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Abstract

Nonlinear approximation has usually been studied under deterministic as-
sumptions and complete information about the underlying functions. In the
present paper we assume only partial information, e.g., function values at
some points, and we are interested in the average case error and complex-
ity of approximation. We show that the problem can be essentially split into
two independent problems related to average case nonlinear (restricted) ap-
proximation from complete information, and average case unrestricted approx-
imation from partial information. The results are then applied to average
case piecewise polynomial approximation in C([0, 1]) based on function val-
ues with respect to r-fold Wiener measure. In this case, to approximate with
average error ε it is necessary and sufficient to know the function values at

Θ
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ε−1 ln1/2(1/ε)
)1/(r+1/2)

)
equidistant points and use Θ

(
ε−1/(r+1/2)

)
adap-

tively chosen break points in piecewise polynomial approximation.
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1 Introduction

Nonlinear approximation (NA) relies on approximating a function f using a nonlin-
ear manifold that consists of k-term linear combinations of functions from a given
dictionary. Such approximation is constructed based on full knowledge about f , and
one is interested in the error as k goes to infinity, see, e.g., DeVore (1998) for a
review. Since in practice the underlying function is usually given via its (exact or
noisy) values at finitely many points, the assumption that f is completely known can
sometimes be questioned. On the other hand, there is information-based complexity
(IBC) theory, where partial information is essential, see, e.g., Traub et al. (1988).
In this situation the study of nonlinear approximation based on partial and/or noisy
information becomes quite natural.

In Kon and Plaskota (2000a,b), information-based nonlinear approximation (IBNA)
was studied in the context of neural networks. The authors considered the worst
case setting and established, among other things, the following remarkable property.
Suppose one wants to know how many function evaluations and how many terms
in approximation he needs to approximate the function with error ε > 0. It turns
out that this problem can be essentially solved by splitting it into two corresponding
problems in NA and IBC. The two crucial notions used are information complexity
and neural complexity, which mean, respectively, the minimal number of function
evaluations and the minimal number of terms in approximation sufficient to approxi-
mate with error ε. Since the two quantities have been studied (mostly independently)
in NA and IBC, the results from both theories can be integrated to obtain results in
IBNA.

In the present paper we study information-based nonlinear approximation in the
average case setting. That is, assuming the functions are distributed according to
a probability measure, we ask for the average number of function evaluations and
average number of terms in approximation necessary and sufficient to approximate
within the average error ε.

Information complexity in the average case setting has been the topic of extensive
study in IBC, but, unlike in the worst case, average case NA seems not to have been
regularly studied yet. Therefore, the purpose of this paper is twofold. First, we
want to establish general results corresponding to those from the worst case. This
is done in Sections ?? and ?? where we show that, again, to obtain the complexity
results and construct best approximations in the average case IBNA, it suffices to
combine the corresponding results and approximations in the average case IBC and
NA. Second, we want to provide a first thorough analysis of complexity of average
case nonlinear approximation for a nontrivial problem. This is done in Section ??
where piecewise polynomial uniform approximation with respect to the r-fold Wiener
measure is considered.

We now use the problem of Section ?? to illustrate results obtained in this paper.
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Suppose we want to uniformly approximate a random function f : [0, 1] → IR dis-
tributed according to the r-fold Wiener measure. The approximation is based on n
evaluations, f(t1), . . . , f(tn), and given as a piecewise polynomial of degree at most
s (s ≥ r) with k break points. We stress that adaption is allowed, i.e., the choice of
successive points at which the function is evaluated and the number n of them may
depend on previously obtained values (adaptive information), and the break points of
the approximation and the number k of them may depend on the gathered informa-
tion about f (adaptive approximation). We ask how the points tj in information and
the break points in approximation should be chosen to approximate f with average
error ε at minimal cost. The cost is measured by the average values of n and k.
Are the optimal information and approximation adaptive or not? The information
complexity for this problem was studied in IBC and it is known that f should be
evaluated at

n �
(

ln1/2(1/ε)

ε

) 1
r+1/2

equidistant points tj. The best information is then nonadaptive. If the same tj’s are
used as the break points then we will already obtain nonadaptive approximation with
error ε and k = n. Actually, this is best we can get from nonadaptive approximation.
However, we can do better by selecting the break points adaptively depending on
variability of the underlying function. As a result, we can get rid of the log factor,
obtaining

k �
(

1

ε

)1/(r+1/2)

.

Further reduction of the cost is impossible; see Section ?? for details.

These results can also be interpreted as follows. If complete information about f were
available then the best convergence of the average error would be k−(r+1/2) where,
as before, k is the number of break points in piecewise polynomial approximation.
Since complete information is usually unrealistic, it makes sense to ask what the
minimal knowledge about f is, measured by the number n of function evaluations,
that allows to approximate f with average error of the same order. The answer is that
it is necessary and sufficient to know proportionally to n = k−(r+1/2) ln1/2 k values at
equally spaced points.

2 Basic concepts

Let F be a real separable Banach space equipped with a probability measure µ on
the Borel sets of F . Let G be another normed space such that F is continuously
embedded in G. By ‖ · ‖ we denote the norm in G. Any A : F → G such that
f 7→ ‖f − A(f)‖ is a measurable mapping is called an approximation operator (or
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just approximation). The (qth average) error of A is defined as

e(A) =
(∫

F
‖f − A(f)‖q µ(df)

)1/q

,

where 1 ≤ q <∞.

