Convergence Rates of Multiscale and Wavelet Expansions

Mark A. Kont
Boston University and University of Warsaw

Louise Arakelian Raphagl
Howard University

Abstract

Several results are proved which characterize the rate at which wavelet and
multiresolution expansions converge to functions in a given Sobolev space in the
supremum error norm. Some of the results are proved without assuming existence
of a scaling function in the multiresolution analysis. Necessary and sufficient
conditions are given for convergence at given rates in terms of behavior of Fourier
transforms of the wavelet or scaling function near the origin. Such conditions turn
out in special cases to be equivalent to moment conditions and other known
conditions determining convergence rates.
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1. Introduction and definitions

The computational efficiency of wavelet expansions is related to their multiresolution
form and other well-studied properties. Wavelets are local in time and frequency, and a
wavelet basis fo.?(R?) consists of translations and dilations of one or more functions.
Given a multiresolution expansion, it is natural to ask how fast the worst error of such an
expansion decreases when applied to functions in a given class, or equivalently how fast the
associated error operators converge to zero.

In this paper we state a number of equivalent conditions for given pointwise (sup norm)
convergence rates of expansions of functions in Sobolev spaces, stated in terms of the
wavelet, scaling function, symbol of scaling function, and projection operators associated
with the multiresolution analysis (MRA). Our proofs expolit two facts. The first is that
convergence rates of error operators for multiresolution analyses in given normed spaces are
more natural to study using so-called associated homogeneous spaces, because of their
better scaling properties. The second is that under assumptions more general than r-
regularity, the reproducing kernel associated with a projection operator is bounded 'by an
radially decreasing convolution kernel. We assume only that the scaling function or
weighted wavelets are bounded bylan  radial decreasing function. We emphasize that our
convergence rates for projection operators continue to hold if we do not assume existence of
a scaling functions or wavelets for the MRA

The present results apply to multiscale expansions including those using Haar and
Daubechies wavelets, nonorthogonal wavelet expansions, and best approximations using
spline functions. Our results hold for our spaoesximally, i.e., tdeynot generically
hold for larger spaces of wavelets or the functions being expanded, if either one or the other
is fixed. Some of the results in this paper have been announced previously [KKR2, KR ].
Operating under minimal hypotheses, we provide proofs here of results whose proofs were
omitted or tersely sketched in the above announcements. While this paper is self-contained,
we refer the reader to [KKR2, KR2] for preliminary results not included here.

Our results differ somewhat from Jackson-type theorems in Fourier analysis and
characterizations of function spaces by convergence rates of their wavelet expansions (e.g.,
[Ma, Me]). In Fourier analysis convergence rates are determined by smoothness of
functions being expanded. In wavelet expansions, rates of convergence are jointly
determined by smoothness of the expanded fungtion , and characteristics of the wavelet (or
scaling function). We attempt to pin down this dependence, focusing in this paper on
limitations imposed by the wavelet or scaling function itself. This falls closer to the intent
of the Strang-Fix type results of approximation theory [SF] in focusing on properties of the
approximating functionp as well as smoothnessfof . There must satisfy specific
conditions for given approximation orders everyif has infinite smoothness and compact
support. It is shown in [Wa] that wavelet expansions of sufficiently smooth functions
converge at rates commensurate with the differentiability of the wavelet. Such results are
sharpened here into necessary and sufficient forah, in  dimensions and for larger classes of
scaling functions and wavelets. Finally, we note results exist which pravide  [BDR, JZ]
and supremum norm error bounds for shift-invariant spaces.

A classical multiresolution analysis (MRA; [Ma], [Me], [D2]) is a decomposition of
L?(R%) into a sequence of closed subspacgs V ,
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such that
¢(x) € V;ifand only ifp(2x) € Vi, foralli . (1.1b)
In addition it is assumed
Vi = {0}; (1.1c)
jeZ
Uvi = L2®r?) (1.1d)
JEZ

where overline denotes closure; ang V is closed under integer translations,
p(x) Vo = oz —k)eW, (1.1e)

for k € Z9.
Finally, it is usually assumed in an MRA (though we do not assume this a priori) that
there existgp ¢ EIRY ) such that

{or(z) = ¢(x — k) } ez« form an orthonormal basis fof. (1.11)

Such a¢ is &caling function. Our convention is that a multiresolution analysis is a
sequence of orthogonal projectiops8, } onto the above spégés which satisfies (1.1a-
d), and existence @f will be assumed only when specified.

Let W, be the orthocomplementof V iV ,i.e;, W mVe i V,s0V = ; W.
From existence op it follows (see, e.g., [D2]) that there are basic wayekets }ycx(X)

(with A finite) such thatsy, ()= 2% @2x-k) §Z , k2% ) form an orthonormal
basis for a fixed \V , and form an orthonormal basis foRE () as j, k vary.
By (1.1a) and (1.1b), there existc}h.z«  such that

¢(x) = 27) " hpp(2z — k). (1.2)
kezd
The function
mo(€) = hpe ™, (1.3)
kezd

is thesymbol of{ R}z« , and is easily shown to satisfy

N N
(&) = mo(E/2)p €12).
Our convention for Fourier transforms is

~

b =F(p) = (27r)’d/2 P(x)e “2dx;
Rd



we will write § - z = &x.

The most direct construction of multidimensional wavelets is through tensor products of
one dimensional multiresolution analyses (see, e.g., [D2]). In general we write, as a wavelet
basis for £ R?), the collectiofiysy }jezkezepea - With — an indexing set containifig 2 - 1
elements.

A general construction of so-called -regular wavelet bases in multiple dimension is
given in [Gr, Me,Wo0], where the scaling functipn is assumed r-regular. Note that in this
algorithm, the assumption of r-regularity may be weakened somewhat, in particular with
respect to the requirements of rapid decay at infinity for the scaling furction

Whichever construction is used (see [D2], Ch.10; [Me], [Gr]), our results hold for any
set{y*}, whose translations and dilations form an orthonormal basig ®f L (). We will
assume our wavelets®  and scaling functigns aré?in , and that they are radially
bounded by decreasidg  functions (the details are given below).

Definitions 1.1: A function f(x) onRY isradial if f depends on |x|. A real radial function is
decreasingf f(x) < f(y) whenever |x|> |y|. A function f(x) is in the class [RB] (c.f.
[GK1,2)) if it is absolutely bounded by an'L radial decreasing function (x), and
n € LY{RY. (Note since; is defined at the origih, must be bounded).

Let B, and Q , respectively, be the orthogonal projections frit(i?) gntoV and W ,
with kernels (when they exist),P (x,y) ang Q (x,y). Deffre= P, . An opefBtor s in
[RB] if it has a kernelT'(z,y)| < K(x —y) , withK(-) € [RB].

