the range of the integrated function;
indeed, the ordinary Lebesgue integral is a Riemann integral of the identity function on
the range space with respect to the domain-induced measure; this viewpoint will be used
here.

The present integration theory is in fact interpretable as a formal extension of the
theory of semi-stable stochastic processes (see [La, BDK]), with an abstract measure
space replacing time. The r.v.-valued functi®dn  being integrated yields an r.v.-valued

measure M defined byM(A) = integral of ovdr ; this measure is clearly a

generalized stochastic process. Indeed, in the notation of this chapte(/ )} ;cr is a
t

collection of independent standard normal r.v.'s, tj]ﬁoep((t)(dt)l/2 is simply Brownian

motion.

The advantage of the present approach to that of standard integrals of distribution-
valued random functions (e.g., “white noise” ) [Che,R1,V] is that it does not require the
existence of a metric (or smooth volume element) on the underlying measure space.
Precisely, the present integration theory would, on a Riemannian manifold, be equivalent
to (linear) integration of an r.v.-valued distribution with covariance

E(X(AM)X(A2)) = V(X(A1))o(A1, A2) (M €EA).

(Here,6 denotes the point mass\at in the variaple ) However, an abstract measure
space generally has no such object.

A novel aspect of the Lebesgue integral is the use of a non-linear volume element
¢(dp). This may seem rather ad hoc; but in Chapter 8 the Lebesgue integral is shown to
be isomorphic to a linear integral over functions with range in a space of logarithms of
characteristic functions.

Lebesgue integration is the natural environment for detailed study of integrals of
independent random variables; however, aside from proof of associated fundamentals
which will comprise most of this and the next chapter, the approach here will be
relatively goal-and-applications oriented. Further on, the measure SpaBe 1) will
be the spectrum of an abelian von Neumann algebra of quantum observables.

The material in the next three chapters will be largely independent of previous
material, and the probabilistic content stands on its own. The proofs may be omitted on a
first reading.
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87.1 Definitions and Probabilistic Background

We will often deal with normalized integrals (sums) of random variables with infinite
variance; the resulting limits will depend strongly on the tails of the integrated
distributions. We recall the bare essentials of general limit theorems for sums of
independent random variables; see [GK] for details.

In order to formulate the most general central limit results, we define the Lévy-
Khinchin transform of an infinitely divisible distribution. Recall every such distribution
v has characteristic functich = ¢¥ , whepe is continuous and vanishes @t The
book of Loéve [Lo] has a proof of

Theorem 7.1: The distribution v is infinitely divisible if and only® = e¥ , whafe
is given (uniquely) by

¢(t):i7t+/oo <em—1 it )1”2da(m), (7.1)

o 1+ a? x?

withy € R andG is a non-negative multiple of a d.f.

The pair(y, G) is theévy-Khinchin transform of . Note this is additive, in that if
v; has transfornfy;, G;) (i = 1,2) , thenxwv,  has transfarm+ 2, G1 + G2) . It can
be shown that the transform is continuous from the space of distributions in the
topology of weak convergence, to the paiysG) in the topolo@®/of  crossed with the
topology of weak convergence.

Let {X}, 1<n<oo, 1<k<k, be a double array of independent random
variablesk, = oo is allowed.

Definition 7.2: The variablesX,, arnafinitesimal if for every> 0,

sup P(|Xnp| >€) ,— 0.

n — o
1<k<k,

For any monotone functionsG,(x), G(x) of bounded variation, we write
G, (z) = G(z) if the same is true of the corresponding measurés' on

Lemma 7.3.1: Let {X,} be a sequence of independent r.v.'s. In order Xha,
n=1

converge weakly and order-independently, it is necessary and sufficient that

00 X72L 00 X,
ZS(HX?)’ ;5<1+Xg> (72)

converge absolutely.

Proof: By the three-series theorem, order-independent convergence above is for any
T > 0 equivalent to absolute convergence of the series
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Z/IPT Z/|m dFy( Z/|m PdF,(x (7.3)

whereF,, is the d.f. oX,, . But absolute convergence of (7.3) implies convergence of the
first series in (7.2). Thus proving absolute convergence of the second series reduces to
the same for

Z /|< (1fx2 —:c>an(:C) = —Z/|< ﬁdﬂb(m). (7.4)

Convergence of the latter follows from that of the first series in (7.2).

Conversely, if (7.2) converges absolutely, so do the first and third series of (7.3),
while convergence of the middle series follows from a subtraction argument, as in (7.4).
[

Henceforth,F,,;.(x) will denote the (cumulative) distribution functionXof; , and all
infinite sums must converge order-independently to be well defined. Assume that
{Xnk}gil form an infinitesimal array. The proof of the following theoremigr  finite is
in Loeve [Lo]; we extend it to generial

Theorem 7.3: LetS, = > X,;. In order thatS,, converge weakly to a distribution
3
it is necessary and sufficient that
G, = G, v —7. (7.5)

Here

kn o0 kn xT 2
Y -
Y. Ank /001+y2 k(y) £ k() ( )

and
ank = /| ydFu(y), Fur(x) = Fur(x + ant),
y|<T
with 7 > 0 any fixed constant. The p&iy, G) is the Lévy-Khinchin transforfh of

Proof: This follows using approximation by finite sums. For examplé,, if converge
k*

weakly to S , the same is true 6f = Z Xne , Whdre s finite but sufficiently large;
k=1

using the result foS and letting.  become infinite proves (7.5). The only difficulty

lies in proving the sum defining,  converges (order-independently) if and only if (7.6)

o0
does. To this end, note that $,  exists, the three-series theorem iMplies|
k=1
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converges. Letting(y) =

> [

Y
I+y2

o0

X (Y — ank)dFoi(y) (7.7)

8

M 1D

— Qpk X (ynk‘))ank: (y)

/
2

?N
[
8

1

where y — a,;. <y <y is determined according to the mean value theorem. By
o0
infinitesimality of the X, , this sum converges if and only§|jt 20 x(y)dFo(y)

converges. This (again three-series) occurs if and oﬁlyﬁ X(y)dFui(y) converges

for somer > 0 . The latter follows from the Lemma. The existence of the difaid
follows similarly.

Conversely, assume the limits (7.6) exist. Then the sum

converges for any > 0 , singe— x(y) is dominatedﬁ)z;g [for< 7 . Therefore we
have convergence of

[ee] T4ank [ee] o0
Z Ank + / (y - ank)ank:(y) = Z Ank + Z ank‘P(’Xnk - ank| > 7_) (78)

—T+an k=1 k=1

o0 T+ —T+a,;,
+ Z / — / yd i (y).
k=1 T -7

Using infinitesimality ofa,;, and finiteness of P(|X,x| > C) far >0 (the latter
k

follows from convergence of the second sum in (7.6)), the last two sums converge.
Therefore}_ a,; is convergent, asys [*. xdF,; . Using(7.7)and the infinitesimality
k

of {ank}, we conclude thaE [=.. xdF,, converges (absolutely) as well. Simij}ly
k

f°° 1+y s dF,, < oo. Thus, by Lemma 7.2.5,, exists and is order-independint.
Henceforth let

. z; x| <1 T z?
R S N R O s S (1)

x)

Corollary 7.3.1: In order thatS,, converge weakly, it is necessary and sufficient that
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kn,
Y o= lim > by,  G(z) =w- lim Z/ Y dF oy

exist, where

but — / T WAE),  Furly) = Faly + but). (7.10)

—00

The weak limitS  has Lévy-Khinchin transfofm, G(v)) , where

kn o
y=lim > bu + / X(y)dE i (y).
k=1 X
Proof: If S, converges weakly, the@',( Zf O(y)dF,+(y) = G*(z) for some
multiple G* of ad.f. If+ 7 are continuity pomts ai* , then
-T —T 1+ 2
> [ dFuw = [ e, (7.11)
k —00 —00

converges a1 — oo . Similarly, f|y\>7' dF,.(y) converges; and
2 Syl

%

converges as well, as doEf‘ym #d?nk(y) . Thus, by convergengg of in (7.6)
= Jlyl>
and the identity — -5 = % , we have convergence of

kn
k=1 ly|<r

with a,; as in the Theorem. We conclude the convergence of

kn T—nk L kn
> + / ydFo(y) = (ank + / (y— ank)ank(y)> (7.12)
k=1 yl<r

—T—ank k=1

kn
Qpk + Gk / ank) ;
k=1 ‘y|27'

Fn
the sum>_ ap f\y|>7 dF,; clearly converges to 0:@as— oo by infinitesimality of the
k=1 B

e
an, and hencé_ a,; converges to a limitas> co
k=1
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On the other hand, since far< 0, >~ F.(z) converges weakly (equation (7.11)),

/ @+ am) (ZFM ) Z / 2)dFy,

—0o0

converges, so that the sum definiflg  converges (theEufﬁO X dFy,;. converges by
k

similar arguments). Let,. = b, — an: , and consider

_ T Oy dTF e + anc:; 0 (y)dF . |,
; ( / _ 8)dFu / et ) A)

wherec;, is between 0 ang, . Without loss of generality, we{et ; then
S lenl =St —anl = Y| [ ¥ @)dFuty) (7.14)
k e i | lel=T
remains bounded as — oo , as do@dci,| . We h@vel|d'(y)|dF,—, 0
uniformly in k£, so that the last term on the right of (7.13) vanishes-asx , and
Z / Y dF . (y) = G*(u) = G(u). (7.15)
Conversely, if the series fof aﬂi{u) converge absolutely in  and-aso , then it

follows along similar lines thaE f‘ 57 X x*(y)dF,;(y) convergesras> co , for any

7> 0. Thus, sincez x*dF,;  converges as— oo, » auk converges as well. Using
k=1 k

by now standard arguments, it follows that (> x(y)dF . (y) converges asoo,

k
as doe$ (ank +f x(y)dF,.(y)). Similarly, ifc is a continuity point 6f(z),  then
; [*. 0(y)dF(y) — G(z).

We now prove the last statement of the Corollary. We have

fm 2
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, (7.16)

lim E
n—oo
k

ank—l—/ (X_QX >0dﬁnk+/ Y dF

since the measurés, 0dF,,  abdldF have the same weak limit (see (7.15)). By
k k

the mean value theorem
k, — 00 k —0 — 00
= D bw (/ (1—x"(y - bik(y))ank)> :
k —

Sinced" [* (1 — x*'(y — bl))dFy is uniformly bounded (sin@ﬁ dF,. is), and
k k

yl>1

buk ,—, 0 uniformly, (7.17) vanishes as— oo. Similarly,#  is a continuity point
of G and

X 0 x| >,

n— oo

then® ffooo X*dF,, — 0 uniformly. Thus (7.16) is given by
i

—00 —0Q

lim E
n—oo
k
i 0.

= dm S faws [0 =xaFwr [ xdFu
k

—00 —00

o0

(7.18)

. 1 -~ o0 ~
= |lim g Qni + / —dF,;. +/ X dF
n—0o0 t oL ly|>T Yy

—00
= Jm > o+
k

o0

Xanka

the last equality following from

1 - 1 -
Z/ = dF,, —/ = dFyp, ;= 0.
i > Y b > Y

Equation (7.18), together with (7.15), completes the pribf.
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87.2 Definition of the Lebesgue Integral

Since we will study integrals of measure-valued functions, we consider metrics on
spaces of probability distributions. LBt be the set of probability Borel measuRes on
andD* the set of finite Borel measures. Define the Lévy metric by

pl (v, ) =inf{h: Fi(x —h) —h < Fy(z) < Fi(z +h)+h}, (v, € DY),

(7.19)
where F; is the d.f. ofy; . The Lévy metric is compatible with the topology of
convergence in distribution d®  (see, e.g., [GK]). Note phat  can be defined for any
pairvy, v, of Borel measures @ . This general definition will be used here.