We put two restrictions on possible approximations. First, we assume that A(f) is
for any f ∈ F an element of a specified set Φ ⊂ G, i.e., the image Im(A) ⊂ Φ. We
also assume that

Φ =
∞⋃
k=1

Φk,

where Φ1 ⊂ Φ2 ⊂ Φ3 ⊂ · · ·. Although the general results of this paper hold for
arbitrary Φk’s, we will have in mind nonlinear approximation. That is, we choose a
set D ⊂ G, called a dictionary, and define

Φk =


k∑
j=1

ajfj : aj ∈ IR, fj ∈ D

 . (1)

If Im(A) ⊂ Φk then A is called a k-term approximation. A k-term approximation is
nonadaptive if Im(A) is in a linear space spanned by some k elements of D. Otherwise
A is adaptive, in which case the fj’s in (??) and/or the number k of them are chosen
adaptively depending on f .

The second restriction is that A(f) is based on some information about f . This
is defined as the value y = Nf of a measurable mapping N : F → Y with range
Y ⊂ ∪∞n=0IR

n. More specifically, let Λ ⊂ F ∗ be a set of permissible information
functionals. Then nonadaptive information is a mapping N : F → IRn,

Nf = (L1f, L2f, . . . , Lnf )

where Lj ∈ Λ, 1 ≤ j ≤ n. The number n is usually called cardinality of N . In
adaptive information the choice of the functionals Lj depends on previously obtained
values Lif , 1 ≤ i ≤ j − 1. In this case, we formally have

Nf = (L1f, L2(f ; y1), . . . , Ln(f ; y1, . . . , yn−1) )

where Lj(·; t1, . . . , tj−1) ∈ Λ, ∀ti, 1 ≤ j ≤ n. We can also vary the number n
of functionals obtaining information of varying cardinality. In this case, we gather
information by evaluating the successive yj = Lj(f ; y1, . . . , yj−1) until the condition
(y1, . . . , yj) ∈ Y is reached. For this to be well defined, we assume that for any infinite
sequence y = (y1, y2, y3, . . .) there exists an index n such that (y1, . . . , yn) ∈ Y . For
details and further discussion see, e.g., Traub et al. (1988).

Any approximation A : F → Φ that is based on some information N : F → Y can
be written as the composition

A = ϕ ◦N

4



where the mapping ϕ : Y → Φ. Furthermore,

e(ϕ ◦N) =
(∫

F
‖f − ϕ(Nf)‖q µ(df)

)1/q

=
(∫

Y

∫
F
‖f − ϕ(y)‖q µ(df |y)µN(dy)

)1/q

,

where µN = µN−1 is the a priori distribution of information y on Y , and µ(·|y) is
the conditional distribution on F given information y.

Remark 1. In a more general model one assumes that information is corrupted by
some random noise. In this case, the information operator is defined as a mapping
Ñ : F̃ → Y with F̃ = F × IR∞. Noisy information about f is given as y = Ñ(f, x),

y = (L1f + x1, L2(f ; y1) + x2, . . . , Ln(f ; y1, . . . , yn−1) + xn ),

where xj, j ≥ 1, are independent random variables with known distribution. Hence

an approximation is a mapping A = ϕ ◦ Ñ : F̃ → G. Denoting by µ̃ the joint
distribution on F × IR∞, we have

e(ϕ ◦ Ñ) =
(∫

F̃
‖f − ϕ(Ñ(f, x))‖q µ̃(d(f, x))

)1/q

=
(∫

Y

∫
F
‖f − ϕ(y)‖q µ(df |y)µ

Ñ
(dy)

)1/q

.

See Plaskota (1996) for more details.

3 The optimal k-term approximation

In this section we assume that information N : F → Y (adaptive or nonadaptive,
with fixed or varying cardinality) is given, and we seek for the best possible choice of
ϕ : Y → Φk, so that the error of the k-term approximation A = ϕ ◦N is minimized.
As it will turn out, the minimal error depends on two independent quantities which
are related to information N and the set Φk, respectively. We will define them in
turn.

The first quantity, denoted sk, is the average distance of elements f ∈ F from the
set Φk,

sk =

(∫
F

inf
f̃∈Φk

‖f − f̃‖q µ(df)

)1/q

.

Equivalently, sk is the minimal error that can be achieved by k-term approximations
from complete information about f , i.e.,

sk = inf
ψ:F→Φk

e(ψ).
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The second quantity, called the (qth average) radius of information and denoted r(N)
is defined as

r(N) =
(∫

Y
(rad(µ(·|y))q µN(dy)

)1/q

,

where rad(ν) is the radius of a measure,

rad(ν) =
(

inf
g∈F

∫
F
‖f − g‖q ν(df)

)1/q

.

That is, r(N) is the average radius of the conditional measures µ(·|y) with respect
to information y = Nf .

It is well known that r(N) is also the minimal error of approximations of the form
A = ϕ ◦N with arbitrary ϕ : Y → G (the approximation is based on information N ,
but the restriction ϕ(y) ∈ Φ is relaxed.) That is,

r(N) = inf
ϕ:Y→G

e(ϕ ◦N).