Givenf ¢ 12,

(i) themultiresolution approximatiorof f is defined by the sequence, R f
(i) thewavelet expansiorof f is

> @i (@) ~ f, (1.4a)

JEA

with aﬁ( the 2 expansion coefficients 6f , where  denotes convergeride in
(ii) thescaling expansionof f is

> bep(z) + > apg(x) ~ f, (1.4b)
k.

J=05k;A

where the b ,jp are’L expansion coefficients of f. We say that such sums converge in a

given sense (e.g., pointwise, it L , etc.), if they do so in a semi-order-independent way.
Specifically our convention is that sums are calculated such that the range (largest minus
smallest) of j values for which the sum oveik, isincomplete remains uniformly bounded.

Finally we define a scaling function of the MRA®,}  to be any function  whose
integer translates generate the sgdce , the range of  (we do not assume existence of a
a priori for an MRA). Sinces uniquely determines a symbgl(¢) (equation (1.3)), we
define any symbol arising from¢a  corresponding )} to be a symtyat,of

Our results on sup-norm convergence norm extend a body of results (e.g., see [Wa,
Ma, Me, SP, BR, JZ]). Mallat [Ma] was the first to sharply measure decay in ? of L



approximation error, i.e.|| f-P|f2 for -regular wavelets, resulting in a characterization
of Sobolev spaces in terms of error decay rates of wavelet series. Our results m€asure
error, yielding best possible conditions allowing given convergence rates.

Definition 1.2: The Sobolev space of order is

o= {rev®y s = /[ Roraren ¢ <}

The homogeneous Sobolev space is:

= {re @y It =\ [17R kP& <00}

Note H is incomplete in this norm since it is restricted tGR?) . In Fourier space, itis a

dense subspace of the complete weighted L spaa# of measurable i withs ob <
This space is advantageous in that its norms change simply with of scale. By our restriction
that the functions be if* , in fact fer> 0 H* afff  consist of the s&ne  functions,
with quite different norms.

Definition 1.3: An (MRA) {P,} or wavelet familyy” yieldspointwise order of
approximation( or convergengs in H if for any fc H, thex™ order approximation P f

satisfies

[Enflloo = (I = Pa)flloo = O(27), (1.5

asn tends to infinitylt yieldsbest order of approximation iH" if is the largest number
such that (1.5) holds for dllc H".  If the supremym of the numbers for which (1.5) holds
is not attained we denote the best order of convergenge. by More generally the wavelets
y” yield pointwise order of approximation (convergence) s if for any function f in a
sufficiently smooth Sobolev spa¢f’  the equality above holds.

Note that by Proposition 2.6 statement (1.5) is equivalent to

1Enflloo < Cr27™ 11,

for f € H"

In practice (according to the proof of Theorem 1 below) f is sufficiently smooth if
f ¢ H3*92  This is natural since some statements do not make sense for less smooth
functions. For example, if the allowed Sobolev exponent were s +ed/2 - foresome > 0,
then for small s functions in¥2¢  might be discontinuous and the above statements could
not hold.

We assume our wavelets satigfy €) [RB], the class of radially bounded decreasing
L' functions, and/or that our scaling functions are in [RB]. This class of wavelets includes
r-regular wavelets (see [Me]) for any> 0. The assumptions are needed for appropriate
LP and a.e. convergence properties of wavelet expansions [KKR1].



All the conditions in Theorem 1 below are equivalent, and some (where indicated)
require existence of wavelets and/or scaling functions. The wavelet and scaling function
assumptions are independent. The conditions focus on the relation of the wavelet's
smoothness to convergence rates of wavelet expansions. fNote H; if and only if

F(6) € L2 (¢[>de).

Theorem 1: Given a multiresolution analysis with eithey i a scaling funcifoa [RB],
(ii) basic wavelets satisfying*(z) € [RB] of Jii a kernel for the basic projection P
satisfying |P(x,y)K K(x-y) with Kk [RB], the following conditiofs a td)d are
equivalent for s> d/2 (existence of a scaling function for the MRA is not assumed in parts
(a)-(c") ):
(@) The multiresolution approximation yields pointwise order of approximation s - d/2 in
HS, whered denotes dimension.
(&) The multiresolution approximation yields pointwise order of approximation r - d/2 in
H' for all r <s (with r>d/2).
(@) The multiresolution approximation yields best pointwise order of approximation
s-d/2in H.
(@") The multiresolution approximation yields best pointwise order of approximation
r-d/i2inH forallr < s(withr > d/2).
(b) The projection|-R : 8 — ¥ is bounded, where | is the identity.

If there exists a family{y)'} of basic wavelets corresponding{tq} P  with
Y MX) € [RB] (regardless of existence of a scaling function)
(c) For every such family of basic wavelets and each* € H, , the dig].of
(") For every such family of basic wavelets and for each

N
e WAEF EP° ¢ <o (16)
for some (or for all)é > 0 (including =oc ).
(¢”) For some such family of basic wavelets, (1 6a) holds.
If there exists a scaling functiopn  corresponding{tg,} P  (with or without a family of
wavelets)
(d) For every scaling function € [RB] corresponding{ta,} P

L (@O e (18

for some (or ally > 0 (including = o).
(d") For some scaling functiop  correspondingtg} R1L &)  holds.
(d") For every scaling functiop € [RB] corresponding{ta,} P

[ S berann it g < (16

Kl<é g0

Note that for full generality of the statement of this theorem, the order of proof of the
above equivalences includes a direct proof of the implicatior>(b) (c). Explicit proof of



this (as opposed to following a different route in the equivalences - see below) is relevant to
the case in which we have orthonormal wavelets, but possibly no scaling function. Our
direct proof of (dy= (a) will be relevant for the case where there is an MRA, but no
orthonormal wavelets which satisfy tiié radial bound conditions required in our proofs;
this allows existence of wavelets and scaling functions to be independent.

When a scaling function and wavelet family constructed from this scaling function as in
[Me, Gr] (see below) satisfy the samé radial bounds as the scaling function, Theorem 1
can be more easily proved through the sequence-(d) =(c) < (@) (b)asd (@) (d). To
be specific, the implication (@ (c) can be proved more easily if a wavelet {aasjs
constructed from the scaling function (see [Me, Gr, D2]) happens to satisfy our radial bound
conditions. Note that for this latter order of proof the radial bound requirement on wavelets
is necessary even though the equivalences(a) (d) does not otherwise rely on the existence
of a wavelet basis, radially bounded or not. Existence of such wavelets in general (though
without guarantees on radial bounds) is proved in [Wo]. If such wavelets satisfy radial
bound conditions, we can use that(¢) = m*(&)¢(¢)  for some peribdic  funetion

and tha)"|m?*(¢)|? = 1, from which we can deduce4d)  (c) through a simple argument.
N

We have chosen not to make such assumptions (i.e., the automatic radial boundedness
of ¢* following from that of¢ ) in the theorem, and hence our order of proof, which thus
must include explicit proofs of (B> (c) and @& (a). We will exclude details of the
additional elements of proof for this longer and more general sequence of implications in
order to limit the paper's length, and so only sketch the proof of Theorem 2.15 (covering the
proof of (b)=- (c)), and sketch the portion of the proof of Theorem 3.7 giving-(d)  (a).