We will also require a stronger metric which emphasizes tail properties of measures.
Letp:RT — R* be defined for small arguments, and nonvanishing. Define (recall (7.9))

Gus(x) = %/x 0(y) dV(ﬁ). (7.20)
We define
Po,s(v1,v2) = p"(Gyy s, Grys) + % /OOX(y)d(Vl — 1) (ﬁ) ‘

The measure(ax) is defined by
v(az)(C) = v(aC),

for C' a Borel set irR . Since the integrand of (7.20) vanishes only-a0 , it follows
that for fixed§ p* andpss are equivalent. We introduce the strengthened metric
ps(v1,12) = SUP py s(v1, va). (7.21)
0<é<1

This will be useful for our integration theory, in which tail behavior of probability
distributions will be crucial. Note that infinite distances ungler  are not excluded; this is
clearly an inconsequential deviation from the standard properties of a metric. We will
now require a proposition. We defineférr R — R e >0

(|Ip(6)f)(x) = sup f(.]? + 6) - f(.]? — 6) )

0<6<e o

If vis a measure ofR , thém s the total mass of

Proposition 7.4: Letg : R — R be absolutely continuous and of bounded variation, and

v1, 1, be finite Borel measures db . leet pl(11,15) , and assume|ibiat, ||5']], ’
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and ||lip®®|s'|(x)||, are finite, wher@’ denotes the derivative. Then

/ Bd(v — 1) < e[||5||oo +2|8|, + 2|||ip<€>|5'|(x)||1|y2|].

Proof: If v;(z) = [*_ dv;(2") (allowing a slight abuse of notation), then

‘/oo Bd(v —w)| <|8() (v —w) (@) % +

| - m@ase

—00

< eHﬂHOO + / (ra(x+e€)+e— (ra(x—e)—e))|dB(x)|
< e(||ﬁ||OO + 2H5/||1) —I—/ (ro(z+€) — ro(x — €))|6 (z)|dz
- emmm+ﬂmﬂﬁ+[_w@Mﬂ@—d%ﬁH@+@Wﬁ
- wmm+wam+/“w@wmm,
where
m@)z/‘wﬂy—awﬁa@+fﬂm%
0
and
ne()] < elllip®@ B ()1
Thus
H/'ﬁam—»w wamm+2WWﬁ+mwﬁg—/ﬁmdw
< ¢ (18l + 2018 |1 + 2011108 (@) |1 12] )
as desiredl

Remark: If X is any function for whichf(z) = % satisfies the hypotheses of
Proposition 7.4, then a metric equivalent 49 obtains by replaging x by in the

definition. To see this, note that by Proposition 7.4
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< F(p¢(1/1, VQ))’

1 [ . T 1 [ T
5/00 (X—X)d(Vl—W)(g)‘ = g/oof9d(V1—V2)<g>

wheref = 27X , and” is a continuous increasing function vanishing at 0.

Let (A, B, ) be ao -finite measure space, akd A — D  nimasurable , in that
X YO)eB for every p;-open O CD. Let R(X) be the range, and
Resd X) = {v € R(X) : u(X ' (Bc(v))) > 0 Ve > 0}, whereB, is g, -ball of radius
e. Note for future reference th&es{X) gives the full picture with regard to integration
theory, since

pfA s X(A) € Resd X)} = 0. (7.22)

For otherwise, there would exist an uncountable number of open{&ll5,.crsr D in
with

pX Y(Bp)=0, 0<pX* (U Bm> < o0

(recall A iso -finite). Such a situation is equivalent (by collapsing éach ) to a discrete
non-atomic measure space of positive finite total measure, which does not exist.

By analogy with the Lebesgue integral, we initially assyme is finitedandp, is -
bounded i.e., the diameter of its range is bounded. {/f}>°, be a sequence of at
most countable partitions ®esd X) , each with elemdrits;}, | P.i = R eskX) . For

T

S C D, let diamS = sufp(vi,n): v; € S} . We assume

(1) M(P.) = sup(diamPy;) , =0

o — 0

Hence the mesh df, vanishes both in diameter  and me@sure . For the purposes
of this definition, as in Chapter 3, atoms ;of may be artificially divided into pjgces
and apportioned to variou3,; , as longas(p;) = p(p).
Definition 7.5: A partition net satisfyingi) an@d:) isfinitesimal
Letp(6) be defined for small positive , and vanish at 0. We say that

[ X)a(anO)) = lim 37 X (ol (Pa)

exists if the right side is independent of choice\gfe P,; anfryf oo, satisfyjng
and(ii) . This is théinite Lebesgue integralak  with respectdo
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Remark: The finite Lebesgue integral does not depend on whether the parftions are
over the rang®& (X) or the essential raRged X).

By our assumption af -finiteness &f Resd X) is separable. For if it were not, there
would exist an uncountable disjoint collectigd®,}  of balls Zn , with
w(XY(B,)) > 0, contradicting ther -finiteness of
For the case of a general -finite measure and measurable fulctian— D , we
disjointly partition Ress = UBeP P;; we assumeu*(P;) , dialh<oo , where
u* = pX 1. The partition is always assumed at most countable, which is possible since
Resd X) is separable and -finite. The general Lebesgue integral

J Xt = [ vty =3 [ xown 723

is defined using finite integrals on the right, and exists if the sum on the right is
independent of the partitioR . The above independence condition, which may seem
difficult to test, is natural, see Theorem 8.4.

We must verify that the general Lebesgue integral coincides with the finite one if
R(X) is finite, bounded and separable. To this end, we require

Proposition 7.6: If D; C D and the finite Lebesgue integr]galjp1 vo(du*)  exists, and if
Dy C Dy has positive Borel measure, thﬁlp2 vo(du®) exists.

Proposition 7.7: If the finite integraILfD1 vo(du*) exists anfl, is a partition @&,
then

L /D vl ) =Y /P ol ) (7.24)

k

order independently, wher®_ v, = vy x vy *... .
k

Proof of Proposition 7.6: We will require the fact that the finite Lebesgue integral is
always infinitely divisible (this follows from the definition and a stronger result is proved
in Theorem 7.9). Hence the characteristic functign) Yof fm vo(du®) does not

vanish. LetPo(f) be an infinitesimal sequence of partition®-of ,R;L(Hd a sequence for
Dy ~Dy. Letx'V e PV x ¢ p@ and

i oi ) ol ai !

x5 =" xYsuly (=12
7

If X,Sj) is unbounded (i.e., has a subsequence converging in law to a measure strictly less
than 1 asx — o0 )foj=1 or2 ,theri cannot exist. Thus, there is a subsequence of
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{X&l)} which converges in law to some probability distribution, and without loss of
generality we reindex!’) sothat) = XU  whefd)  has@ff. . Thus,

a—00

hence

or in terms of characteristic functions,

M (1)@ (t) — uft). (7.25)
Since®(t) # 0 , this shows that? (t) converges, as doigs in law. By (7.25),
w- [im X&Q) is independent of the ChOiféQ) , proving Proposition l6.
Sketch of proof of Proposition 7.7: Note that terms on the right in (7.24) can be well
approximated by “Lebesgue sums® X.;¢(ul,;) ,whekg,;} are elements of a

subpartition of P, . Since the approximants can be made to converge order-independently
to the left side, so can their limifs, v¢(dp*(v)). B

In this chapter an assortment of distributions will obtain as Lebesgue integrals, as no
prior constraints are placed on existence of the mean and variance of the integrand.
The Lebesgue integral is clearly linear, i.e.,

[ G ety =, [ Xiotan) + , [ Xaotaw),

if X; and X, are independent for eakhe A. It is also additive, i.e., the integral over a
union F; U E, of disjoint sets is the sum (i.e., convolution, in the distribution picture) of
the integrals ovef, an#,

Henceforth, all integrals of real-valued functions will be Lebesgue integrals. Clearly,
our integral reduces to standard Lebesgue integration when s the identily( gnd is
a point mass foh € A .

Theorem 7.8: Let X(\) have 0 mean a.py] , with= [,E£(X?*)dp  afd&(X?)|dp
finite. Then the Lebesgue integralXf exists, and

| XV = N(0,0),

Proof: Let {P,} and{)\,;} be as above, and [}, = X(\u;), ptai = pX (Py) . We
invoke Theorem 3.6, and note that
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3
Yo _ i

Ta  (CEX2)par)t 0

since the denominator approaches the inte{grél(XQ()\))du()\))g , while the numerator
vanishes, given thaup j; = 0 . This shows

1
Y Xoipl;, = N(0,0).H

87.3 Basic Properties

Definition 7.9: A probability distributions isstable if to everyi,as > 0, by,by, there
correspond constaness> 0 ahd such that

F((ll.]? + bl)*F(GQJZ + bg) = F(GSC + b),
whereF' isthe d.f. of . B, b, b, can be chosen to be 0, then sdalang stable

Stable distributions, which are intimately connected to the Lebesgue integral, can be
characterized by

Theorem 7.10: (Khinchin and Lévy, [KL]) In order thatr be stable, it is necessary
and sufficient that its characteristic functidn  satisfy

t
() =Ind(t) =iyt — c|t|77{1 + iﬁmw(t, 7})}, (7.26)
whereye R, —-1<6<1,0<n<2,¢>0, and

tanZn ifn#1
W(tﬂ?) = {2 ° i .

Corollary 7.10.1: In order thatr be scaling stable, it is necessary and sufficient that the
logarithm of its characteristic function have the form

. t
Y(t) = —er]t|"+ 102|t|’7m, (7.27)

wherec; >0, 0 <7 <2, andc| < ¢|tangn

; ifnp=1,c, € R isarbitrary.
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Proof: The scaling stability condition i@( ) + zp(a%) = zp(i) . Sufficiency is clear,

t
ap a

so we prove only necessity. df is stahlét) is given by equation (7.26). We assume

momentarily that) # 1 . Using (7.26), we have

vt L4 2 i 2+ L)1+ isttan”
it —+— | —c —+ = if—tan—n » =
"o " a al  aj || 2
1 1 t us
vt — | —clt|"l — |{ 1+ if—tan=n ;.
SOOI

We conclude that(i) y =0 ofii)c =0 . In either case, the function fits the form
(7.26). Ifn =1, asimilar argument shows=0 , completing the pribf.

The proof of the following lemma uses arguments similar to those in Theorem 7.3 and
its Corollary, and is omitted.

Lemma 7.11.1: Let {X;}; be independent r.v.'s, and_ X; converge order
]

independently. Lefa,;} be an infinitesimal array of real numbers @,g.,— 0 ,
uniformly ini). Then)_ a,; X; = 0.
7 n—oo

We have the following characterization of Lebesgue integrals.

Theorem 7.11:In order that v be the distribution of a Lebesgue integral of an r.v.-
valued function, it is necessary and sufficient that  be scaling stable.

Proof: AssumeY = | [ X (A)¢(du(N)) # 0 . Itis easy to see that tlhgn) 5?00 . Let

D, be the essential range f guid  the induced meastPg on . Since scaling stability
is preserved under sums, there is no loss in assuling p, is -bounded and finite in
measure. Leb =ro <r <7y < ... be a sequence of positive numbersPT’l,et be a

partition of D; into an at most countable collection of sets of measure smallee than ,
with p,-diameter less thah . For>r, ,IBf  be a sub-partitioRfof ~ such that given

any P e P, there is at most one elemeft; € P} wiff: < Pt and
M*(Pf}l) # e~ " (note j; changes with ang ). For simplicity, we assume such an
element exists for alt > r;, ; its measure may be 0. Recall that singletori3, can be

sub-divided (along with their measures), for purposes of partitioning; if this were only
allowed for singletons of positive measure, the following arguments would be somewhat

more technical. Fiy as above, andt  be constructed in such a Wém%tmﬂ

T k]
r>r, chooseXf?‘j1 = Xk

TEJ1

P~ )ﬂ Pk is non-empty, containing a fixed element, denoteckBy. , for gach . For
€ PY ,whereX? , s as above.