Recall that

rad(ν) ≤
(∫

F

∫
F
‖f1 − f2‖q ν(df1)ν(df2)

)1/q

≤ 2 · rad(ν). (2)

Theorem 1. The minimal error of k-term approximations based on given informa-
tion N : F → Y satisfies

max (r(N), sk) ≤ inf
ϕ:Y→Φk

e(ϕ ◦N) ≤ 2 ·max (2r(N), sk).

Proof. The lower bound is obvious. To show the upper bound, we use a nondeter-
ministic argument. That is, suppose for a moment that we apply the approximation
y 7→ ψ(g) with a deterministic component ψ : F → Φk, and with the nondeterminis-
tic component g which is chosen randomly according to the conditional distribution
µ(·|y) on F . Using the decomposition of µ with respect to information y, the inequal-
ity (a+b)q ≤ 2q−1(aq+bq) (for a, b > 0), and (??), the error of such an approximation
satisfies (∫

Y

∫
F

(∫
F
‖f − ψ(g)‖q µ(df |y)

)
µ(dg|y)µN(dy)

)1/q

≤ 21−1/q
(∫

Y

(∫
F

∫
F
‖f − g‖q µ(dg|y)µ(df |y)

)
µN(dy)

+
∫
Y

∫
F
‖g − ψ(g)‖q µ(dg|y)µN(dy)

)1/q

≤ 21−1/q
(
2 ·
∫
Y

rad(µ(·|y))q µN(dy) +
∫
F
‖f − ψ(f)‖q µ(df)

)1/q

≤ 21−1/q (2q · r(N)q + e(ψ)q)1/q

≤ 2 ·max (2r(N), e(ψ)).

6



Now, by the mean value theorem, there exists a ϕ : Y → G such that∫
F
‖f − ψ(ϕ(y))‖q µ(df |y) ≤

∫
F

∫
F
‖f − ψ(g)‖q µ(df |y)µ(dg|y).

The approximation ϕ∗(Nf) = ψ(ϕ(Nf)) is then deterministic and its error

e(ϕ∗ ◦N) ≤ 2 ·max (2r(N), e(ψ)).

To complete the proof, it suffices to minimize this with respect to ψ.

The essence of Theorem ?? is that, for given information N , the minimal error of
k-term approximations is proportional to max (r(N), sk) where both quantities, r(N)
and sk, can be studied independently of each other. On the other hand, Theorem ??
is not constructive, i.e., it does not give a construction of the deterministic approx-
imation ϕ∗ whose error attains the upper bound. We now present another estimate
of the minimal error from which the construction of ϕ∗ will follow.

Recall first that c is a center of a measure ν iff(∫
F
‖f − c‖q ν(df)

)1/q

= rad(ν).

We assume, for simplicity, that for all y a.e. there exists a center, denoted c(y), of
the conditional measure µ(·|y). Let

sk(N) =

(∫
Y

inf
f̃∈Φk

‖c(y)− f̃‖q µN(dy)

)1/q

= inf
ϕ:Y→Φk

(∫
Y
‖c(y)− ϕ(y)‖q µN(dy)

)1/q

.

Theorem 2. The minimal error of k-term approximations based on given informa-
tion N : F → Y satisfies

max (r(N), sk(N)/2 ) ≤ inf
ϕ:Y→Φk

e(ϕ ◦N) ≤ 2 ·max (r(N), sk(N)).

Proof. For arbitrary ϕ : Y → Φk we have

e(ϕ ◦N)q ≥
∫
Y

∫
F
| ‖c(y)− ϕ(y)‖ − ‖f − c(y)‖ |q µ(df |y)µN(dy)

≥
∫
Y

∫
F

21−q‖c(y)− ϕ(y)‖q − ‖f − c(y)‖q µ(df |y)µN(dy)

≥ 21−q sk(N)q − r(N)q.

Hence, if sk(N) ≤ 2r(N) then e(ϕ ◦N) ≥ r(N) = max(r(N), sk(N)), and if sk(N) ≥
2r(N) then

e(ϕ ◦N) ≥
(
21−q sk(N)q − (sk(N)/2)q

)1/q

= sk(N)/2

= max (r(N), sk(N)).
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This yields
inf

ϕ:Y→Φk

e(ϕ ◦N) ≥ max (r(N), sk(N)/2).

Consider now the approximation ϕη : Y → Φk such that

e(ϕη ◦N) ≤ sk(N) + η, (3)

where η > 0. Then

e(ϕη ◦N)q ≤
∫
Y

∫
F

2q−1 (‖f − c(y)‖q

+ ‖c(y)− ϕη(y)‖q) µ(df |y)µN(dy)

= 2q−1 (rad(N)q + (sk(N) + η)q)1/q

≤ 2q ·max (rad(N)q, (sk(N) + η)q).

Since η can be arbitrarily small, this gives the upper bound.

Suppose now that for all y a.e. there exists a best approximation ϕc of c(y) in Φk.
That is,

‖c(y)− ϕc(y)‖ = inf
f̃∈Φk

‖c(y)− f̃‖. (4)

Then Theorem ?? immediately yields

Corollary 1. We have

e(ϕc ◦N) ≤ 4 · inf
ϕ:Y→Φk

e(ϕ ◦N).