We remark H is the “critical” space for order of approximationdy/2 , in that it is the
lowest order Sobolev space in which this approximation order can occur.
Condition (b) can refer to any or to all n, sinfg are equivalent under scale

transformations.
Let F ={ 0,59 be th@ -vectors with entries from the gair } 0,1 . Let

F' = F\{0},
and recaling (&) is defined in (1.3) (see also Definition 1.1).
Theorem 2: If my(§) is a symbol of a multiresolution analysis corresponding to a sequence
of projections as in Theorem 1 the following conditions are equivalent to those in Theorem
1:
(e) For every symbolgtt) corresponding{ta,}P
/Elé(l-m@)hﬁs g < (18

for some (or ally > 0 (including = o).
(¢) For some symbolgff) correspondingtg} P .,41 6 ) holds.
(") Every (or some symbobfd) corresponding tq} P satisfies



L mOF el d <o (L)
for some (or all) >0 (including =c and for every € F’ .

Again the above hold for multiresolution expansions, scaling expansions, and wavelet
expansions if defined.

Remarks:

1. The above conditions are related to Strang-Fix conditions [SF], which rélate H*and L
orders of convergence of spline expansions to moment and other conditions, and our
theorem is effectively an extension of the so-called Condition A in [Str]. A significant
difference is that our results yield fractional orders of convergence.

Fractional convergence orders are in fact possible for multiresolution expansions.
Indeed, in Theorem 1 it is shown order of convergence of a wavelet expansion is
determined by the asymptotics of the wavelet's (scaling function's) Fourier transform near
the origin. To show any convergence order is possible, it suffices to construct scaling
functions with arbitrary asymptotics near the origin (not just those corresponding to integral
orders s- d/2 of convergence).

2. Alternatively, condition (c) above is equivalent iy {3y ¢ 2RI ), with | |
defined by operator calculus. This is a singular integral condition on itself (e.g., [Ste]).
Thus

W= AP

for somen* ¢ B RY).
Ford =1 ands = k£ an even integer, the standard assumption that foe sere

O < C + X, (1y
implies|® (x)] < C(L + [x[f'** forintegers < k. So it can be shafkR2]) that (c) in
Theorem 1 is equivalent to the moment condition

/%¢@nm:o for 0< ¢ < k-1.

The latter is equivalent to other versions of the Strang-Fix conditions [SF].

3. Condition (1.6b) is related to -regularity. Using Proposition 2.7 in [Me] we can
conclude from our theorem pointwise convergence of orderl — e for r-regular
expansions in one dimension, forall > 0.

4. The s range in the theorem cannot be extended. Indees <ifd/2 then
I — P: H° — L* cannot be bounded, as shown in a remark below. On the other hand for
s < d/2 conditions ¢ ) andd ) of the above theorem always hold. Indeed this is clear by



the boundedness @f amd . Since the statements of the above theorems certainly make
sense for alk > 0 (but are false fer< d/2 ), the proofs of the conditiong’on ¢ and
must be delicate enough that they fail when d/2. The points of failure are indicated in
the proofs below.

5. The scaling factors of 2 in the spacgs V is not crucial; the arguments hold for other
scalings, as long as a multiresolution analysis of the full function space results (see [Au]).

Our strategy when wavelets are assumed to exist is to form of the kefyel of , given by

Paxy) = D ik (0w ).

j<n;k;A

A similar expression in terms of the scaling function  will also be useful.

Finally, the present results are best posdibte results in the scales of Sobolev spaces.
Note we assume both functions to be expanded and wavelets and scaling functions are in
L?. This corollary follows immediately from Theorems 1 and 2:

Corollary 3: (a) Given the Sobolev spaceg H as the space of funcfions to be expanded,
the homogeneous spacg H is the maximal space of possible wavelet fupttions  (if they
exist) for which Theorems 1 and 2 hold

(b) Given the Sobolev spadé’ as the space of functions f to be exgéntied, is the
maximal space of the functian- (27r)d/2$ fif exists) for which Theorems 1 and 2 hold.
(c) Given H* as the maximal space (i.e., smaliest ) to whickythe 1 {of2r)%?¢ )

belongs, the maximal Sobolev space of expanded functions f for which Theorems 1 and 2
hold (i.e., for which we have order or best order of approximatiend/2  Hy'is

For completeness in section 5 we show convergence rates of wavelet expansions,
though they must be exponential in almost all spaces, can be arbitrarily slow within this
constraint.

2. Rates of convergence and wavelets
We restate needed results from [KKR&]; anhd denote the scaling function and basic
wavelet of a multiresolution expansion. Statements @R in  unless indicated otherwise.

Lemma 2.1 [KKR1]: (i) If the scaling functiony € [RB], then the kernglxRy) =

3 o(x-K) ¢ (y-k) satisfies
kezd

IP(x,y)| < Ko (x-Y),

where K, € [RB] , i.e., is a bounded radial decreasing L function. Convergence of this
sum is uniform oiR?® and the sumis thfe L kernekof P



(i) If Y (x) € [RB], then Q(xy) = Y. ¢ (x-k)* (y-k) converges uniformly and
keZd;\

absolutely orR?? | and is bounded. This is the kernel of the orthogonal projegtion Q onto

Wo.

A Lebesgue point of a functigh is a generalized continuity point near which f does
not deviate too much from the value f(x):

Definition 2.2: The point x is d_ebesgue pointof the measurable function f(x&h  if f is
integrable in some neighborhood of x and

1
lim ——— f(x) - f(x + y)|dy = 0,
imy gy J,, 1109 o+ vdy

where B denotes the ball of radius about the origin, and V is volume.

Continuity points are also Lebesgue points, though the Lebesgue set can be much larger
than the continuity set. Lebesgue points have full Lebesgue measRte on

Theorem 2.3 [KKR1]: () Assume only that the scaling functiah of a given
multiresolution analysis is ifRB], i.e. that it is bounded by @n L radial decreasing
function. Then for an ¢ ALRY )(1< p<oo), its multiresolution approximation
converges to f pointwise almost everywhere

(i) If ¢, ¥* €[RB] for all ), then also the scalin@.4b) (f 4 Poo ) and wavelet
(1.4a) {f 1< p<ococ) expansions of any & IPRY) converge to f pointwise almost
everywhere. If furthep ang® are (partially) continuous, then both of these expansions
additionally converge to f on its entire Lebesgue set.