89



For each P! e P! withu(Pk)=e" , chooseX), e P . For>r, , let
P ={Pk e P, : u*(PF) # ¢™"}, and consider

S5 =) Xhew (P), (7.28)
P,jeP,k*
which is order-independent by definition of the Lebesgue integral. Given,r; , we

note that sincg*(P,;) <e ™", r,.1 can be made sufficiently large that forry,;, S**
is arbitrarily small (| e., close to the unit mass at 0). This follows by Lemma 7.11.1, and
from the fact that at most are representative of each of theﬂé}}sj appears in the sum

(7.28). We thus successively selegtr, ... so Sk, 6y) ), =0 , uniformly in
r € g1, 00).
We now choose our final partitions. Let
P, =P}, X,;=X};, P'=PF, S =5" (r € [Pks1, Thr2)-

7‘]7

By the above,

Sy = 0.
r—00
Thus
S=) Xyole) = YV = /X (7.29)
Prj(fP* r—>oo
However, each element @t. ~ P° may be divided exactly in Half= P, Dy P( ) ,

and we may choose independent cod(é?, er Xpf , to be contaldéﬂ in and
Pr(z); respectively. Then

> X ( >+Z X9 ( ) = ZE;? (S148,) = V.

Prjﬁp* r1¢P*

Thus(2) = lim o20)  axists, and*2 = YxY = [(2)Y  in distribution. Similarly, for
6—0 $(8)

neN, Y =][(n)Y for somel(n) e R . Thug” is infinitely divisible; iy is the
logarithm of its ch.f. then

n(t) = Y(l(n)t) (n=1,2,...). (7.30a)
Thus,
%z/)(t) _ ‘”(@t)’ (7.300)
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and Zu(t) = ¢ ({2t) . We defind(2) = 2. A0 , lefi — A, g€ Q , the
rationals. Then

NG (t) = lim gup(8) = lim (U(gi)1).

This holds for allt € R . Thus if) is not identically, lim I(¢;) =I(\) exists, is

continuous, and(t) = (I(A)t) (A € RT) . Letting — 0 , we hai@) =0 . Thus, if

r>0, 583 = r for some\;, A, > 0 . Thus, i, a; > 0 , then letting= 2, there exists

¢ > 0 such that

Y(art) +Y(azt) = Plcl(M)t) +P(cl(A2)t) (7.31)
()\1 + )\2)7#(015)
= YU + Ag)et),

so thatY” is scaling stable.
Conversely, assumé is a scaling stable r.v. Let (7.27) be its log ch.A -aqd”}

be a singleton space with measure one. For eacN {Y gt be independent copies
of Y in A which are assigned measurg , and(ef) = \” . Thea ZYai(,uai)'l’
has ch.f.
Lo Lot
Yalt) =D —cr|ult| +ico|ul,t i (7.32)

, t
= (Z “ia) ( —cift]7+ Zc2lt!"m> :
i

t
= — Cllt’n + iCQ’t’n —

1]’

so that the distribution of, is independentcof . Letting also denote the identity
function onA , this shows thg Y¢(du) = lim S, =Y in distributioll

We now show that the scaling functign  must be very restricted for a (non-trivial)
Lebesgue integral to exist. To properly motivate this, we make some observations about
so-called semi-stable stochastic processes [La]. A stochastic pfocessR  semi-is
stable if for every a >0, X ~b(a)X; +c(a) with b,c € R, and ~  denoting
isomorphism. We assum¥, is continuous, i.e., that

}llim077(|Xt+h — Xt| > E) = 0,
and thatX; is proper, i.e. non-degenerate fot all . We then have

Theorem 7.12[La] : If X, is semi-stable, proper, and continuous in the above sense,
and if X; has independent increments, then

b(a) = a®,

for somex > 0 .
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With the proper interpretation, this may be viewed as a special case of the next
theorem. The identification depends on the fact that any semi-stable, stationary 0-mean
stochastic proces§ with independent increments can be written

i ©X()6(d),

whereX is a measurable r.v.-valued functionand® ™ — R*

Theorem 7.13:1f Y = | [, X¢(dpu) exists and is non-zero, then there ex%sts 0 such
that @ —0 C for some: > 0 . Specifically, is given by (7.27), where is the log

§n 6 —
ch.f. ofY .
Proof: Note that convergence df  implies(6) 5?00 . By = Resd X) . Since

Y = fu vo(du*) exists(u* = uX~1) , it does also (and is non-zero) on some bounded,
finite sub-domain ofD;. Thus assume without loss That p,is -bounded*and -finite.
Let S, be constructed as in (7.29). Let e&th contributirfg to  be subdivided into
equal pieces, each containing,, (again, arguments become technical if formal
subdivision ofX,; is not allowed). This subdivision gives

o *1 *1 Qb eT’LT
( > ergb( - )) = ( > Xm¢(e—’“)> gbge_g =Y, (7.33)

P?“]'¢Pr* Prj¢Pr*

so that, letting: — oo,

B Y*n
(n)
in distribution, where [(n) = lim ﬁ&‘?. By (7.27), thereford(n)= ni . Thus,
gb(%) ~ cn”n for somee > 0 .
We now assume(6) is not asymptoticCtbl , for a contradiction. Assume without

loss that for some sequenég — 0, ¢(6,) > (c+ 6)6/;’ , far>0 . L&t =e *n
Then by the proof of Theorem 7.11,

So = 0(6n) Y, X5 = Y. (7.34)

Psnj¢Ps*n e

We assume without loss that the numbeyrs (see proof of Theorem 7.11) have the
property thate™ is integral.

Lets, be defined by*» = [e*"] , whefe| denotes greatest integer. By readjustment
of {r,} in the proof of Theorem 7.11, we assume without losssthat s,and lie in a
single intervalry, 7;+1) . Furthermore, we can chodse  such{tkiat: X, appears in
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S,y D {X;,;: X5 ; appears in S} foF, <s<3%,., . IK,={X,: X,, appearsin
Ss for somes, < s <3S, , but not ind5,} (we treat all distinct elementsXof as
independent), then

Sn=)_ X¢(e™) = 0. (7.35)

p n—00
XeX,

Since the argument for this is similar to one $r  in the proof of the last theorem, we
omit it.
It follows from (7.34) and (7.35) that

dle™) > Xz = Y.

" n—0o0
P§n]'¢P§n

This provides the contradiction, since

d(e™) > X5; = Y, (7.36)

'Pgn]' ¢ P Ts*n

and by assumptio%% fails to converge to has oco. B
It follows from Theorem 7.13 and Corollary 7.3.1 that the set of admissible functions
¢ (i.e., measurable functions yielding non-trivial integrals) fall into equivalence classes

With ¢ ~ ¢y if ﬁ;% ¢ for some constant . Furthermore, each class has exactly

one homogeneous representativg) = & . Thus the classges of are indexed by the
positive reals.
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Chapter 8

Integrability Criteria and Some Applications

In the first half of this chapter, we introduce an important integrability criterion for
random variable-valued functions (Theorem 1). We then compare the Lebesgue with the
Riemann integral, and finally give applications to the calculation of asymptotic joint
distributions of commuting observables.

A central result shows the non-linear Lebesgue integral of Chapter 7 to be
continuously imbeddable into a standard Lebesgue intdgral over the Bpace of
measures on the Borel setsIdf |, the space of probability distribution§. Let be the space
of logarithms of ch.f.'s (log ch.f.'s) of infinitely divisible distributions. UetD — C be
the partially defined functiod'v = (Ilerg)f (e —1)dvs , whetg = %y(ﬁé)) . Let be

a measure on the Borel sets®f |, ahd M* — C denote the integration operator
I'p = /Judu(u).
Finally, let 7 denote the operation taking a ch.f. to its probability distribution,/and
C — D be given by = F(e¥).
Theorem 8.5 states thatif : M* — D denotes the Lebesgue integral

Isp = L/Dvsb(du (),

then the diagram

P

M-*

WV
W)
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commutes. Specifically, the Lebesgue integral of a r.v.-valued fungtion — D is

. / Xo(dp) = (exp nml(g(eiw)tcb@) - 1)d,u()\)>.
A A —0 6

88.1 The Criterion

The metricp, (equation (7.21)) on the spdee  of probability laws will be used
throughout this chapter. Lé&t: A — D; C D be measurable from a pacs, ;) and

%
p* = pX~'. For measures;, I@ Vi = vk k..., asusual Etyl = v+ 1+ ..

We sayD;, is¢ separable if |t IS, -separable. Note tigat Lebesgue integrability is
senseless ifD; or some subset containing the essential part of the range¢is not -
separable, since required partitighs cannot be countable. A fuiction— D is
boundedif its range has finitg, -diameter. We now show that, in complete analogy to
the real-valued case, if is finite add: A — D, is bounded and measurable, then it is
Lebesgue integrable. We require

Lemma 8.1.1: (a) Let vy;, v; be two countable families of finite Borel measures on
R. Then

p" ( Z aiVig, Z aW%) < max ( Z aip* (vis, vai), SUDOL(VM, 7/2i)> : (8.1)
i i i i

(b) Similarly, if(D, A, 1*) is a measure space afgz), G, (x) are d.f.'s, then

o ( | A@are. [ Gy(x)du*(V)>

< maX(/ p"(F,,G,)du* (v), sunoL(Fy,Gy))
D v

Proof of (a): Sete; = p”(vi;,10;) , and let  be the right side of (8.1). Lettifyg be the
corresponding distribution functions,

Z(aiFM(sc — 6)) — € S ZCL@(FM(JZ — 62') — Gi) S ZazFQz(x)
< Z ai(Fri(r + €) + €)

< Z (aiFii(x +¢€)) + el
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For a functionX from a measure spdce to a topological §pace recalaat is in
the essential rang@es{ X) HX'(N) >0 for every neighborhdbd v of

Recall also

0(z) =

a:2 x . {:E; lz| <1 (8.2)

Theorem 8.1: Let (A,B,u) be finite, andX : A — D , be bounded apg -Borel
measurable. TheW = | [, X(A\)¢(du())) exists if and only if

G(v;z) = w -lim /x 1Jyry2dl/5(y), Y = |Im/OO dvs(y)  (8.3)

§—0 ) §—0 1+ y?

exist for every in the essential rangeXof |, where- %z/(%) . Furthermore, the
par
1= [, G = [ GG

is the Lévy-Khinchin transform of

Proof: Assumey(v) and7(v) existfare supg where=pX ! . LB},
be an infinitesimal sequence of partitions Bf = Resd X). Bar € P , we first

verify that the distributions(b(j k)Vak(¢(lfk) form an infinitesimal sequence. To this

end, we need to sho%u(%)é: 8o uniformly in€ Res{ X) . Suppose this is

false. Then there exists> 0  such that for evlSry- 0 , therevis &Resd X) , such
thaty (— oo, — N) + v(N, 00) > e. This contradicts the boundedness (i.e., finite

diameter) ofResd X), since thesup; [ 0(y)du<ﬁ6)) can be made arbitrarily large
6
for v € Res{ X). Thus the sequence is infinitesimal.