Remark 2. Under closer inspection of the proof of Theorem ?? one can see that the
estimate of Corollary ?? can be slightly improved; namely

e(ϕc ◦N) ≤ 21−1/q(1 + 2q)1/q · inf
ϕ:Y→Φk

e(ϕ ◦N).

The following example shows that this estimate is sharp, at least for q = 1.

Let F = IR2 with the measure µ concentrated in two points, (0, a) and (1, a),
0 < a < 1, with weights p1 and p2, respectively, p1 < p2, p1 + p2 = 1. Let
D = {(1, 0), (0, 1)}. Take N ≡ 0 (zero information) and k = 1, i.e., we are interested
in 1-term approximations. The error is measured in `1-norm. Then the center of µ
is c = (1, a) and rad(µ) = p1. The closest approximation to c is ϕc = (1, 0), and its
error e(ϕc) = a+ p1. On the other hand, for ϕ = (0, 1) we have e(ϕ) = p2. The ratio
e(ϕc)/e(ϕ) is arbitrarily close to 3 if p1 ≈ p2 ≈ 1/2 and a ≈ 1.

Remark 3. In some cases, the approximation ϕc is optimal. Suppose that µ is a
zero-mean Gaussian measure on F . Then, for any information N : F → Y , the
conditional distribution µ(·|y) (with y = Nf) is also Gaussian. Furthermore, µ(·|y)
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is symmetric about its mean m(y), and the center c(y) = m(y), ∀y a.e. Suppose also
that the error is measured in a Hilbert norm and q = 2. Then for any ϕ : Y → Φk

we have

e(ϕ ◦N)2 =
∫
Y

∫
F
‖f − ϕ(y)||2 µ(df |y)µN(dy)

=
∫
Y

∫
F
‖f −m(y)‖2 + ‖m(y)− ϕ(y)‖2

+ 〈f −m(y),m(y)− ϕ(y)〉µ(df |y)µN(dy)

≥
∫
Y

∫
F
‖f −m(y)‖2 + ‖m(y)− ϕc(y)‖2 µ(df |y)µN(dy)

= e(ϕc ◦N)2,

as claimed. One can also show that for arbitrary q and error measured in arbitrary
norm the constant 4 in Corollary ?? can be replaced by 2.

Remark 4. Using the same proofs one can show that Theorems ?? and ??, and
Corollary ?? hold also for noisy information Ñ as defined in Remark ??. Obviously,
for noisy information Ñ its radius

r(Ñ) =
(∫

Y
(rad(µ(·|y))qµ

Ñ
(dy)

)1/q

.

If, in addition, the measure µ and noise are Gaussian, i.e., xj ∼ N (0, σ2), then
Remark ?? is also valid.

Example 1. Let µ be a zero mean Gaussian measure on F with symmetric and
positive definite covariance operator Cµ : F ∗ → F . Let G be a separable Hilbert
space with the inner product 〈·, ·〉. Let the dictionary D = { ξj : j ≥ 1 } where the
ξj’s form a complete orthonormal system in G.

It is easy to see that for given f ∈ F the best k-term approximation ψ∗(f) is adaptive
and given as follows. Let Bk,f be the set of k indices for which |〈f, ξj〉|, j ≥ 1, are
largest possible, i.e., #Bk,f = k, and if i /∈ Bk,f , j ∈ Bk,f then |〈f, ξi〉| ≤ |〈f, ξj〉|.
Then ψ∗(f) =

∑
j∈Bk,f

〈f, ξj〉ξj.
Suppose now that approximation is based on information y = (L1f + x1, L2f +
x2, . . . , Lnf+xn) with Lj ∈ F ∗, where the noise xj ∼ N (0, σ2). Note that information
is in general noisy, but σ = 0 corresponds to exact (noiseless) information. In this
case, the center of the conditional measure µ(·|y) is c(y) =

∑n
j=1 zj(CµLj), where z

is the solution of the linear system (σ2In + H)z = y, In is the identity in IRn, and
H = {Li(CµLj)}ni,j=1 is the Gram matrix, see, e.g., Plaskota (1996).

Hence the almost optimal (and optimal for q = 2) k-term approximation based on
information y is ϕc(y) = ψ∗(c(y)). Observe that this approximation is in general
adaptive. It is however nonadaptive when k ≥ n and ξj = CµLj for 1 ≤ j ≤ n, since
then ϕc(y) = c(y) ∈ span{ξ1, . . . , ξn}.
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4 Cost and ε-complexity

We now consider the problem of complexity. That is, we ask for the minimal cost of
obtaining an approximation with error at most ε.

The (average) cost of information N : F → Y is defined as

cst(N) =
∫
F
n(Nf)µ(df)

=
∫
Y
n(y)µN(dy),

where n(y) is such that y ∈ IRn(y). Similarly, the (average) cost of an approximation
ψ : F → Φ is defined as

cst(ψ) =
∫
F
k(ψ(f))µ(df),

where k(f̃) = min { k : f̃ ∈ Φk } is the number of terms in the approximation f̃ ∈ Φ.

We need the following result.

Lemma 1. Let N : F → Y be given information and ψ : F → Φ a given approx-
imation. Let α, β > 0 with 1/α + 1/β < 1. Then there exists ϕ : Y → Φ such
that

e(ϕ ◦N) ≤ 2α1/q ·max ( 2r(N), e(ψ) )

and
cst(ϕ ◦N) ≤ β · cst(ψ).