(iii) If we assume only® (th (2 +|x|)€ [RB] for al , then the wavelet (for <o)

and multiresolution (for K p < oo) approximations of any fLP(RY) converge to f
pointwise almost everywhere if further thé are (partially) continuous, then the wavelet
and multiresolution expansions converge to f on its Lebesgue set.

(iv) The last two statements hold for orders of summation where, at any stage, the range of
the values of j for which the sum over k ahd is partially complete always remains
bounded.

Definition 2.4: Two functionsa: ( ) andl { ) arequivalentqa - (~ 8 - ( ), if there exist
positive constants;c and ¢ such that for eyfery in their domain,

cia(f) < B8(f) < eaf(f).

The 1?-Sobolev norm is equivalent to a more convenient one. The homogeneous norm
(Def. 1.2) has better scaling properties, and a relationship is:

If1 s~ [ nst [T o= [1fIl,

fors > 0.

10



Definition 2.5: Let FI* be the spacH® endowed with the equivalent fjorin, above.

If F is Fourier transform, the#& (f(ax)) =dg &( /a). Letting
fr(x) = 2'92£(2"), (29

we have

o | 2 = [EPS (@92 2028 )|P d
=20 || f|| 2, .

A key to our discussion is that convergence rates are closely related to the behavior of
Fourier transforms of wavelets and scaling functions (and more generally any dilated and
translated expansion functions) near the origin. This behavior translates to that of the
kernels R and R of the projections ontp V and W . We inverse Fourier transform these
kernels and define

Pa(x£) =F, 1 B (x.Y); Q)T R (xy)

where the subscript indicates the inverse Fourier transform is in y. It is easy to verify the
transforms converge everywhere and are continuou$ in , since under the assumption
¢ € [RB] it follows P,(z,y) andQ,(z,y) € L; , uniformly in x. The same conclusions
hold for@,,(x, y) ify € [RB] (see [KKR1]).

We effectively study the distance of the kerdgl(z,y) to the delta distribution
6(x —y)in H™* (s > d/2) to prove our results (this viewpoint is taken in [Wa]). Consider
the error

FEnll = 11 6(z —y) = PaxY| roeo

whereé (X -y) is viewed as a convolution “kernel” applicable to functions in sufficiently
smooth Sobolev spaces. Strictly speaking the latter norm is that of the ofderaféy ,
since$ does not exist as a function.

The errorE, is bounded ih> , but hasbb  kernetin sand since that of | is a delta
distribution. In Fourier space the kernel is well defined:

Enf= E,Ff,
whereE,, has akerndl,(z,&) = #29% e "1 PgXx, ), with
P(,9) = Pule.) = 2n) 2 [ R(z,)eide,
Now we equate convergence orders and statements about operator norms:
Proposition 2.6: Given a Banach spacé and a normed linear sgace , and a sequence of

operatorsT,, : A — B, the sequence has order of approximatior), i.e., fgrallA,
(I —T,) fll g < C¢B(n) if and only if the operator noril — 7,|| < C’B(n).

11



Proof Consider the operatot, = (I — T,,)/8(n). The second condition above states
that A,, are uniformly bounded. By the uniform boundedness principle, this occurs if and
only if [|( —T,,)f/B(n)| 5 is bounded im for everyj € A , completing the proof

Define the scaling operatorSf(z)= f(2x). ThernV, =SV,., , and
P,=SP, S~!=S"P,S~". We have also
Pn(x’y):fd%(z X!Qy)' ( 22
Lets >0 andletk =1-R denote the error operatotfor Flet E,.

Lemma 2 7: The sequence"/>=9||E, ||z, .. is nondecreasing, with il sz
(which could be infinite).

Proof. For f € H*, definef,(x) = 2"¥/?f(2"x) . Notd|f.|lo = | fllo, as well as
1 fallns = 27 ([ f[ln.s» @NA(E, fn) (z) = 2"Y*(E ) (2"x). Thus

|Enfull s = 2" Ef|| 1.

Let A = || E| 1~ and
B | _ up B
2 foetrs 282 (|| fullry + W fallo)  pere (1f Il +27751f o)

This last expression shows tHat, },,cz is a nondecreasing sequence bounded above by
(since the setd/* anH; are defined to be the same). Kgnce  converges (possibly to
+oo) and lim a,, < A.

n—oo

Conversely, lef € H; (s¢ € L* by definition). Then by definitiorupf

1Efllze = 27" Ep full = < an27™ || fall g = @27 (I fall iy + 1 fullo)
= an (||l +27"(1£llo),

for eachn . Let — oo to conclude thaE {7~ < | fllz: lima, . Heote lim a,.
n—oo

n—oo

Recall an operatof’ is in [RB] if it has a kerf@(z,y)| < K(z —y) W - )
€ [RB]. SinceH*® andd® norms are equivalent we have by the Lemma:

Proposition 2 8: Assume&® = P, € [RB] andlet> 0. Then

(@) Theerror i =I — R satisfies the scaling identity
IEn || Home ~ 2792 E| i (2.3

with the equivalence uniform over n if the right side is finite.

(b) If the right side of 2 3 ) is infinite then

12



| En || Hs—ro

92-n(s-d/2) n—T)oo o0 -

Thus if (2 3) is finite for some n,
Cy 21929 | E|| ol <|| Bl wowe <G 2Wz9) g Hp— Lo

Taking (a) and noting (b) of Proposition 2.8 whggn || & ..~ oco= , we obtain:

Theorem 2.9((a) & (b) in Theorem 1) Consider a multiresolution analysis with
reproducing projections P onto,V which are [RB], and let 9> A necessary and
sufficient condition that this multiresolution analysis yield pointwise approximations of
order s- d/2 in H isthatl — P: H — = be bounded, with P the projection orjo V
and/ the identity.

Remarks: 1. Since P is an operator o L , Theorem 2.9 technically sfate® maps
H3*92N L 2into L™, though since BN | is dense inH , the statements are equivalent.

2. Since s< d/2 is allowed in Theorem 2.9, this also formally describes situations in
which pointwise approximations are guaranteed to diverge at the rat€0(2 ) for some
functions f. This may apply to some multiresolution expansions, but for wavelet
expansions s< d/2 is vacuous, since in this daseP ﬁ*dz’zl—l—> ® L is never bounded.
Indeed we assume the basic wavelet is bounded, so Pf L cfoff L. On the other
hand there exist unbounded functions i H and herjice H for é/2 . Hence<for s
d/2 itis impossible fo” — I)f to be bounded for allf { H and the hypothesis of the
theorem is never satisfied in this case.