According to Corollary 7.3.1, it now suffices to show

Z bk + / XdVak (y ; im) a0 (8.4a)
Z/ Hdz/ak<y:;b“k> = G(a), (8.40)
Ock o—00
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wherega, = ¢(fiar) , and

= [ o (2) s

First consider (8.4b). Note that

Y+bar ) Ttbar y
Z / dy&k( (Mk)) - zk:/_oo Ow)dva <¢(Nak)>

T+bar
- bak/_ 0/(?/ + bZk)dVak <m> (8.6)

where |b%,| < |bar| - In addition,tba;c is bounded uniformly im  akd  (feor

sufficiently large) for all non-vanishing,; , since the supportubdf is bounded and
replacing x in the metrip, by* gives an equivalent one (see the remark after
Proposition 7.4.). The second term in the sum on the right of (8.6) converges to 0

uniformly inx and k smc{uak (W k)) }k are infinitesimal, so that

(Z/ eduak<yzzzk> Z/ eduak< m))) 0 (8.7)

LetGs(v;z) =L [T 6(x ( gé)> be the d.f. ofdv; . Then

( G(v;z)dp' (v Z/ deak< k)>>
< <;/p (v; )y (v Z/M (vari @ du()) (8.8)

<Z,uakG Voky X ZMO&kGHQk(VOLk;m)>'
k k

To show (8.8) vanishes as— oo, we note the first term on the right vanishes by Lemma
8.1.1, if

pL(G(V;x)vG(Voek‘vx)) a =00 0

for v € P,;, uniformly inv andk ; the latter follows from the metric infinitesimality of
the partitionP, , and the equivalence pof and for fiked 0
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The second term on the right requires some care, however. ¢ For0 , , let
Ees={v €Dy : p"(Gs(v),G(v)) <e for & < é&}; note we have suppressed . Let
Esp ={v € Dy : py(v,Ees) < 5} be thel -neighborhood df,s . Lete Ess and
6 < 6. If v e Egs, andp, (v, v) <25, we have

PGy, (v), G(v)) < p"(Gy,(v), Gy, (V') + p"(G5, (V'), G (V) + pM(G (), G(v))

<2B+€+23 (8.9)
= € +40;
we have used the definition (7.21)@f(v1, 1) in termgofGs (1), Gs(14)). Thus
Ees;p C Eeyapys- (8.10)

Givena € N, lete = 1, § =2sup, pior ,8=2sup diarfP,;) . By the Lemmar(
denotes complement)

pL (Z ,uozk:G(Vak)a Z /"[/OékGuuk(l/Odk’)>
k k
(ZM* ak M Ee& Vak: Z,u PN E66 Ua k(”akz)) (8-11)
k

(ZM Pk N Ees)G(Var), Y 1" (Par N Eeé)Guuk(Vak)> :

k

If PN Ees # ¢, then Py C Ecyaps by (8.10), since diaif,) < . Hence
Vok € E(6+4ﬂ)5, andsugk:pumEfms}pL(G(yak), Guuk(yoek‘)) <e+ 460[:’000 SO that
the first term on the right of (8.11) vanishescas+ oo, by Lemma 8.1.1. The second

term, on the other hand, is boundedbyE s )sup, <i..ep, Gs, (v,00) . tom, € Dy,
Gs(vi,00) — G, 00) < diam(D;) < oo,

so thatsup G, (v, 0) < oo . Sincw*(Eeé)ajooo , this term vanishesnas> o, SO
6 <lweD,
that (8. 8) vanishes asx — oo . Together with (8.7) this proves (8.4b) (recall

[LG (X, z)du(N) = fReSS(X) Gv,z)du*(v)) .
We now prove (8.4a). By the mean value theorem,

+ bok
Zbak+ / X dVq; (a? A)
Qbak

= ;/Ooxdl/ak<é> +;bak</oo(1_x(x+bak))dyak<¢ak)>
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for some|b}| < |b,|. By the arguments for (8.6), the last term vanishas-asx , and

we are left with proving
o0 x
dvep| — | — 7
; /oo X ' (gbak) 7

which also follows along the same lines as the first part of the proof.

We now prove the inverse of the above, namely, that (8.4) is necessary for
convergence. Suppose first that for same Sup[E= (v) fails to exist. Defirte
by

=lim  sup pf(Gs (v), Gs, (V). 8.12
(D) M 51,5285'0( 6,(v), Ge,(v)) (8.12)

Let N = {v/ € D, : py(v,v') < §}. We show that [, vo(du*) fails to exist, and
hence (see Proposition 7.6) the integral oider fails to exist. To this end, we may

assume thatvV =D, . LeP, be an infinitesimal sequence of partitiori3, of . In the
following, we may assume the partitions are evep;, = ;) without loss, by the
arguments of Theorem 7.11 (i.e., the total measure of those elemgnts for which

w*(P,;) does not equal the common value can be made arbitrarily small). Then (letting
0, be the common value of,;, )

p" (Z pak G (Var ), 1* (D1) G, (V)> =p" (ZfSaGo‘a(Vak), ZfsaGéa(V))
k k

k

IN

max ( Y 6ap™ (G, (var), Gs, (), SkUDOL(Gaa(Vak), Gs, (V))) (8.13)
k

€ _6
74 _47

assuming (without loss) that (D;) < 1.

Again without loss of generality, we may assume by (8.12) that the seqglyence is
such that

< max (iu*(Dl)

w (Dy) lim  sup pL(Géal(l/),G(SDZ(V)) = €. (8.14)

00 ay,>a

Hence by (8.13)

X0 ay,0>a

. €
Im  sup pL< ZUmkGualk(Voqk)a ZNszGuuzk(Vazk)> 2 2’ (8.15)
k k

so that > paGu,(ver) fails to converge, and by (8.6), so does
3
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Y bk Gy (Var(x + bar)).  (The last term in (8.6) still vanishes @s— co. ) Thus
k

» Jp,vé(du*) fails to exist by Corollary 7.3.1.

Now assume, fails to exist. If the weak limit 6y exists, then

[ x @it =[xt + [ iwo@ane, 610

—0o0

where f € Cp(R), so that the left side of (8.16) also fails to converge-ad) . From
here on the argument using Corollary 7.3.1 is the same as above, and [agaid.*)
fails to converge. This completes the prolli.

The above conditions can be simplified to a large extent.

Definition 8.2: For 7' € R*, A, denotes those functiopts)  defined for small and
positive satisfying“;(,—f) 570 CeR . Led = Un,>%A,7f . Defin®R* =R ~ {0}
— >

Theorem 8.3: Let X,¢, and pu satisfy the hypotheses of Theorem 8.1. Then
Y =, [ X¢(dp) exists if and only if

(i) ¢ € Ay for somen/ > 1
(i1) forv inthe essential range of vs  converges weakly to a measuRe on

as b6 — oo

(iii) forv € suppy®, (a) iff =3 theW(v) <oo; (b) it <y <1,&Ev)=0 ; and
(¢) if o/ =1, lim,_ ff\[:c dv exists.

Note that the weak convergence condition above means converges to (possibly
infinite) measures o™ aml” , individually.

Proof: We first show the above imply the necessary and sufficient conditions of the

previous theorem. L&dr = whms_ovs = WM z/((;]) . Simple scaling arguments
(replacer byx andlét— 0 )showth@  is homogeneous, and that

d(Qv) = (cl|x| 17 eyl 1| ’>dx (r € RF), (8.17)
wheren = - . Forr > 0 , leF'"(z) = v[z,00); F(—2) =v(— o0, —x) . Then since
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I [z 1+ ¢ _n
5t (?) o g

it follows that

c+c
xﬁF+($) T 1 ; 2,
and similarly
- €L —C

(@)"F~ (=) ;= - (8.18)
If / > %, then forv € supp*,

1 M

/ r2dvs :M”_Q/ rdv(z), (8.19)

-1 -M
where M = %; (8.19) is easily shown to converge using the asymptoties of Fand :
after integration by parts. Hena8dvs  converges weakly-en, 1] and thusy;s

does onR , so that the first weak limit in (8.3) exists. To examine the same limit when
n' = %, notice that (8.19) now converges by the finitenes¥ of)

We prove existence of the second limit in (8.3)7/ IF 1 , the limit follows from the
convergence of

1 M
/ xdvs = M”_l/ zdv(z), (8.20)
-1 M

via integration by parts as before. T@F_( n<1l

M 00 M~
M”_l/ rdy = — M"! / xdu+/ xdv|,
M M+ —0

and the latter again converges via integration by parts. This completes the proof of
sufficiency.

We now assume (8.3) to hold, and proyié) (iii3 (i) (  is clearly necessary by
Theorem 7.11). Firstgji) follows immediately from convergend@ @f; x) , since weak
convergence ofdvs OR™ implies the samedoy . To proiie) , first/let 3
Since Advs converges weakly by hypothesis,

1 M
lim 2%dvs = lim x’dv

converges, provingiii) (a). Similarly, <’ <1 , then
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1 M
Iim/ xdvs = lim M”l/ x dv. (8.21)

6—0 ) 4 M—o0 M
Since this converges (by 8.3) and- 1 > 0, it foIIowsj\jl[h_gog fﬁ[ xdv =0 . To show
thatr indeed has a first moment, we shfg?ﬂ/:c dv < oo (since the arguméiit on is
the same). Le; be a monotone functi6iip) = 0 , defined®y= x dv . By (8.19)
and (8.3), we have convergencelds— oo of

M
M2 / ’dv = M"Y (G(M) — A(M)),
0
where

A(M) = % /0 ' G(w)da. (8.22)

Hence
G(M) — A(M) < h(M) (M > 0),

where h(M) is a smooth positive function, withh(0) =0, h’'(0) < Cy,
h(M) = CoM!'™" for M > 1; note thatG(x) < x . There exists a monotone function
G*, G*(0) = 0, satisfying

G (M) — A*(M) = h(M),
whereG* andd* are related by (8.22). The equatioffor 1 ,

G*(M) — A*(M) = CyM' ™" (8.23)

is solved by differentiating once, giving
R 2—m\ .-
G(M)_CS+CQ<1T>M” (M >1),
so thatG* is bounded. On the other hand,
(G"—G)—(A"—A)>0 (8.24)

onR™; this impliefG* — G)(M) > (G* — G)(0) forM >0 , s6 is bounded, proving
that v has a finite first moment dR* . The proof is of course the sarie on . Thus

necessity of (iii) (b) is proved; necessity ¢fii)  (c) for convergence of the second
integral in (8.3) is clear, and this completes the prdibf.

We now consider the general (non-finite) Lebesgue integral on a measure space
(A, B, ). Recall (8.2).
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Lemma 8.4.1: Let X; be a sequence of independent r.v.'s, tard Ex* (X)) . The sum

inX,- converges order-independently if and only Hif|b;| and_ £0(X; — b;)
1=1
converge.

Proof: Assume the numerical series converge absolutely, and write, using the mean value
theorem,

D EOXi+bi) =) E0(X;)+ > biEO'(X;+b}), (8.25)

where |b7| < |b;| with probability one. It is easy to see Mye  are infinitesimal, and in
particular that€ 6'(X; +b;) — 0, so by (8.25) £6(X;) converges. From this it

follows (with convergence o} _|b;| ) thaf Ex(X;) converges as well, and sufficiency
follows by Lemma 7.3.1. Conversely, using Lemma 7.3.3, § 6(X,) astk*(X;)
converge absolutely, so dosEx(X;) ,MEONX; — b)) converges by (8H5).