Proof. For any y ∈ Y there is gy ∈ F such that∫
F
‖f − ψ(gy)‖q µ(df |y) ≤ α ·

∫
F

∫
F
‖f − ψ(g)‖q µ(df |y)µ(dg|y)

and
k(ψ(gy)) ≤ β ·

∫
F
k(ψ(g))µ(dg|y).

Indeed, by the Chebyshev inequality the set of elements gy for which the first inequal-
ity holds is of measure at least (1 − 1/α), and the set of elements gy for which the
second inequality holds is of measure at least (1−1/β). Since (1−1/α)+(1−1/β) > 1,
both sets have nonempty intersection.

Define
ϕ(y) = ψ(gy), y ∈ Y.

Then

e(ϕ ◦N)q =
∫
F
‖f − ψ(gNf )‖q µ(df)

=
∫
Y

∫
F
‖f − ψ(gy)‖q µ(df |y)µN(dy)
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≤ α ·
∫
Y

∫
F

∫
F
‖f − ψ(g)‖q µ(dg|y)µ(df |y)µN(dy)

≤ 2q−1 · α ·
∫
Y

∫
F

∫
F
‖f − g‖q + ‖g − ψ(g)‖q µ(dg|y)µ(df |y)µn(dy)

≤ 2q−1 · α · ( 2qr(N)q + e(ψ)q)

≤ 2q α ·max ( 2qr(N)q, e(ψ)q) ,

and

cst(ϕ ◦N) =
∫
F
k(ψ(gNf ))µ(df)

=
∫
Y
k(ψ(gy))µN(dy)

≤ β ·
∫
Y

∫
F
k(ψ(g))µ(dg|y)µn(dy)

= β · cst(ψ),

as claimed.

We now define the information ε-complexity as

cmpI(ε) = inf { cst(N) : N : F → Y s.t. there is ϕ : Y → G with e(ϕ ◦N) ≤ ε },

and the approximation ε-complexity as

cmpA(ε) = inf { cst(ψ) : ψ : F → Φ s.t. e(ψ) ≤ ε }.

By Lemma ?? we have the following.

Theorem 3. Suppose one wants an approximation A(f) = ϕ(Nf) with (average)
error e(ϕ ◦N) ≤ ε. Then

• it is necessary to use (on average) cmpI(ε) functional evaluations and cmpA(ε)
terms in approximation, and

• it is sufficient to use (on average) cmpI(ε/(4α1/q)) functional evaluations and
β · cmpA(ε/(2α1/q)) terms in approximation.

Here α, β > 0 with 1/α+ 1/β < 1.

Thus the minimal cost of ε-approximation depends on cmpI(ε) and cmpA(ε). We
stress that both quantities can be studied independently of each other.

One can ask if the best approximation, say A∗ = ϕ∗ ◦N∗, uses a constant number of
information functionals and terms in approximation, and whether adaption helps or
not. Due to Lemma ??, these questions can also be answered by studying cmpI(ε)
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and cmpA(ε). That is, if cmpI(ε) is attained by nonadaptive information with the
fixed number of functionals then N∗ is also nonadaptive and uses the fixed number of
functionals. Similarly, if cmpA(ε) is attained by approximation with the fixed number
of terms then A∗ also uses the fixed number of terms.

Remark 5. The problem of whether adaption helps for information complexity has
already been studied, see, e.g., Wasilkowski (1986) and Traub et al. (1988) (and
Plaskota (1996) for noisy information) where general conditions for adaptive infor-
mation not to help in case of Gaussian µ are given. The corresponding question for
approximation complexity seems not to have been studied yet.

Theorem ?? is not constructive. In the following, we give a possible construction
of (almost) optimal information and approximation in the case when varying the
number of terms in the approximation does not help.

For given ε > 0, let information N∗ : F → Y and approximation ψ∗ : F → Φ be
such that r(N∗) ≤ ε/16, cst(N∗) ≤ C1 · cmpI(ε/16), and e(ψ∗) ≤ ε/8, cst(ψ∗) ≤
C2 · cmpA(ε/8). Assume also that for all f ∈ F a.e.

k(ψ∗(f)) ≤ k∗ ≤ C3 · cst(ψ∗), (5)

i.e., ψ∗ uses at most k∗ terms. Finally, let ϕc : Y → Φk∗ be defined as in (??)
(provided the corresponding center exists). Applying Corollary ?? and Theorem ??
we immediately obtain that for the approximation A∗(f) = ϕc(N∗f)

e(ϕc ◦N∗) ≤ ε and cst(ϕc ◦N∗) ≤ C2C3 · cmpA(ε/8),

i.e., A∗ is close to the cheapest approximation with error at most ε.

Remark 6. Results of this section hold also for noisy information Ñ defined in
Remark ??, with obvious modifications of cst(Ñ) and cmpI(ε).