We can in fact prove a more general theorem. For this we need:

Definition 2.10: Let A be a normed linear space (NLS) of functions on a vector space
with norm || - || a. Define th@ssociated homogeneous notm- || o by

11 an = im | fex) | dalc) (24

whereqa (c) is a positive function (if it exists) for which the limit (2 4) exists for all f A,
and is nontrivial for f # 0. An NLSA for which there exist§c) such that
| f(cx)||, = a(c)|| f(z)|| for allc > 0 is shomogeneouspace.

The norm (2.4) is uniquely defined up to a constant multiple fer all , itany yielding

a homogeneous norm exists. Indeed:if and are two such functions the ratio of the
resulting norms will bgﬂl{i}rgul ()2 (c). H(c)=cF ,then is thealing factor 4f

Notea(c) need not be a pure poweeof | ffz)|| = [|f(x)|(Inz +1)dx

1)l = ¢! / F@)] (0 (/)] + 1) dz ~ ¢ ne / f(@)dz (¢ — o),

13



soa(c) =c!Ine, and|f|,, = I fIl;-
We remark that associated homogeneous norms exist foP all L -Sobolev gfjaces
1< p< oo, and that foty we have (c) ¢

Theorem 2.11: Let A andB be any homogeneous Banach spaces of functidk® on , with
scaling factors k andg . Then a necessary and sufficient condition for a multiresolution
analysis{ R} to yield approximations of orger kgk,' from the space A to the space B
isthat/ — P : A— Bbe bounded.

Proof: LettingE, =1 — P,

1Eullgmp = I1S"ES™ |45 = ?UE|S”E5_”f||B/||f||A
€

= sup|S"Ef|l 5/I15"fll o = kgk " SUBES] g/ 11 4-
feA fed

Thus if E = I — P is bounded we get approximations of the desired order. Conversely if
FE is unbounded then so 8, , and so by Proposition 2.6 we fail to have any order of
convergence.

Thus order of approximation between homogeneous spaces is entirely determined by the
scaling factors (if they exist) of the two spaces A and B.
We now consider what properties of the basic wavelet imply erder convergence
using Theorem 2.9. The correct condition will be that be in the dual $hece H;
Note that

@Y 2F (W () = 297 625K (& 20 (2 ). (25

Theorem 2.12((c) = (a)): Lets > d/2 and assume*(z) € [RB] ang' € H;* for all
A. Then the MRA yields pointwise order of approximatiend/2  Hin
Proof. Suppose)* € H—* foreach ,arfidc H* . Then

[l < WFagllgellme = 272 1 g 19
by the formula (2.5) and a simple dilation argument. Sifce [RB],
supy [Nt — k)| = Ay < 0.

tEdeezd

Hence for each , eaghce Z , and each R? :

> (@)

keZ

< 27| Il 19

e S 2PN 2 — )

kezd
< 279072 A, | fll g [ -

s
H h

Therefore

14



o0

<32 3 2 AN g 1

Jj=n+1

11 = Pn) f||oo<2 Z

j=n+1

(7

keZ

o0

< 27 flle D AN,
A

as desired.

Corollary 2.13 ((c) = (b)): The projection] — P, : Hj — L* is bounded if € [RB]
andy € H,* for each\ .
Proof. Theorems 2.9 and 2.12.

We now prove (b) implies (c) via:
Lemma 2.14: Let g(n) be complex-valued functions of an integer argument n for each
1<i </, with Iimsup |g (n)] =c for at least one i Then there exists a veetor such that
(0.0)
if we defineg (n) = (g (n),.. g (n)), then for any vector ,
lim sup €- g (n)| <o
m sup ¢- g ()
onlyifc-v=0.

Proof Leth(n) =g (n)4 (n)|, and let be a limit point of the sequemce (n). Then if
c-v # 0, we would have for a subsequenge n suchhhat én») v -h |c e(n)> for
—00

some positive . Thus we would have
mggﬂ g (n)| r;mogurx:l (ngl (N} im sepy | (i
yielding the desired result.

In the next theorem note (%) ﬁH is a conditiompn  as a linear functional. This is
equivalent to bounds on the Fourier transformyof , which dictate the proof's approach.
Recall P = B isth&? orthogonal projection ontp V . Announcements of this result have
appeared in [KKR1, KR2]; here we include the complete technical details.

The proof of Theorem 2.15 below is sketched (see remark at end of Section 1).

Theorem 2.15((b) = (c) in Theorem 1):Let s > d/zand assumé” € [RB] for al
Thenifl — P H — E° is bounded;(x) € ﬁ-l the dual space pf H

Proof Assumey™ ¢ K =k for soma; € A . Assume takes values from 1 to
¢ and without loss assumla = 1. Then there is a sequgnce f fdth c§ein and

N
||fn||h7S = 1such that/ ! §) /,\f £)d noho ¥ - The sequen%ef can be chosen so the

integrand above is positive for all n. Lé\b Q&x, ) be the Fourier transfogm in ¢ of Q (X,y)

15



= Q(x,y), which exists as a function by the bounds in Lemma 2.1. Using (2.5) we can
show (all ' norms are in x)

|| / Qox, ) o) dy | o = | /ﬁ(—g)zﬁ(-ozwxgmnw (26
A

where
Z2Mxg) =) ¥ pix-K)
k

is the Zak transform af*
We now show the € norm in (2.6) becomes infinite as> no . Note we have
assumed that* € [RBY 4 (recall functions in [RB] are bounded), but that

[Pof©d g . (27

It is not difficult to see we can choogegf ( ) to be a sequencg’of C functions whose support

does not contain the origin (though the origin may be in the limit of the suppo/f{s of f).
Assume without loss there is a subsequegngé n  such that

/121(5) f©de > /w” O held

for all A; otherwise we could change indexing of the 's so this is the case, and then adjust

the phase of the,f so thﬁ?tl £ (,,;)E () is everywhere positive. Now re-index so the new

sequencd f,}, Iisthe sequergg, };.
In addition it can be shown easily that there is &set  of x with positive measure such

thatZ1 (x,0) # O.

Since/i € ) € 12 are uniformly £ -bounded in n for any fixéd >0 (as they have
norm 1inH; ),

N RGIGLGESES (28

for anys >0. Also for any x andl , the Zak transfazih £ (x, ) is continuogs int at =0,
since it is a Fourier serigs  with coefficientdin (simce NL  [RB]
Consider linear combinations

5©) =3 a b )
A

withc = (¢, @,.. , ¢). Define the vector functialx\ng ( )(:z/lj\l 12@) ¢ (), and consider

the integralf@ §)Z (€ ),:f{ ) d , where the inner product in the integrand is between the
vectors@ E)andZ (% = 4*... Z' )& ).