Recall that, forameasure Bn amdR"™ — R™ | the measgres Giand are

Vs = %1/ (%), d(Gv) = W-(ILW]O fdvs, (8.26)

and

w=tm [ @), v =tim [ @@ s20)

0—0 J_ 0—=0 J_o

(see (8.2)), when the limits exist. Xf is an r@X anrd are defined analogously by
the distributionv ofX . lfu is a measui@| denotes total measure.

Theorem 8.4:Given¢ :R* — R, andX : A — D , a random variable-valued function
on the measure space |, the integrak ;, [, X(\)o(du(N)) exists if and on(y )if
Gv and~, exist for every in the essential rangeXof , &y [, [GX(\)[du(N) and

fA‘yX(A)‘du(A) converge. Furthermore, the paiff, vxdu, [,GXdpu) is the Lévy-
Khinchin transform ot” .
Note that we make no restriction @h , i.&E., maybg measurable map into the

space of probability distributions. This theorem, together with Proposition 7.6, shows
that an integrabl&X induces a countably additive measure-valued madsure defined by

M(B) = [ Xé(dp).

Proof: Assume (1) and (2) hold. Let* be the measure induce® on X by . Since
Vil < e1lw| + e|Gr| for some ¢, ¢ >0, [, ’Y}}(A)‘dﬂ* converges as well. Let
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{P;};c; be an at most countable partitiondf = Resd X) into sets of finite measure and
diameter. Let

Dy={veD :~ >0}, Dp={veDy;y <0}

Assume without loss thaP respects the partiign, D,  Dof . {IRf}; be an at
most countable partition aP; whose elements have finite measure and diameter, with

vij € Py, pij = 1" (Py), bij = ¢(uiy)- Letby = [7 x*(x)dvy($). By the proof of
Theorem 8.1)"|b;;| can be made to differ frgmi~;|dp*(v) by arbitrarily little; hence
j K3
the sub-partitionsP;; can be chosen so that/b;;| converges. Giyen , for a
i€l,j
sufficiently small sub-partition of P;;};  (still denoted byP;;}; P; is unchanged),
>~ vij¢i; can be made arbitrarily close E(fpi vo(dp*(v)) . Hence by Thedtem 1,

Z/ 0 dv;; (”’ﬁb”) /]Gu|du (8.28)

can be made arbitrarily small. Therefore by condition (2), there exists a sub-partition
{P;;}i; such thaty~ b; and> [ deij(”vbf'j) converge absolutely unfler , as well
i,j i,j

ij
as any finer partition. Thus, by the Lemmg*(z*uij@j) converges order
i j
independently. Since the inner sum approximqg@sugb(du*) arbitrarily well, the sum

Z* JJpvo(du) =, [y X(\)¢(du(N)) is also order independent. Since any two

partitions have a minimal common refinement, this sum is also independéntjof
Conversely, if | [, X¢(dp) exists, we clainf, |GX|du < co . For if the latter is

false, let{ P;},c; be an at most countable partitiomof into sets of finite measure and

diameter. The su}_ [, [GX|du diverges; and therefpld X ¢(du) must also fall

to converge by the linearity and continuity of the Lévy-Khinchin transform (Remarks
after Theorem 7.1). Thus the integral fails to exist. A similar contraction obtains if

fA|7V|dM* = Q.
Finally, if Y = ; [, X¢(du) exists, the’ = }°Y; , where

-, /P X (dp)

and P; is a sequence of subsets\of  with finite measure and diameter. Thus, the Lévy-
Khinchin transform oft” is the sum of thoseYgf . This together with the final assertion
in Theorem 8.1 completes the prod.
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We remark that conditions (1) can naturally be replaced by condiiongii) - of
Theorem 8.3.
The following lemma is proved in Loéve [Lo, §23].

Lemma 8.5.1: Let o, € R, and V¥, be finite Borel measures oR . f
. . 2 . .
itog + [7 (e —1— %) “‘;—f)d\lln converges to a function continuous at the

origin, then{a,,}, converges andl,,}, converges weakly.
Theorem 8.5: The integraly” = LfAX¢(dM) exists if and only if

(1) Yy (t) = (ISerlo £(®,(¢(8)t) — 1) exists and is continuous at=0  fore Resd X),
where®, is the characteristic function of

(i) the integral
0(t) = [ vx(Odu() (8.20)
converges absolutely.

In this cas€¥” has characteristic functiefi.

Proof: If Y exists, then according to Theorem 8.4, sondo @nd v forResd X).
Furthermore, i € Resd X),

lim / (em . 1)d7/6($) = it + /<eixt 1 1t ) 1+ 22 d(nyx)

§—0 1+ 2 x?

is clearly continuous at O, proving) . According to (7¥1), has the log ch.f.

, o ixt 1+ 22
1/)1(t):l’)’t+/oo (6 t—1—1+$2>< :L'2 )dG (830)

where, by Theorem 8.4,

gl Z/%du*, Gz/Gvdu*,
D D

andp* is the induced measure Dn . Since the integrand in (8.30) is bounded, we can
interchange integrals, so
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o . Rl - o, 1+ 2? .

P (t) = /D iyt + /OO (e 1 = x2> ( p )d(Gu)(x)] du(v) (8.31)
B N VR A A i @t .
B /D lé@o Zt/oo 1+x2d1/5—|—/00 (6 ! 1+x2>dlj‘$]d'u (v)

= /D [L‘L% 3 / " (et 1>du<x>] A" (v) = W (2).

—00

It is clear that the integrals converge absolutely.
Conversely, assume thét) atd) holdv ¢f Res{ X),

. it T itr 4 U 1+ a?
Ljﬂ)/(e 1)dvs —ETozt/xdu5+/<e 1 1+x2>< p >H(x)dy5

is continuous at 0, so that by the Lemma= lim [ xduvs @fd = limvdu; exist.
Let { P;},c; be a countable partition &f into sets of finite measure, on each of Which
is essentially bounded. This can be done by appropriately partitiGtindX) . Let

A, =, P,. By Theorem 8.4,fAn Xo(du) exists for all , and by part one of this
proof, if ¢, is its log ch.f., then

= / Uxoyd(V)- (8.32)
A,

Clearly, [ A X ¢(du) converges weakly as— oo to an kv.  with ch(t) . THus is
independent of the choice 4fP;},c; , and is the desired inteliral.

§88.2 The Riemann Integral

Let (A,o0) be a metric space with -finite Borel measure , &ndA — D be an
r.v.-valued function. The Riemann integral’f is defined with respect to partitiohs of
rather tharD . We might again try to duplicate the elegance of the Lebesgue theory in the
Riemann integral, but we approach the latter with a view to utility, namely, to physically
motivated applications. With this intent, we define the Riemann integral using global
partitions of A , rather than patching integrals over sets of finite measure whose range
underX is bounded. The former definition will dovetail with that offitie  -integral.

Definition 8:6: Let {P,}°>, be an infinitesimal sequence of partitionsAof . Select a
functiong :R™ — Rt . Let\,; € P,; , and assume

Z X()\m)gb(,um) a?ooY7

wherep,; = 1(P,;) , and thé X(\)}rex  are independentY'If  is independenPof { 1},
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thenY is thg¢ HRiemann integral ofX (with respect to the non-linear meag(ig) ),

Y=, [ XOVolduln). (8.33)
A

Theorem 8.7:1f X(\) is ¢-Riemann integrable then itd¢s -Lebesgue integrable, and the
integrals coincide.

Proof: Recall (7.21). We begin by assumjag is finite &hd p,is -bounded?,Let be
an infinitesimal net of partitions of . Recall the Lebesgue integral may be equivalently
defined by allowing partitions oD to subdivide individual elements, even ones of
measure 0. Under this more general (but equivalent) definition, there exists a partition
sequenceP; oD such thai(P,;) = P;;, . As before, we may use the arguments of
Theorem 7.11 to assume (without subsequent loss) that the partiai3;) are even
with respect tou(p* = pX~") , i.e.u(P.,) = n(P,,) ; again the measure of those
elements with odd (unequal) measure can be made arbitrarily small by taking sufficiently
small sub-partitions. By taking sub-partitions, we may also assume’that vanish in
diameter uniformly as: — oo

We proceed by contraposition, assuming the Lebesgue integral fails to exist. In this
case it suffices to show the Riemann intqu\qugb(du) fails to exist forAany A

with positive measure, by arguments used in proving Proposition 7.6. By our assumption
and Theorem 8.1, eithéfr @y  fails to exist for same Ress . Asstime does not
exist. At this point, using the above né} of partitions, the argument becomes exactly
analogous to that after (8.12), so we omit the details. The same argument wgrks if
fails to exist, yielding the result when is finite ad pjs -bounded. The fact that the
two integrals coincide in this case follows from correspondence of the Riemann sums
over the partitiong?, anf;

If 1(A) is infinite or X is unbounded, and, X¢(du)  exists, then the integral also
exists over any subsdt C A with positive measure. Since the essential rdhgecof is -
finite, it is separable. LefD;} be an at most countable partitidn of ,pitH;) and

diam(D;) < oo. IfA; = X 1(Dy), then, [, X¢(du) exists, and we must show fhat

LfAinﬁ(du) converges order-independently BtgﬁAX(du) . This follows from the fact

that LfAinS(du) can be approximated arbitrarily well by Riemann sums over partitions
of A; whose total sum ovér approximateg, X¢(dp). B

Recall that forw € D |

Go(v;w) = %/x 9(?J)‘”(ﬁ>; Y5(v) = %/OO X(y)du(ﬁ).

We now prove
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Theorem 8.8: Suppose
(1) X :A — Dis Lebesgue integrable ang, -continuous,

(4i) the function g.(A\) =sup 5«5 Gs, (X (A1), 00) + |75, (X (A1) isin L(u(N))
o(A,A\)<e
for somee § > 0 .

ThenX is Riemann-integrable.

Proof: We prove this for partitions which do not subdivide points (the proof therefore
does not directly work for measure spaces with atoms). The general case (which allows
partition elements which overlap on atoms) follows with small modifications.

Let P, be aninfinitesimal net of partitionsofA , and; € P, . Let
Xok = X(Aak), trak = 1(Pak), dar = d(1ar). We first verify that the double sequence
{darXar} is infinitesimal. Suppose it is not. Taking a subsequence if necessary, we may
assume without loss of generality that

/’LakaGﬂaka (Xaka’ OO) Z €1

for somee; > 0 , and some choicelgf for each . Thereforedf> (,
€1

gé.e A >
(A) o,

(0N, Aar,) <€) (8.34)

for o sufficiently large thatu.,, <6 . Furthermore, again taking subsequences if
necessary, we assume thaj, < % Ha—1)ka s . TheBjf= B.(\ar,) (the -ball about
)\Ozka))

/gmdu(/\) > (/ +/ +/ +--->ga,edu
A B By~B; By~(B1UBs)

> A u<31>+(“ - )u<32>+<“ - )M(B3)+---
M1k M2k, K1k M3k, M2k,

€1 1 €1 1 €1

> B)+ = By) + - B3)+ ...
Mk, HB) 2 /JszM( 2) 2 NSkglU( 2

= QO,

sinceu(B,) > uar, fora sufficiently large; this gives the desired contradiction. Thus,
{barXar } is infinitesimal.

To prove the theorem, according to Corollary 7.3.1, it suffices to prove the
convergence
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Z/x eduak<y;b“k> = Gla); (8.35a)

ak

Zbak — 7, (8.35b)

for someG : R — R a multiple of a d.f., and somfec R, both independefiPof
Here,v,; Iis the distribution oX,. , and

bak: = /OO X dl/ak <¢ k) (8.36)

with x* given by (7.9). We have

o (22) - frown
kv ’

1 x o
H,(\;x) = —/ Odv,y, <y+b k) (N € Py).