5 Piecewise polynomial approximation

We consider the following approximation problem. Let

F = Fr =
{
f ∈ Cr([0, 1]) : f(0) = f ′(0) = · · · = f (r)(0) = 0

}
with the norm ‖f‖r = sup0≤t≤1 |f (r)(t)|. Let µ = wr be the r-fold integrated Wiener

measure on F , i.e., wr(B) = w0({f (r) : f ∈ B}) where w0 is the classical Wiener
measure (Brownian motion) on F0. We approximate f ∈ Fr by piecewise polynomials
of degree at most s, s ≥ r, with finitely many break points that can possibly be
chosen adaptively. Specifically, we have G = C([0, 1]), i.e., the error is measured in
Chebyshev norm, and

D = Ds = {w(min(u, ·)) : w ∈ Πs, u ∈ [0, 1] } .
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Information about f is given by its values at finitely many knots,

y = ( f(t1), f(t2), . . . , f(tn) ) ,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. Information can in general be adaptive.

The formula for cmpI(ε) is known; namely

cmpI(ε) �
(

ln1/2(1/ε)

ε

) 1
r+1/2

,

see, e.g., Maiorov and Wasilkowski (1996). Furthermore, the information attaining
this estimate is nonadaptive, and it evaluates f at knots that are equally spaced in
[0, 1]. For this information, the center c(y) of the conditional measure wr(·|y) is the
natural spline of degree 2r + 1 interpolating the data y. Note that the given bound
can also be obtained (up to a constant) by a piecewise polynomial interpolation of
degree r.

We now concentrate on cmpA(ε), which has not been studied yet. Since the piecewise
polynomial interpolation with k fixed nodes is also a nonadaptive k-term approxima-
tion, we have

cmpA(ε) = O

( ln1/2(1/ε)

ε

) 1
r+1/2

 .
It turns out, however, that the log factor above can be removed.

Theorem 4. We have

cmpA(ε) �
(

1

ε

) 1
r+1/2

.

Theorem ?? will be proven in several steps. First we show the lower bound on
cmpA(ε).

Lemma 2. Let ε0 > 0 be such that cmpA(ε0) > 2. If an approximation ψ : F → Φ
has average error at most ε, where 0 < ε < ε0, then it uses on average at least

cmpA(ε) ≥ C1 ·
(

1

ε

) 1
r+1/2

terms, where C1 = C1(ε0) = ε
1/(r+1/2)
0 (cmpA(ε0)− 2)/2.

Proof. We first show that limε→0 cmpA(ε) = ∞, so that ε0 exists. Indeed, otherwise
an l would exist such that for arbitrarily small ε there is an approximation ψε with

13



e(ψε) ≤ ε and cst(ψ) ≤ l. Denote A = { f : k(ψε(f)) ≤ sl } and define ψ′ε(f) = ψε(f)
for f ∈ A, and ψ′ε(f) = 0 for f /∈ A. Then ψ′ε is an l-term approximation with error

e(ψ′ε) =
∫
A
‖f − ψε(f)‖wr(df) +

∫
Fr\A

‖f‖wr(df)

≤ ε +
∫
Fr\Bε

‖f‖wr(df),

where Bε is the ball centered at the origin with wr(Bε) = wr(A). Since, in addition,
wr(A) ≥ 1 − 1/s, we have limε→0 e(ψ

′
ε) = 0 and sl = 0. This is however impossible,

because the set of l-term approximations is not dense in Fr.

Consider now two separate problems of approximating f with the average error ε on
the sub-intervals [0, 1/2] and [1/2, 1], instead of on the whole interval [0, 1]. Denote
the corresponding average complexities of these problems as cmpA

0(ε) and cmpA
1(ε).

Then
cmpA

1(ε) + 1 ≥ cmpA
0(ε) = cmpA(2r+1/2ε). (6)

Indeed, the first relation follows from the fact that the processes f |[0,1/2] and f |[1/2,1]
differ only by a random polynomial of degree r. (Here we also use the assumption
s ≥ r.) For the second relation it is enough to observe that g(x) is the r-fold Wiener
process on [0, 1/2] iff f(x) = 2r+1/2g(x/2) is the r-fold Wiener process on [0, 1].

Suppose now that ψ is an approximation with the average error ε. Since the error is
measured in the uniform norm, the average error of ψ on each of the two sub-intervals
[0, 1/2] and [1/2, 1] is also at most ε. Hence ψ divides each of the sub-intervals into
at least cmpA

0(ε) pieces (on average). Noting that two of the pieces may overlap and
using (??) we obtain

cmpA(ε) ≥ cmpA
0(ε) + cmpA

1(ε) − 1

≥ 2 ·
(

cmpA(2r+1/2ε) − 1
)
.

Proceeding inductively, we finally arrive at the estimate

cmpA(ε) ≥ 2s (cmpA(ε0)− 2),

where s is the largest integer such that 2s(r+1/2)ε ≤ ε0. Hence 2s > (ε0/ε)
r+1/2/2 and

the lemma follows.

We now construct two concrete approximations for which the lower bound ε−1/(r+1/2)

of Lemma ?? is attained.

Consider the following approximation ψε, ε > 0. For f ∈ Fr, we select the knots
0 = t0 < t1 < · · · < tk = 1 in such a way that

(tj − tj−1)
r max
tj−1≤ξ1,ξ2≤tj

|f (r)(ξ1)− f (r)(ξ2)| = ε · r! (7)

14



for 1 ≤ j ≤ k−1, and we have inequality ”≤” above for j = k. Then we approximate
f by a continuous piecewise polynomial f̃ = ψε(f) of degree r with knots tj, i.e., on
each interval [tj−1, tj], f̃ interpolates f at tj−1, tj, and arbitrary r − 1 points in this
interval. Note that ψε is an adaptive approximation with a varying number of terms.