16



It follows from Lemma 2.14 and equation (2 8) that the set of vectors such that
imsup| [ hOnO €| £
N—00 l¢l<s

must all satisfy a linear relation of the foumc =0, where is a nontrivial vector.
We can then show that for soriec R of positive measueex impligs (x,0)
# 0. Thus for xe G

im sup| / %e); DYz x0d| =o . (2.9)

It is easy to show there exists a §etC G of positive measure such that fGh x
v - Z(x,0) >y>0 for some fixed >0
Consider now, = (W ,®W... ), with

W) z/@f)%@)o&

We henceforth assume the vector is constructed as in Lemma 2.14, as a limit point of the
directions of the vectorsv,, , i.e.,, &, =w, wf| |. We claim foe¥; , there is a
subsequencé ¢h  such that

Wn, - Z (x,0)] >y v}

for v as above. Indeedj, i v for an appropriate subsequencey since is a limit point
—00
of Wy,.. Thus for large k

Wn - Z(x,0)| =¥l - Z (X.0n |7 vin 7wy

(recall thatw!,is positive by our assumptions). EquivalentlytfarG,
|/?nk<£);$<£)zk(x.om|w/“u)ﬁz{)e. (21p
Consider now the full integral in (2 6) (now including the variatiog in ),
[f© > P 2 ) . (211

With some additional arguments it can be shown that (2.10) holds as well if the left side is
replaced by (2.11), for in another §8t  of positive measure.
Thus forz € G

A A \
|/fnk(5)§Aij)Z () || oo .

Thus by (2.6)

17



|| / Qo ) fa ) [ 0 =| /?rk(o;ﬁ(gm ) k] o oo,

sothat| Q| .~ =0 ,sincd nf|| w =1foralkn . By scaling therefore for all n,
Il Hg 1 =00

Now consider the projectionP P $Q . We have
[PL-Dfalloo=1l (R -Df +Qf |«

so that if|| (B - ) || «» is bounded in k, then by the above equafion; (P n-|))f is
unbounded in k. Thus by scaling invarianfe o (P [F_L~ oo=  (since the two norms
are infinite or finite together). This completes the proof.

Combining Theorems 2.8 and 2.15:

Corollary 2.16 ((a) < (c) in Theorem 1) For s>0 a necessary and sufficient condition
for order s—d/2 convergence itH®  of wavelet expansions with basic wawuglets
satisfyingy (z) € [RB] is that for al\

O ER 4 <o (21p

k1<

for some (or for ally > 0 (including =0 ).
This follows because fap € 2L, (2.12) states that > H .

Remarks: 1. Note this result is intuitively expected for s close to O, since then order s
convergence naturally requires f S*#2 | since otheryiise need not even be continuous.

2. Orders convergence in this Theorem (and the other parts of Theorem 1) applies to any
summation order in which scale j wavelets are added before scale j + 1 wavelets. This is
best seen from the fact that not only | - P satisfies the bounds in the proof of Theorem 2.15,
but also any part R (X,Y) 3 .« Yk @k (y) of Q. Precisely, we have that the norm
Qok: Hy — L is bounded uniformly in the choice of the set K, using arguments identical
to those for | - P in the first part of the proof (sufficiency) of Theorem 2.15.

This statement easily extends to the statement that the present results hold for any order
of summation in which the range of values of j for which the sum over Rand s partially
complete always remains bounded.

3. Proofs of conditions on scaling functions

We now translate condition (2.12) into one on the scaling fungtion . First under our
hypotheses,

18



/ p(x)dx =1 (3.1)
Rd

if ¢ is multiplied by a possible phase constant. To see this note that under the assumption

¢, € [RB], the functions(z) => ¢ (x-K) is uniformly bounded in x through an
kez?
argument using the radial bound (x) tor (X), and the fact that the sum can be bounded by

aconstant timegn (x-y) dyco . Thus by dominated convergenéef@’

/quﬁ(x—é)s(x)dx=Z/Rd¢(x)¢(x-k)dx=1. ( 3)2

kezd

Similarly for anyzyc withj > 0

/Rd P (X) s(x) dx = 0. (3.3
It is not hard to show thatss “L is uniquely identified by (3.2) and (3.3). Thus
1
= -NN= — 3.
s(x) zkj ¢ (x-K) 70 (3.3

since this satisfies (3.2, 3.3). Also by dominated convergence

/5(x)dx= Z/Ca(x-k)dx =/C D 6 (x-Kk)dx,

kezd kezd

with C the unit cubd x RY |& ;x }1 . By this and the complex conjugate of (3.4)

_ 1 1
dx = dx = ,
/‘W) x /cfcb(y)dy =750 dy

so|[¢ (x) df?> =1, and after possible multiplicationjof by a phase (3.1) holds, and

g/g(O) = W- (3.5

Let ' = {0,149 be all vectors with entries consisting{of }0,1 . The following is an
extension of a standard one dimensional fact:

Lemma 3.1: If ¢ is a scaling function for a multiresolution analysis, then

316 + 270)R = 2n)°.

Lezd

Furthermore for any € F
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Y pe+rf =@y .

£1€2794-¢

Thus:

Lemma 3.2: If ¢ is a scaling function for a multiresolution analysis, th?e(ﬁ) = (2r)¥2
N
and¢(2r¢) = 0forl # O.

Proof: This follows from (3.5), and Lemma 3.1.

Corollary 3.3: If ¢ is a scaling function from a multiresolution analysis

Y IBEr2mn? < Cc2r)?2- BE))

£e78;040

for some C> 0.

Proof: By Lemma 3.1

> et = @ ) -3 9”2

L€79:040
= (@2 + BE) (@ )2-pE))
< o @y -pe)

since$ is bounded.

If ¢ is a scaling function for a multiresolution analysis, the coeffici€htg s are
defined by
¢(x) = 2 "hy ¢ (2x-K) (36
kezd

Fourier transforming (3.6)

5©) = > m "2 €r2)=ra £ 125 € I2) (3.7)

kezd

Thus
me(0) =1 (3.8
Then
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@y = S be +acf

Lezd

= Y I € /24l H G & 20 B

Lezd

= Y w4 /2 e B|le( 12 2)]

ecF  (e€279+¢

= @) X Img /24 Y,

ecl

yielding
D I +me)f =1 (39

ecF

a.e. for¢ € RY . Together with (3.8), this shows ¢ ( ) assumes its maximum value f 1 at
= 0. In the third equality above we have used the 2 - periodicityyof m in all coordinate
directions, and in the last we have used Lemma 3.1

For the following theorem we need a general version of the Poisson summation
formula [SW, Theorem VIL.2.4]. Given f(>d URC ) (using our Fourier transform
conventions)

Y fx+k) = (@2 Y Tt g | (3.1p

kezd lezd

with 1‘\ the Fourier transform of f.