Mok ¢ak

Since X isp4 -continuous, il € supp) , thel(\) € ResdX), so that by (1) of
Theorem 8.4,

where

Ho(\z) = H\2), (8.37)

a—00

whereH (\; z) is a multiple of ad.f. in for eagh . Furthermore,
Ho(X;z) < Ho(A;00)

1 o0 b* o0
= — dea +Lk/ 0 (z)dv, Ae Py, (838
] k<%k> ok (z) k<¢ak>( k), (8.38)

where|b},.| < |bax| is determined by the mean value theorem. The first term on the right
is clearly dominated by () € L'(n) forv  sufficiently large. Since the double
sequenceyak(&) is infinitesimal an@l(0) =0 , the second term on the right is

eventually dominated by

bo 1 <,
HP(Ajo0) = 25 — — X dvar (—x ) < Kges(A) (A€ Pay), (8.39)
Hak Hak 00 (boek

for a sufficiently large, withK' independentaf  Thus, for sufficiently large,
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H,(A\;u) < (1+ K)gse(\) € L. (8.40)
By (8.37), ifh(x) € C*(R),

/ H,(\, z)h(z a_wo/ H(\ z)h(z)dz,

so that by (8.40), the dominated convergence theorem, and the Fubini theorem,

/Z/AHa(/\; z)dp(A d%?;o/ /H (A 2)dp(\)p(x)de.  (8.41)

Sinceh € C>*(R) is arbitrary, it follows that

Z/x ed’/ak(y;l;ak> Z/AHa(A;x)du(A) a:eo/AH(/\; x)dp(N);
koo a

note that the limit is independent of the chaite

Similarly, by (8.39),
S b= [ BP0 dn() = [ HPs00)di(),
T A A

whereH® = lim H? | completing the proof of (8.3

a—00

Note that the proof above holds+f(v) is replaced by

o) = [ " a(@)duia),

—0

wherey; (z) = x(z) + O(z?) (z — 0) is bounded. Thus we have

Corollary 8.8.1: The statement of the Theorem holds ifi) s is replaced.by

88.3 The R* -Integral

Let (A, o) be a metric space with -finite Borel measure . deRt — R* , and
p be the corresponding metric @h . L¥t: A —D  Mhe -measurable with a range
consisting of independent r.v.'s. We now consider the general version of 83.1, i.e., the
result of summing “samples” of at an asymptotically dense set of poifMs in . In
Chapter 9A will be the spectrum of a von Neumann algebra of physical observables.

Fore > 0, letA. = {\;};e;. C A be at most countable. Note the elements of need
not be distinct. FotZ C A |, leN.(G) = |A.NG| , whefe| denotes cardinality. We
assume thati) for any open éetC A,
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eN(G) — u(@), (8.42a)

e—0
and (i7) for som€ < u(A) ,iB is an open ball withB) > C,
eN(B) < ku(B) (8.42b)

for some fixedk € R. These conditions should be compared with (3.1).

Definition 8.9: The ne{A.}.~o is & net of points. We define

o [ XOotdn) = m o) Y X(hs), (5.3

J
if the right hand limit (in law) is independent of the choicd &f}.-
We proceed to relate th&* to the Riemann integral.

Definition 8.10: Let (A, o) be a metric space, addlC A . LLet didm , axl0
be the supremum of the diameters of all b&lls E . The(paly adirtiensions
of .

Lemma 8.12.1: Givene > 0, there is a partitio®?, @f such that edéh € P, has
dimensions (s,l) wheres > ¢, < 5e . Furthermore}, can be chosen so that
w(OP,) =0 forallk.

Proof: Let B be a maximal set of disjoiat -ballsAn , afid be the collection of centers
of B € B. ForB,()\) € B, letB(\) € A be the set of points closeito than to any other
pointinC. LetB={B(\): A€ C}. IfB e B, then the dimensiots /) &  satisfy
(s,1) C (2¢,4¢), i.e.s > 2¢, | < 4e. There are at most a countable number of elements
of B with non-null boundaries. Lé®,, B,,... be an enumeration of this collection. For
n>0, GCA, let B,(G)={AeA:o(\G)<n}. There existsn; < { such that
B, (B) ={\: a()\,\) < for some), € By} has null boundary, since otherwise
would not bes -finite. We replacB; 9,(B;) and decrease the remaining d&ts in
accordingly. We continue in this manner by then replaépg BQ}(BQ), 2 < § , and,
in general, replacing, b, (By), m, < 35 , at each stage adjufling as well. Atthe
end of this process, all selse B  have null boundary, and dimen(sidis- (e, 5¢)

We letP, = 5. W

Definition 8.11: A Borel measure on a metric spacemsform ifdar 0  , every ball of
radiuse has measure bounded below by some conrstand . A sefehce of r.v.'s
is boundedif the corresponding d.f.l5 satighy< F; <G ,whéte @&hd ared.f.'s. It
is unboundedf it is not bounded. A collection of sets isfgartial partition of alset ifit

satisfies all the requirements of a partition, except pos$iply’, = A . In particular,
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elements o\ may be apportioned to several partition elements, if non-zero measures are
divided correspondingly.

Note that a sequenck,  of r.v.'s is unbounded if folal> 0 there exists
such thatsupP (| X,| > M) > € .

n>1

Theorem 8:12 Let(A,o) be a metric space with uniform -finite Borel meagure . |If
X : A — D is Riemann-integrable, then it iR* -integrable, and the two integrals
coincide.

Proof: Let {P.}, be an infinitesimal sequence of partitions\of , such that (see Lemma
8.12.1)P/, has dimensions diRy, C <l 5) , gn@P.,)=0 . Sipce is uniform,

there is a functio(«r) > 0 such thatP.,) > h(«a) . There exists a subparfgjon  of
P!, consisting of sets with null boundary, with

h(a) < p(Par) < 2h(«). (8.44)

If A is non-atomicP, can be constructed as a standard subpartitibn of P, If has
atoms we can write, according to previous conventidtis, as a union of copies of
! 1., each with measurgu , with each a distinct elemeiif,of  (this is a quick way
of eliminating the problem of atoms, although the end result could be accomplished by
subdividing only atoms).
Consider g -net\; = {)\;}; satisfying

N{(Pu) = [M] : (8.45)

€

where > 0, N/(P,) = |AL N Py|, and { ] is the greatest integer function. Given
and e, subd|V|de P,; into the partitioqP.;}; , where each element satisfies
Loki = N,( Whereum = u(Pari) , and?,;; contains exactly one element € A.

If ﬁ = 1 Xam = X( akz) then

—1
;Xaki¢(,uaki) - kZXakzqs([%] ,UJozk)

_ %Xum([%l u)

where in the last surk  is a functionjof defined\byc P, a # ale) increases to
infinity sufficiently slowly ase — 0 , then by (8.45) and the Riemann integrabilit of
if Xe; = X(Ae),

(8.46)
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-1
Mok
%: Xej¢ ( [7] uak> = /A X¢(dp). (8.47)

Let[ - | denote the greatestinteger, be fiXe¥; }; be anindeking\;) : \; € Pay} ,

and
-1
Qe = Cb([%] Mak) — ¢(e).

> aaXeai = 0, (8.48)
ki o

To prove that

we assume that it is not true. Recall that a space of finite measures with bounded total
measure is compact in the topology of weak convergence. Thus there exists a sequence
€r gjooo such that (replacing by (3)

> W Xoki = V (8.49a)
ki —

for somev # 6, , or(ii)

Z ammXew: IS unbounded ag — oo . (8.49b)
i

We assuméi) , since the argument is similar otherwise. By Theorems 7.13, 8.7, and our

hypotheses¢ is homogeneous of positive order, sofﬂigﬂfk—) is well-defined, and
vanishes uniformly aé — oo
Therefore

€¢

[M] ¢ o) =20,

uniformly in k. Thus we may assume (by takinglan -subsequence if necessary) that

> U] ¢ (ag) < h(a), (8.50)
7 | ¢
for eachk . For=1,2,..., lefP’.}; =P be a partial partitionRf, uﬁt@f]
subsets, each of measufe' (ay,) , Wiy, € PY,. . By (8.50), can be chosen so

that Por, = U, Pﬁk is a partial partition oP,;, . By choosing &n -subsequence, we may
assume by(i) that
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1
L
Xowisv | < =7,
P (;sz tk V) ol

whereC' > 0 may be arbitrarily large. Therefore, the partial Riemann sumy, X
ik

becomes unbounded, contradicting Riemann integrabilify of ; this proves (8.48). Thus
by (8.47),

¢<e>;X€j 2, » [ Xoldw). (8.51)
By an exactly parallel argument, if in (8.48)= 3(a) ,—.,0 , amé= a(e) 0
the latter sufficiently slowly, then
(€) XJ: Xy = 0. (8.52)
Combining (8.51) and (8.52), if(«) ,—. 0 , and
[(1—@#%] < NP < <1+ﬂ>uak]’ (6.5
€ €
then
0O Xy = o [ Xotd) (8.54)

Now consider a general -néf. = {\}; , not necessarily satisfying (8.53). Fix a
partition P, = { P,;};, with null boundaries, satisfying (8.44). If two partition elements
overlap (e.g., over atoms), elements/of are apportioned among them alternatingly. By
(8.42),

¢

NE(Pak) = |A6 N Pak| S
€

for someC > 0 independent &f and , whilg. (P,;) oMk Let

1
Ao = {kz : |eNe(Pak) — frak| < a}

and

A =] P (8.55)
k€Ae

Note thatA“* T A as — 0.
We claim that ifS. C {j: A\; ¢ A°*} , then
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$(e) > X = 0. (8.56)

The proof of this claim, briefly, follows by assuming the negation and forming an
alternative, as in (8.49). A contradiction then follows along similar lines.
Leta = a(e), and

A?a _ ﬂ AE’,O{(E’).

e <e

Let a(e) 00 sufficiently slowly thatAY” 1 A as— 0 , and
$(e) > Xe =0, (8.57)
S/

if S' C {j: A\ ¢ AY}; this is possible by (8.56). Fdt,, C AS*

1
|€N6(Pak) - Moek” < a

Let A! = {)\(}j}j C A be constructed so that N Py, = AN P, By C AY® | and
Al n P, differs fromA,. N P,; by the minimal number of elements such that

‘GNQ(PM) — | < é (8.58)
for all k. Thus by (8.54),
o(6) ) X)) = & | X¢(dw). (8.59)
J

However,A! is a small perturbation &f, in that (8.57) and (8.59) imply that (8.59)
holds also if\}; is replaced by; W
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Chapter 9

Joint Distributions and Applications

We now use the mathematical machinery developed in the last two chapters to
consider joint distributions of integrals of r.v.'s and apply them to statistical mechanics.
The work in deriving joint distributions of quantum observables will, with the above
formalism, be minimal.

89.1 Integrals of Jointly Distributed R.V.'s

As in Chapter 8, le{A,0) be a metric space witlr a -finite Borel meagsure
Assume that random vector-valued functiofe\) = (X;(\), ..., X, () have a joint
distribution for fixed\ € A and are independent for differant . ¢etRt — R* be
given. Define the direct producD” = x?, D  and for, = (v},v7,...,v"),
i=1,2,..., let

I
e
-
—~

S
—is.
N
~—

pg(VhVQ)

(see equation (7.21)). Define
ResdX) = {v € R(X) : u(X 1(Bc(v))) > 0 Ve > 0}.