Lemma 3. For all f ∈ Fr we have ‖f − ψε‖ ≤ ε. Furthermore, cst(ψε) < ∞, and
for any 0 < ε < ε0 we have

cst(ψε) ≤ C2

(
1

ε

) 1
r+1/2

where C2 = C2(ε0) = 2 cst(ψε0)ε
1/(r+1/2)
0 .

Proof. Using the error formula for Lagrange interpolation we obtain for x ∈ [tj−1, tj]
that

|f(x)− f̃(x)| ≤ (tj − tj−1)
r

r!
max

tj−1≤ξ1,ξ2≤tj
|f (r)(ξ1)− f (r)(ξ2)| ≤ ε.

Hence the error is always at most ε.

We now show that cst(ψε) <∞. Let a = Prob{k(ψε(f)) ≥ 2}. Then 0 < a < 1 and,
due to independence of f (r)(ξ1

1)−f (r)(ξ1
2) and f (r)(ξ2

1)−f (r)(ξ2
2) for ξ1

1 < ξ1
2 < ξ2

1 < ξ2
2 ,

we also have Prob{k(ψε(f)) ≥ 3} ≤ a2 and, generally, Prob{k(ψε(f)) ≥ s} ≤ as−1.
Hence

cst(ψε) ≤ (1− a) +
∞∑
j=2

jaj−1 < ∞,

as claimed.

To get the upper bound for cst(ψε), we proceed as follows. Let k0(f, ε) and k1(f, ε)
denote the number of intervals [tj−1, tj] selected for f when the interval [0, 1] is
replaced by [0, 1/2] and [1/2, 1], respectively. We obviously have

k(ψε(f)) ≤ k0(f, ε) + k1(f, ε).

Letting

f0(x) = 2r+1/2f(x/2),

f1(x) = 2r+1/2

f((x+ 1)/2) −
r∑
j=0

f (j)(1/2)xj/(2jj!)

 ,
we have that f0 and f1 are independent r-fold Wiener processes on [0, 1]. Moreover,
since for i = 0, 1

|f (r)
i (ξ1)− f

(r)
i (ξ2)| =

√
2 · |f (r)((ξ1 + i)/2)− f (r)((ξ2 + i)/2)|,

we also have ki(f, ε) = k(ψ2r+1/2ε(fi)). This in turn implies

cst(ψε) ≤ 2 · cst(ψ2r+1/2ε),
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or more generally
cst(ψε) ≤ 2s · cst(ψε0),

where 0 < ε < ε0 and s is the smallest integer for which 2−s(r+1/2)ε0 ≤ ε. The last
inequality gives the desired result.

A similar estimate is obtained by an approximation that uses the same number of
terms for all f . More specifically, let k ≥ 1. For f ∈ Fr, we select the knots
0 = t0 < · · · < tk = 1 in such a way that the quantities

(tj − tj−1)
r max
tj−1≤ξ1,ξ2≤tj

|f (r)(ξ1)− f (r)(ξ2)|

are equal for all 1 ≤ j ≤ k. The approximation ψk relies on piecewise polynomial
interpolation of degree r with pieces determined by the knots tj. Note that ψk is an
adaptive k-term approximation.

Lemma 4. The average error of ψk satisfies

e(ψk) = O(k−(r+1/2)).

Proof. As in the proof of Lemma ?? we show that the error for given f can be
estimated from above by

εk = εk(f) = max
1≤j≤k

(tj − tj−1)
r

r!
max

tj−1≤ξ1,ξ2≤tj
|f (r)(ξ1)− f (r)(ξ2)|,

with any 1 ≤ j ≤ k. Hence it suffices to show that the average value of εk(f) is
O(k−(r+1/2)).

For ε > 0 and f ∈ Fr, let the points tj, j ≥ 0, be defined as in (??). Then
Tε,j = tj − tj−1 are independent random variables and

Prob(εk < ε) = Prob

 k∑
j=1

Tε,j > 1

 .
Using the fact that if f(x) is an r-fold Wiener process then so is g(x) = c−(r+1/2)f(cx)
(c > 0), we find that Tε,j = ε1/(r+1/2)Tj with Tj = T1,j. Hence we can equivalently
write

Prob(εk < ε) = Prob
(
Sk > ε−1/(r+1/2)

)
,

where Sk =
∑k
j=1 Tj. Denote by Fk and fk the distribution and density of Sk, respec-

tively. The error of ψk can be estimated as (E stands for expectation)

E(εk) =
∫ ∞

0
(1− Prob(εk < ε)) dε

=
∫ ∞

0
Fk(ε

−1/(r+1/2)) dε

= (r + 1/2)
∫ ∞

0
Fk(η) η

−(r+3/2) dη

= −Fk(η)η−(r+1/2)
∣∣∣∞
0

+
∫ ∞

0
fk(η) η

−(r+1/2) dη.
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The first component in the last expression vanishes, since

lim
η→0+

Fk(η)η
−(r+1/2) = 0. (8)

Indeed,

Fk(η) = Prob

 k∑
j=1

Tk ≤ η

 ≤ Prob(T1 ≤ η)

= Prob
(
(ηr/r!) max

0≤ξ1,ξ2≤η
|f (r)(ξ1)− f (r)(ξ2)| ≥ 1

)
= Prob

(
(ηr+1/2/r!) max

0≤ξ1,ξ2≤1
|η−1/2f (r)(ηξ1)− η−1/2f (r)(ηξ2)| ≥ 1

)
= Prob

(
max

0≤ξ1,ξ2≤1
|f (r)(ξ1)− f (r)(ξ2)| ≥ r!η−(r+1/2)

)
.