Proposition 3.4: For s € R, an operatorR: H; — L* with kernek(x,y) is bounded if
and only if Rx,y) € HY inthe variablg , uniformly ini.e.,

/|E2<x,£>||£|25df <C <o,

for almost allz, whereR(z, €) is the Fourier transformBf in
Proof: Assume first R: B — [ is bounded. To shofv [R(®£)PI4 d is

uniformly bounded in x, we have

| R peo = €SSSUP  Sup IRF(X)|

X flns=1 .
N
= ess sup( [ "IR&E T €}

since in the norm of a function (in this caéé:c,f) viewed as a functigh of ) is the
supremum of its values on functionals in the unit ball of the dual space.

Conversely ifAR(x,y)E ¥ essentially uniformly in x, then R® H> L is bounded
by the Schwartz inequality:

| JRx) T & 12 < || STRoC R dF @l o S 18 Fe 2T ed
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= fRoCA4F o | 2
RecallE = Ey =1 — P.

Corollary 3.5: The MRA{ R} has order of approximation s - d/2 ih H if and only if the

error E(X,y) = J-}(E (x,€)) € HZ in the variabley , uniformly in x.
Proof: This is an immediate corollary of Proposition 3.4 and Theorem 1.

Equivalently (recallé(:c, €) is defined before Proposition 2.6):

Corollary 3.6: The MRA{ R} has order of approximation-si/2 i H if and only if
[E(x£)P|E? & is essentially bounded in x.

We remark that the following theorem has at least two proofs, one taking advantage of
relationships between the Fourier transforms of the scaling fungtion  and wayelets
(with the additional assumption that the latter are radially bounded) Both proofs have
approximately equal complexity, and we include that which does not rely on existence of
wavelets.

Theorem 3.7((a) & (d) in Theorem 1) Let¢ be the scaling function of a multiresolution
analysis, and assumg € [RB], s > d/2. A necessary and sufficient condition for order
s— d/2 convergenceii/® of the multiresolution approximation with scaling fungtion is
that¢ satisfy

4@(1-@ﬁ“$enmfse <o (311
for some (or for allp > 0.

Proof: Assume first that (3.11) is satisfied. We only sketch a proof of the
implication that we have order— d/2 convergence (see remark at end of Section 1). By

Theorem 2.8 we need to shdy = lo P is bounded frgm H*to L . By Corollary 3.6, it
suffices to show[d¢ |Ey(x, €)[?|€| 7% is essentially bounded:in . SiAge- I — P , we
consider the kernel adf, ; recall that the kernel in Fourier s,éa(;e, §) = Po(z, §) — isthe

Fourier transform of(z,y) iy :

Py(w,€) = Fy(Po(,y)) <Z¢ T — - ))

= Y otx- () [ o) e dy
k

— Z(x£) 6(-6),
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whereZ (x¢) = >, ¢ (x-K) & =", ¢ (x+Kk)& is the Zak transformgof Thus

lN«?o(:c,g), the kernel off), in Fourier space, is( denotes the identity)

~

Eo(z,8) =T (2,€) — Po(z, =€) = (2m) Y2 — Z(z,€)$(&)

Define a(x) = ¢ (X)€%, soa (w) :25 (w <€ ). Using the Poisson formula and recalling
F =1{0,1}¢, it can be shown

Z(x,€) = Z é(x + k)& (3.12
kezd
=@ Y2 Y mde £ 12)Y ol & [2fE
ecl” 1€279+¢

Note thatZ(z,£) is continuous i§ for eaeh , since its Fourier series has coefficients
¢(z + k) inf'. Further, the functiong (z,£) are easily shown to be uniformly continuous
in &, in the parameter , singec  [RB].

Another calculation then shows

Z(x~€) D) - Z(@x€12)5 € 12) (3.13

= (MoE/2F -1 € 12V (2x& [2)
FTBER)D E12)S rode + € 12)Z (2x& Ze )

e£0
Some additional calculations using the relationshipg(f) r: 13]) show
[ a-meniiet ¢ < (314
l€l<6
Using (3.9) we can then show
/|mo(7re+§/2)iz §F° d <o (315

Combining (3.13) (3.14), and(3.15) L norms are in x only), a calculation gives
. A . ~ 1/2
(fml | e Z(x,=E)p (€) — (2m) 2 || oo- || €~ Z (2, 12} € 12)— (2m)Y? || 0| 2[€ PS q)

_ 1/2
< (fmqs [ (m €28 - 15 €12 | Z @x& 12) ]2 €1 §§

_ 12
+ <f|§|<5 |WO(€/2)$(5/21 Simte + £12) || Z (2x& 122 e N oo |? EFF f‘)

e£0
<00
sinceZ (x£ ) is uniformly bounded in x agd , as &re rapd
Defining
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FO = I (e 20£)06)-@)%) 4t .

we remark for future reference (part Il of this paper) that this function is continugus in
being the supremum im  of a collection of functions which are uniformly continuaus in
(see remark before (3.13)).

We have by the above

/ |FE)-2° FE/2)R d <o .
[£|<6

SinceZ (x§) and% 4 ) are both uniformly bounded in x &nd sandi/2 , it follows in fact
that
B? = / IFE)-2° FE2)F ¢ <o . ( 3.16
Rd
Through some technical arguments we can then show from thig that?(R?) . Thus

/ e Z(x€)0€)- @2 |2 §F° d <.

Thus by Corollary 3.6F, : H} — L™ is bounded, and thus by Theorem 2.9 the
multiresolution expansion with scaling function  has order of convergenct/s
To prove the converse, assume

/W L-@ 2P eNdP d =o. (317

By (3.12) )
(2r) 926 -7 (x,€ ) €)

= (2r)@2 e« (1-2 @96 @ + ¢ )%i”§§(>
lezd
The second factor is B
13 @)@+ RO
- (1- @14 ¢3) > eBud @
LettingC' denote the unit cube Rff
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(3.18
2
€] d

(27r)'d’2(1— (2r PP e)F) — @ P 0EH @i4e)E
10

1) o

— 2 —

@ [ e (1- @rboR)| + X| @ boden +of 16w
€10 10

> (2my [ > ery 2B ©biert + ) ¢k
170

Note the first equality follows from the Parseval equality for Fourier series, since the
integration (once the argd integrations are interchanged) is the squard.6f the -norm of a
Fourier series in: .