Let &« (t) denote the joint ch.f. of

Theorem 9.1: The random vectol = [\ X(\)¢(du(X)) exists if and only if

(1) forv € Resd X),

exists, and
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wmzAwmmww (9.2)

converges absolutely. In this case, the ch.fy of e¥(is

Proof: SupposeY exists. Ifa is an -vector apd) is the log ch¥. of | then for
teR, ¢(ta)is the log chf. ofa-Y. By Theorem 8.5 the log ch.f. of
a-Y = [ia- X(A)@(du(N)) is also given by, 1ax()(t) du(X) , adopting the notation of
(9.1) for scalar r.v.'s. For a givene A Xfc Resd X), then X(\) € R esa- X).
Thus, sinceb, x(t) = Px(ta),

im - (@ax(9(8)1) — 1) = lim + (@x(p(8)ra) — 1)

§—0 0 §—0

exists; since is arbitraryi) follows. In addition, by Theorem 8.5,

wmzﬁwmmw@»

and the latter converges absolutely. Using.x(t) = ¥x(ta) we conclude (9.2)
converges absolutely, avd  has log ch(f.), prov(figy
Conversely, assuméi)  and:) hold. Then gwen Jahd Resd{a- X), there

exists X’ = (X{,...,X]) such thaX’ € Res{X) ara-X’'=X’' . Thus by (9.1) and
(9.2) foryx and then by Theorem 8&;Y  exists. Siace was arbitrary, the proof is
complete.

89.2 Abelian W* -algebras

We present here a capsule summary of the spectral thedry of  -algebras to be used
in the next section. The material may be omitted without loss of continuity by those
familiar with it.

Let H be a separable complex Hilbert space @) be the bounded linear
operators oft{ . AV* -algebrd o is an algebra of bounded operat@ts on closed
under adjunctionf A — A*) , and closed in the weak operator topologyt on T/*A -
algebra is naturally a normed linear space with norm inherited £1(Gt). A'lLet  bethe
space of bounded linear functionals gh  as a Banach space and let the sfecttdm  of
consist of those € A* which are also multiplicative, igg.4,A,) = ¢(A;)p(As) ,in
the weak-star topology inherited fradi*. The Gelfand representation gives a canonical
isometric algebraic star-isomorphism.f  with the algebra (under multiplication) formed
by the bounded continuous complex-valued funct@@p&S) S on . This isomorphism is,
fora € A,
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a <« fe€Cg(9), where f(¢) = ¢(a).

For f € Cp(S) letT; € A be the corresponding operator. FEoy € H, the map
f — (Tyz,y) is non-negative and is bounded 6f%(S) in its uniform (sup-norm)
topology; hence there exists a Borel meagyre S on  such thatfars(S)

(Trz,y) = /Sfdux7y. (9.3)

Definition 9.2: The measurg,, isspectral measure. A measpre Son I@sic if for
any subset of to be locally -null, it is necessary and sufficient that it be lqgeally -
null for everyxr € H .

Clearly any two basic measures are absolutely continuous with respect to each other.
We have (see [D2])

Proposition 9.3: If H is separable, thef carries;a -finite basic measure.

If pis basic, therCp(S) = L>(S,u) . A is a measure space, th&rA) ,as a
W*-algebra acting o.2(A) , is thewultiplication algebra df . We then have (see
[D2]):

Proposition 9.4: Let . be basic ort . Then the Gelfand isomorphism is the unique
isometric star-isomorphism of the multiplication algelbra (s, 1) QAto

If Ais aW*-algebra ofi{ , a possibly unbounded closed opedatogffiliated with
A, orAn A, if A commutes with every unitary operator in the commutéint A.of A If
is normal, themdn A ifandonlyii = f(A4,), wherg € A ,afdC — C is Borel-
measurable.

A W*-algebra is maximal abelian self-adjoint (masa) if it is properly contained in no
other abelianWW* -algebra. In physics, a maximal commuting set of observables (that is,
its spectral projections) generates a masa algebra. We require:

Theorem 9.5[Sel]: Two masa algebras are algebraically isomorphic if and only if they
are unitarily equivalent.

Definition 9.6: A measure space lscalizable if every measurable set is a least upper
bound of sets with finite measure in the partial order of set inclusion. Two measure
spaces have isomorphic measure rings if there exists an algebraic isomorphism between
their (Boolean) rings of measurable sets (modulo null sets). Thegaanerphic if the
isomorphism preserves measure.

Theorem 9.7[Se7]: Two localizable measure spaces have isomorphic measure rings if
and only if their multiplication algebras are algebraically star-isomorphic.
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89.3 Computations with Value Functions

Although joint distributions of non-commuting observables in quantum statistical
mechanics are difficult to describe (see [Se6] for the groundwork of such analysis), this is
not the case with commuting observables, which are amenable to a standard
(commutative) probabilistic analysis.

Let A be an abeliai’* -algebra, and4gt> 0 ang A(1<i<Y) . We assume
that A; represent globally conserved quantities in a canonical ensemble whose density
operator is formally

o~ BdT(A)

P = yetm (94)

where 3= (B,...,3/), an/ -tuple of positive numberd = (A;,...,A,) , and
dI'(A) = (dT'(4,),...,dT'(Ay)) (I' may be eitheF's dryp ;see 81.2). Ist..., B,
be self-adjoint operators affiliated witd , whose joint distribution in the canonical
ensemble of (9.4) is to be determined.

As with the single operators, must be interpreted as a limit of density operators with
discrete spectra. Proceeding in an analogous manndr, let be the specttum of . Under
Bose statistics, forA € A , letV), be the probability spa@, B,., P») where

7+ =1{0,1,2,...}, By:is its power set and for € Z*, Py(z) = e ANFz(1 — ¢ ANF)
whereA(\) = (A(Ay),...,A(4y)) . Under Fermi statistics,

N)\ = ({07 1}7 B{O,l}a P/\)a
where

1

PO = TR

Pr(1) =1 — Py (0). (9.5)

Thus N, represents possible particle numbers in &tate . Spectral multiplicities need not
be indicated here by duplication of spectral values, since they will be subsumed in a

spectral measure . Le&¢ =[N, be the direct product space with product measure
A

P =TI P
A

Definition 9.8: The pair(N,P) is thecanonical ensemble overA  at generalized
inverse temperaturg  corresponding to the (generally formal) operator

Let Ny be an r.v. onV defined by, (][] zv) = z\; Ny is formally the number of
MNeA
particlesinstates . Far<:<n let

be the r.v. onV' representing the *“total amount” of observal(&;) in\state
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Our goal is to ascertain the joint distribution(df'(By),...,dI'(B,)) =dI'(B) ; this
is the distribution of a formal sum of(\) = (X;(\),..., X,(A)) overe A . In order
to study the distribution asymptotically, we first cer{é¢n). Let

X(A) =X(\) —EX(N) =B (NN, (9.6)

whereN, = Ny — £(N,), B= (By,...,B,).
Let . be a & -finite) basic measure (see 89.2\on . We study the Lebesgue integral

fAY(A)(du(A))%. In the Bose case the r¥, is geometric with paranaeted® , and
in the Fermi case it is Bernoulli with parameter given by (9.5). UL gt) be the ch.f. of
N,. If ®),(t) is the ch.f. ofX(\) , then

D)\ (t) = U, (t-B(N)). (9.7)

Therefore, forp small

P(pt) =1— %ngtMt "+ 0(¢?),

wherelM;;(\) = — g;gjj (0) is the covariance matrixf
I eE'A(/\)
Mi(A) = E(Bi(MN)Bj(A)N ) = Bi(A)Bj(A) -———3 (9-8)
(eﬁ‘A(A) F 1)

(see equation (2.10)). The (+) holds for Bose (Fermi) statistics. Th(s)it= 53 :

Ua(t) = lim (@3(5%) 1) = - %tM ().

Together with Theorem 9.1 this proves the reverse direction of

Theorem 9.9: If X()\) are the centered random vectors above, then the Lebesgue
integral

Nl

Y=, [ KOy (9.9
exists if and only if
M = /A M (\)dp(\) (9.10)

converges absolutely component-wise. In this ¥ase is normal, with covariance matrix
M.
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Proof: Only the forward direction remains. If (9.9) exists, then by Theorem 9.1,

/Iim ! (@r(621) — 1) du(N)
A

6—0 0

converges absolutely for d@ll . Thus, the same is true for (9.HD).

89.4 Joint Asymptotic Distributions

By analogy with single operators, calculations like those above can be viewed as a
direct treatment of an infinite volume limit. However, the algelbra  and its spegtrum
are actually limits of a net of discrete algebtds with spe&tra , and the joint
distributions ofX are asymptotic forms of those for discretized random vegtors . In the
discretized situation, all formal quantities, including the density operator, are well-
defined.

Let u be ao -finite basic measure An , and be a metrit on whose BorBl sets
are just the: -measurable sets (the existence of such metrics in applications will be shown
explicitly; the integral, if it exists, is independent of the metric used){Agt pbe a -net

(Definition 8.9) of points im. , and fofl ¢ A | let, — A‘A

Definition 9.10: The algebrad, = {A.: A € A} s thediscrete approximation ofl
with respecttq: . Le#d,,..., A, anB,,...,B, beasin 89.3.

In calculating R* -integrals of r.v.¥(\) =B(A)N, we will be calculating- 0
limits of sums

> XAd) =D X (M), (9.11)

)\Ei EAE Afi EAE

In order to use the machinery of §8.3, we need some assumptionsAghput B (Aand
Precisely, we require that;(\) lee -continuous, and similarlyZgn) (that is, that
there exist continuous representatives). We then have

Theorem 9.11: LetA(\), B(\), A, u, ands be as above, apd  be uniform (Definition
8.11) with respectte . If for sorae> 0

ePAR)
/ sup  [B(A)]P —————du(N) < o, (9.12)
A (M N)<e (eﬁA(A) - 1)

then the normalized distribution & in the canonical ensemble Aver at generalized
inverse temperaturg is jointly normal, with covariance

efﬁA(A)

- 5 dp(N), (9.13)
FAN) T 1)

My= [ BB (
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where — (+ ) refers to Bose (Fermi) statistics. That is,
o | BN ()

exists and is normal with covariandé;;

Proof: By Theorems 8.12, 8.7, and 9.9, we need only showXtat=B(\)N, IS
Riemann intregrable. By Corollary 8.8.1, it suffices to show

mis) = sup -£(8(/E X)) +u(VETO) € L (919)
o(ALA)<e

forsomeec § >0 andall <i<n ,where

; 1
Xl(m):{g; §§1
Since€ X;(\)) =0, lettingl (z) = =,

. 1 . o
mis(A) < sup 5—15(51)(? = x) (/6 XZ-)|)
61<6
o(A,\)<e

1 . -
< ¢ sup —8(61X?) = cB}(A\)V(N))
61<6 1
oM )<e

=sup cB}(\) =——.
o(A1,\)<e eﬁ'A(/\) + 1

This shows that (9.14) is implied by (9.12) and completes the plbof.

89.5 Applications

An advantage of Einstein space over canonical spatially cut-off versions of
Minkowski space is its possession of the full conformal group of symmetries. In
particular, the rotation group acts on Einstein space. Untractable (non trace-class)
expressions involving generators of the conformal group in Minkowski space become
tractable in Einstein space. For the purpose of evaluating joint distributions of
observables Minkowski 4-space should be viewed as an infinite volume limit of Einstein
space.

Theorem 9.11 allows evaluation of joint distributions in canonical ensembles (9.4),
viewed as limits (according to a spectral meagure ) of systems with discrete spectrum.
This section provides two explicit calculations.

() Non-vanishing chemical potential
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LetS be a system with chemical potengial- 0  , single particle Hamiltohian , and
formal density operator

where3 = (3, ) , andh = (A, I) . Note thaf = dI'(I) is the particle number operator.
This models an ensemble in which creation of particles requires energy In this case the
W+*-algebra.A generated by spectral projectionsAof And is the bounded Borel
functions ofA .