Since last probability tends to zero exponentially fast as η → 0, see, e.g., Billingsley
(1968), (??) follows. Thus

E(εk) =
∫ ∞

0
fk(η) η

−(r+1/2) dη = E(S
−(r+1/2)
k ),

where we have used the standard property that
∫
fk(η)g(η) dη = E(g(Sk)).

Now, letting γ = E(Tj) and Wk = Sk/(kγ) − 1, we find that E(Wk) = 0, E(W 2
k ) =

O(1/k), and

E

(Sk
kγ

)−(r+1/2)
 = E( (1 +Wk)

−(r+1/2))

= 1 − (r + 1/2)E(Wk) + O(E(W 2
k ))

= 1 + O(1/k).

Hence E(S
−(r+1/2)
k ) ≈ (kγ)−(r+1/2), which completes the proof.

Theorem ?? is thus proven. We now show, in addition, that the use of adaption for
the upper bound is crucial.

Lemma 5. For any nonadaptive k-term approximation ψnonk we have

e(ψnonk ) = Ω
(
k−(r+1/2) ln1/2 k

)
.

Proof. We first show the following. Let f be a zero mean Gaussian stochastic process
on [0, 1] with positive definite covariance kernel. Let wf be the polynomial of degree
at most s best approximating f with respect to the Chebyshev norm ‖ · ‖C on [0, 1].
Define the random variable

X = ‖f − wf‖C . (9)
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Then there is σ > 0 such that

Prob (X ≥ α) ≥
√

2

πσ2

∫ ∞

α
e−z

2/(2σ2)dz. (10)

Indeed, let 0 ≤ t0 < · · · < ts+1 ≤ 1 be s + 2 arbitrary distinct points. Let vf be
the polynomial best approximating f with respect to the maximum norm on the set
{tj}s+1

j=0. Then the tj’s are the alternation points and

vf (x) = ṽf (x) − c · ps+1(x),

where ṽf is the polynomial of degree s + 1 interpolating f at the tj’s, ps+1 is the
polynomial of degree s + 1 such that ps+1(tj) = (−1)j, 0 ≤ j ≤ s + 1, and c is the
ratio of the leading coefficients (divided differences) of vf and ps+1, i.e.,

c =
f(t0, . . . , ts+1)

ps+1(t0, . . . , ts+1)
.

Hence
‖f − wf‖C ≥ max

0≤j≤s+1
|f(tj)− vf (tj)| = |c|.

Since the divided difference f(t0, . . . , ts+1) is a nonzero linear functional of the f(tj)s,
it is a zero mean Gaussian random variable with a positive variance σ, and (??)
follows.

We now use (??) to prove the lemma. Divide the unit interval into 2k equal subin-
tervals. Then one can select k distinct subintervals in which there are no break
points of ψnonk . It is clear that the error on [0, 1] is not larger than the maximum
of errors from independent approximations of f by polynomials of degree s on the
chosen k subintervals. These minimal errors are independent random variables and
Xi = (2k)−(r+1/2)X, 1 ≤ i ≤ k, where X is as in (??). Hence, by (??) we obtain

E(‖f − ψnonk ‖) ≥ (2k)−(r+1/2)E
(

max
1≤i≤k

Xi

)
� k−(r+1/2) ln1/2 k,

as claimed.

Summarizing, the cheapest information-based nonlinear approximation Aε : F → Φ
with error ε is obtained as follows.

1. Choose n = n(ε) � ε−(r+1/2) ln(1/ε) and k = k(ε) � ε−(r+1/2).

2. Observe y = ( f(1/n), f(2/n), . . . , f(1) ).
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3. Find the natural spline sy of degree 2r+1 interpolating the data, sy(j/n) = yj,
0 ≤ j ≤ n (y0 = 0).

4. Apply the adaptive k-term approximation ψk of Lemma ?? on sy, i.e., Aε(f) =
ψk(sy).

Remark 7. We saw that for the problem of this section the difference between
information complexity and approximation complexity is only by a log factor. The
situation changes for noisy information with zero mean Gaussian noise of variance
σ2 > 0. Indeed, then

cmpI(ε) �
(

ln1/2(1/ε)

ε

) 4r+2
2r+1

.

Furthermore, the cheapest approximation Aε is in this case obtained as follows.

1. Choose n = n(ε) � (ε−1 ln1/2(1/ε))(4r+2)/(4r+1) and k = k(ε) � ε−(r+1/2).

2. Observe y = ( f(1/n) + x1, f(2/n) + x2, . . . , f(1) + xn ).

3. Find the natural spline sσ,y of degree 2r + 1 minimizing the penalty functional

P (f) = σ2 ·
∫ 1

0
|f (r+1)(u)|2 du +

n∑
j=1

(yj − f(j/n))2.

4. Apply ψk of Lemma ?? on sσ,y, i.e., Aε(f, x) = ψk(sσ,y).

For details, see Plaskota (1998).
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