On the other hand by .3 17 , factoring the difference of squares below and using
Lemma 3.1,

d " 2\ [ —25 /e ) h 2 4 _
<2vr>/£ (S[b(e + 2m0Pe] df—éké(l @I e N d=oco

<6 420

so comparing with (3.18), (sin@Aﬁo) #0 af;Aad is continuous)

o,
c lél<é

The above is al.'! norm over the unit cdbe =z in of a periodic functien in , and so the
L> norm of the function is also infinite
Therefore the pseudodifferential operator

— 2
(2ry Y2 - Z (x4) (S){ €7 & = oo

Bol,€) = @ry¥2 e — Z(x~)€)

satisfies

| [1EuteoPlel ag| = o (3.19
Applying proposition 3.4, we conclude the corresponding operator H; — L is
unbounded, so by Theorem 1, we do not have erded /2 convergeHée in

Theorem 3.8((d) & (e)): For realt andd > 0,
/W (1-@ 2P Eet @ <

if and only if
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L. a-menit ¢ < (320
Proof: Assume the first condition above. Then (see (3.7))
m@F -1=( @93 @A -} - %A 1. (. 321
which immediately yields the second condition (upon factoring the differences of squares

on the right of (3 21)).
Conversely assume the second condition in the statement holds. We have

(1- @fb@R) {1-@%4%) = @A d14291) (. 3)22
=@P@ER-ImEBAR)
= @y@-mEAML T

The factors in the integrand of.(3 20) are positireemy(£) assumes its maximum value
of 1 at¢ = 0, as shown earlier. Thus

Jees M(1-@PPER)-(1-@IAL 1241 ed =
Defining FE€) = (1-@ Y4 L AHT &
Jus |FE)-2FE2)| ¢ <o .
Proceeding now as in (3.16), we defing GE) ¢ Kfd<z0(€),  and get:
| 1e6)-2cena <o

Let G, ¢) be X functions which increase monotonically pointwise to G, such that

IG\€)-2'G €2 &) -2 & /2);

these can be constructed with some simple arguments.
Now we have:

1Gn)-2'G€/ 1> | GO 1 -l 2GE/2) 1 (3283

=(1-29 | GQ)l1 -

Since the left side of (3.23) is bounded uniformly in n by dominated convergence, it follows
the same holds for the right side, and again by dominated convergenee G( ) L ,i.e.,
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(1-@fpente L,

as desired.
We note that Theorem 3.8 establishes the equivalence of statements (d) and (e) in
Theorems 1 and 2 when= 2s.

4. Proof of Theorems 1 and 2

With the results of Sections 2 and 3 we can now prove Theorems 1 and 2 :

Proof: The equivalence of (a) and (b) of Theorem 1 is in Theorem 2.9. The
implication (c)= (@) is proved in Theorem 2.12, while §8) (c) is Theorem 2.15. The
equivalence of (c) and (c") is easily established. Since the equivalence of (c) and (b) in fact
is shown to hold for any given family of wavelets, it follow$ (c ) is equivalent to (b). That
(d) and (d) are equivalent to (a) has been proved in Theorem 3.7. The equivalgtce of
and(d") follows from Lemma 3.1, since

/ S B+ ont)f (75 d = /E L (e e 4t o

KEl<é o0

- /I€I<<5 ((2m)*2 = [$(E))((2m) 2 + [3(O)]) KT .

Let us now prove (a> (a). Clearly we need only show=a) ' (a). This follows
easily if we assume the equivalencéof  é@nd (cbr . If we do not assume the existence
of a set of wavelets or a scaling function, we can proceed as follows.

Thus assume that the multiresolution approximation yields pointwise order of
approximation s - d/2 in H. Then by the parts of the Theorem already proved, I3 P: H
— L is bounded. To show order of convergence r - d/2"in Hifer< < r s, we need
toshow |- P: | — [ is also bounded for such r. The latter follows from decomposing

I/:\ourier transforms of functionsd [H as f/\rI f Aj_: f, whe/\ﬁf ()is zerofor|| 1, and
f2(§) is zero for § K 1/2. Uniform boundedness of |- P:H > L on functions of the

form ﬁ with || f1 || nr < 1 is easy to show, since for such functions the nd¢irm || n s iS
dominated by|| - || nhr . Further, uniform boundedness of | -(P= > L on functions of

the form/ﬁ with h,r norm less than 1 also holds, since this class of functions is uniformly
bounded in M for r > d/2, and so is uniformly bounded n C . Writing (I> P)b = f,- Pf,
clearly the identity is uniformly bounded ot H- L for the sub-class of functions f , and
in addition P, having a radially bounded kernel, is also uniformly bounded between the
same spaces. The latter follows from the fact that functions of the form f With H norm
less than 1 are also uniformly bounded ih L , so that, since P has a kernel which is bounded
by an ' convolution kernel, RPf for such f are uniformly bounded%n L . Therefore, it
follows that in H for d/2<< s, | - P is uniformly bounded, and therefore that we have
order of convergence r - d/2 iy H for rin this range.

To prove that (a) and’(a ) are equivalent it suffices to show that in H for s > d/2, the
order of approximation, if it is s-d/2, cannot be better than s - d/2. However, if the
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expansion has order of approximation s - d/2, then by previously proved parts of the
theorem, E: § — © is bounded, so by Proposition 2.8 the best order of approximation in
Hp is s - d/2. That (é'l ) follows from’(a ) can be shown by an argument identical to the
above proof that (a ) follows from (a).

Finally the equivalence ofe( ) of Theorem 2 with (d) of Theorem 1 follows from
Theorem 3.8, and the equivalence of (d ) with ( ) of Theorem 2 is apparent. The
equivalence ofd ) ana/( ) in Theorem 2 follows from (3.9), in the form

1-mEf =) g e 3,
e£0

together with a change of variable in the integraktf ().
This completes the proofs of the two theorems.

5. Arbitrarily slow convergence

We show here that there exist functions whose wavelet expansions converge arbitrarily
slowly.

Consider in one dimension f(x) {x;ff%rr||xx||><21 , and which is smooth everywhere.

Recall
Pf(x) = / Py (x.y) f(y) dy = 2 / P (2 x2 y)f(y) dy f P12 % y) 12 y) dy.

sothatatt =0 ,
E,f(0)=(I - P,)f(0)

_ / Py (0, y) f(2"y) dy

=(/| +/Jn)%(o,y)f(? y) dy,

where ) =(-2,2)and,J =20 U 2¢ ). Now
Ji POy f2"y)dy =[5 B (Oy) @ %) dy =2 [5 oP (0))y dy.

For simplicity we assume the scaling function  has compact support, so the same is
true of P(0, y). Thus the integral ovgr | will be &2 ). Sif€0,y) has compact
support, the integral ovel, eventually vanishes, and we have error at the point O given by
O(2 ™). Sincee can be arbitrarily small, convergence can be arbitrarily slow.

As a final remark we note that because the scaling relation befiyjeen FE,and is the

same as that betwedn, F=Vils I , convergence must be exponentidlE,jles,. 1~
vanishes exponentially im , whenever the Banach spéce has a norm with the
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homogeneous space propetty(cx)| ~ c¢®||f(x)|]] ¢+ oo) , which is the case with
almost all spaces currently of interest.
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