If S consists of non-relativistic particles in Minkowski + 1  -space, the spectrum of
A is measure-theoretically equivalent B~ . The appropriate spectral measure is

dm = %E”‘%E (see (6.12)). The joint distribution df = dT'(A) aid IS
obtained by integrating = B(E)Nr ,wheBdFE) = (E,1), ahd; is a centered

geometric r.v. with parameter?£—# (under Bose statistics). According to Theorem
9.11, the normalized joint asymptotic distributionfof @hd  is normal with covariance

M = E* E —eﬂEw dm
~ R* N E 1 (65E+u m 1)2 :

Defining the generalized zeta function

((n,x) = Y k"t (9.16)
k=1
and using
0O glettH B
[ @ = s sen 0z o
we get
n n(n+1) _ n _
M = T ( Z g(”Jrl’ te)  5C(n, £eh) ) (n > 3).

(n, £eH) Cn—1, £e )

Note thatM,; and\/5, coincides with (6.25) and the right side of (6.21), respectively, in
the Bose case i = 0 . The calculation fox 3 is similar, and thus omitted.

(1) Density operator involving angular momentum (see [JKS])
In this model, the formal density operator in a systfem is given by

efﬂHf /"LZ
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where H andL? are energy and angular momentum [JKS, Se8]; we ignore chemical
potential for simplicity. We will studyS in Minkowski four-spadg* , as an infinite
volume limit of Einstein space.

We remark first on the appropriate measure space of Theorem 9.114* Let be the
W+-algebra generated by and , the single particle energy and angular momentum
operators. Letf\* be the spectrumf, arid be a -finite basic measiire on By
Proposition 9.4 (u*) is star-isomorphict5.

Let A =R* x Z*, andy = m x ¢ , withm Lebesgue measure, afth = 2/ + 1 :
for e Zt. Then A= L>(u) is star-isomorphic tod* , specifically through the
correspondence

A o Mg, m® o My (9.19)

whereE and denote independent variableRon Zand | respectively, and  denotes
multiplication. ThusL>(x*) and.*°(n) are star-isomorphic. By Theorem 9.7, therefore,
(A", u*) and (A,p) have isomorphic measure rings, so that the image (under the
isomorphism) ofy.  onA* is equivalentgd , and thus itself a basic measure.

Thus, henceforth we may restrict attention(fa u); u is a physically appropriate
measure or\ , since it incorporates the asymptotics of the joint specteum of m? and in
Einstein spacé/* of radiuB  proportional %{Q Ias  becomes infinite. Specifically

(see 86.3), the joint spectrum4f and Uih s
{(en, (Il +1)): n,l € Z"},

this being the joint range of the corresponding function4 on

The object of interest in studying the — 0 asymptotics of the joint distribution
(covariance) off and? is, according to Theorem 9.11, the local covariadeay of
and [(I+1)N,, whereA = (E,l)c A , andV, is a centered geometric r.v. with

parametee 2AN | witfg = (B,7) anBl(\) = (E,Il(l+1)) . Thisis the dyadic matrix

E E? El(1+1) e
M) = <1(z+1)>(E DIV = <E1(1+1) mm?)W'

Integrating over\ , we obtain as the covarianc&/of Iand  in Minkowski space

1 % i
M=— 51 9 ;2 / €:F(277)7 (920)
AN
where
Ee(n,y) = £ 21+ 1)¢(n, £e ) (9.21)
1=0
with ¢ given by (9.16). Note that, as indicated by the> 0 limit in (9.21), the joint
distribution of energy and angular momentum whes= 0 is singular, with the

conditional expectation of angular momentum infinite for every energy value in
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Minkowski space. This is to be expected, since for a fixed energy value the range of the
angular momentum becomes unboundef as oo . See [JKS, Se8] for an application of
(9.20) to a model for the influence of angular momentum on the cosmic background

radiation.
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Epilogue

I would like to leave the reader by briefly identifying two significant open questions
which arise in the present context.

The first is, what asymptotic probability distributions arise in a system whose
spectral measurely ~ z*dz (a > 0)  fails to have three continuous derivatives near 0
(Definition 3.11)? The failure to answer this question in Chapters 4 and 5 seems
technical.

Second, how can these results be extended to a hon-commutative setting (i.e., one
involving non-commuting observables)? It seems that gage spaces, the non-commutative
analogs of probability spaces [Se6], are the appropriate framework. This question may
have very significant mathematical ramifications.
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ps — Borel measurable, 96
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Bose-Fermi ensembles, 6, 74
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Bose condensation, 74
Boson field, 7
energy, 70
number, 72-3
bounded functions, 123
bounded r.v.-valued function, 85, 95
bounded variation, 18, 27, 28
Brownian motion, 76
Cauchy data, 63, 64
characteristic function (ch.f.), 6, 54,60,61 , 106, 116
canonical ensemble (over an operator), 11, 13, 17, 119, 121
central limit theorem, 23
chemical potential, 6, 60, 123, 124
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non-vanishing, 122
convergence in law, 6, 24, 42, 86
convergence
distributional, 38
order-independently, 78, 87
weakly, 77-8, 80-1, 100, 101
convolution, iterated, 23, 53 (exponential)
countably additive measure-valued measure, 103
distribution function (d.f.), 6, 78 (cumulative)
density of states, 60, 61
density operator, 4, 11, 64, 119, 123
density (mean) of photons, 74
dimensions (of a set), 111
dimensions, physical, 6
Dirac delta distribution, 63
discretized Gaussian, 16
dominated convergence theorem, 110
dyadic matrix, 124
eigenvalue density, 17
Einstein space, 4,5, 60, 69, 71, 75, 122, 124
distributions in 2 dimensions, 124
distributions in 4 dimensions, 70-75
comparison with Minkowski space, 122
elliptic operator, 4, 16 (differential)
energy density spectrum, 5
energy distribution function, 67
e-discrete approximation, 121
e-discrete operator, 17, 18, 29, 61, 64, 71
e-net of functions, 17
equilibrium quantum system, 4
Euler's constant, 47
even partition, 21, 22
extreme value distribution, 47, 60
Fermion field, 7
number 68, 69 (ensemble), 73, 74
Fourier transform, 51, 63
Fubini theorem, 110
Gelfand isomorphism, 118
Gelfand representation, 117
Hamiltonian, 4, 5,9, 11, 13, 20, 60, 64, 69, 70, 74, 123
Hilbert space, 7, 9, 39, 62, 70
complex, 117
Huygens' principle, 69
hyperbolic equation, 63
infinite volume limit, 60
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infinitively divisible distributions, 94
infinitesimal
array of r.v.'s, 77
net of partitions, 85
sequence of partitions, 86
infrared catastrophe, 34, 74
integral of r.v.'s, 20, 76, 94, 116
of measure-valued functions, 71, 83
integration by parts, 101
integration operator, 94
inverse temperature, 4
joint characteristic function, 14
joint distributions, 119-122, 123, 124
joint spectrum, 124
Khinchin, A.Y., 5
Laplace-Beltrami operator, 69
Lebesgue integral, 5, 7, 76, 83-89, 90 (def.), 91, 120
additivity, 87
existence, 96, 100, 103, 104, 120
finite, 85, 86
integrable, 108
integration, 76
general, 85, 102
measure, 124
of r.v.-valued function, 95
of vector functions, 116
¢-Lebesgue integrability, 95
relation to Riemann integral, 106, 107
sums, 87
Lévy-Cramér convergence theorem, 37, 51
Lévy-Khinchin transform, 77, 78, 80, 96, 104
Liapounov's theorem, 24, 25
limit theorems (general), 77
limiting distribution, 23
localizable (measure space), 118
Loeve, M., 77, 78, 105
log ch.f., 94
Lorentz, 63
many particle state, 11
maximal abelian self-adjoint (masa), 118
mean value theorem, 79, 82, 109
measure ring isomorphisms, 118
measure space, 118
metric
Lévy, 83
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ps, 84
metric space, 111
monotone decreasing, 36
non-decreasing, 41, 43
multidimensional white noise, 5
multiplication algebra, 118
Minkowski space, 4,5, 60, 62,6749 1 -dimensional),74 (l
75,122,123+ 1 space), 124, 125
net of operators, 4, 61 (discrete)
non-atomic, 85, 112
non-commutative probabilities, 126
non-degenerate interval, 21
non-increasing function, 18
non-negative, 6, 10
non-normal distributions, 6
non-vanishing densities near zero, 51
number random variable, 14,15
occupation number, 13, 14, 29, 41 (total), 55, 61
one parameter family of r.v.'s, 20
order-independent, 79
orthonormal eigenbasis, 13
basis, 9, 10
¢-bounded, 85
particle number operator, 123
partition, 20, 21
disjointly, 86
even, 21
photons and neutrinos, 60, 74-5
Planck law, 4,5, 6, 60, 74 constant), 75
point mass, 87
positive, 6, 20 (numbers)
positive reals, 93
probability distributions (of observables), 1, 23, 87-8, 94
pure point spectrum, 11, 13
guantization (of an operator), 9
R*integral, 110
definition, 110, 111
relation to Riemann integral, 111
random distributions, 5
random variable (r.v.), 6, 23, 34, 47 (geometric), 64
random variable on canonical ensemble, 14
random variable-valued functions, 5, 6, 94-5, 103, 106
random variables with infinite variance (sums of), 77
random vectors, 116
range, essential, 85
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Riemann integral, 5, 20 (Riemann-Stieltjes), 76, 106, #07 ( -Riemann)
definition, 106, 107
geometries, 60
integration, 76
integrable, 108, 112, 114, 122
manifolds, 65, 76
partial Riemann sum, 114
relation to Lebesgue integral, 94, 107
relation toR* -integral, 111
zeta function, 65
Riemannian manifold, 4, 16
scaling stable, 88, 89, 91
stable (scaling) distribution, 88-90
Schrdédinger operator, 60, 61
Segal, LLE., 4,6
self-adjoint, 9, 10
self-adjoint operator, 16
semi-stable process, 91
semi-stable stationary 0-mean, 92
separablegp -, 95
sequence of partitions, 22
o-finite basic measure, 124
measure space, 85
single particle energy, 124
single particle space, construction, 63-65
single particle state, 11
singletons, 89
singular integrals, 26, 34-36
spectral approximation, 61, 64, 65
spectral density (non-vanishing) 5, 16
spectral function, 17, 29, 38, 43, 57, 61
spectral measure, 4, 17, 18, 19, 20, 27, 39, 47 (with non-vanishing density),
60, 61, 64, 65, 71, 118, 123, 126
spectralu -net, 20, 21, 23, 25, 27
stable distribution, 23, 24, 88
characterization, 88, 89
star -isomorphic, 124
standard deviation, 23
state probability space, 10, 11
Stieltjes integral, 17, 20, 31
Sturm-Liouville systems, 16
symmetric canonic ensemble, 11, 29
symmetric occupation number r.v.'s, 39
symmetrized tensor product, 7
tail behavior of probability distributions, 83
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tails of integrated distributions, 77
topology of weak convergence, 77
trace class, 4, 10, 11, 12, 18, 19

under antisymmetric statistics, 11
uniformly bounded, 82
value function, 5, 6, 10, 11, 13, 29
von Neumann algebra, 76 (abelian), 110
W*-algebras (abelian), 117

definitions, 117, 124

properties, 117, 118
without loss of generality (w.l.0.g.), 7, 34, 81, 87, 92, 99
O-free (operator), 11, 19, 27
O-freedom condition, 32
O-free spectral measure, 19
0-mean random variables, 23
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