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Abstract:   We present arguments for the formulation of unified approach to
different standard continuous inference methods from partial information.  It is
claimed that an explicit partition of information into (prior knowledge) and a priori a
posteriori information (data) is an important way of standardizing inference
approaches so that they can be compared on a normative scale, and so that notions of
optimal algorithms become farther-reaching. The inference methods considered
include neural network approaches, information-based complexity, and Monte Carlo,
spline, and regularization methods.  The model is an extension of currently used
continuous complexity models, with a class of algorithms in the form of optimization
methods, in which an optimization functional (involving the data) is minimized.  This
extends the family of current approaches in continuous complexity theory, which
include the use of interpolatory algorithms in worst and average case settings.

1. Introduction

In this paper we extend and extrapolate some elements of the theory optimal
algorithms ([TW]) and continuous complexity theory [TWW], so as to include and
compare larger classes of continuous algorithms.  The theory of function approximation
has over a number of years led to many new and integrated approaches in statistics,
statistical learning theory, neural network theory, and related fields.  Indeed, there are a
large number of areas of mathematics, statistics, and computer science which deal with
extrapolation of functions from partial information or examples.

The problems in these areas can be summarized in the function approximation
problem:  How can we best estimate the function  from partial information (examples)�
& ~ 5� ~ ²�²% ³ b ÁÃ Á �²% ³ b ³ �� � � �� �  consisting of the values of  at a finite number
of points, with possible error ?  Put somewhat more broadly, given a normed linear��
space  and an unknown  how can we best estimate  (in the norm of ) if we- � � - Á � -
have information , where  are (linear or nonlinear) functionals5� ~ ²3 �ÁÃ Á3 �³ 3� � �

(we henceforth implicitly assume possible presence of error terms  in the components��
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of ).  In [TW1] and [TWW] (see also [TW2]), a theory of information and algorithmic5
complexity has been developed in the study of the function approximation problem and
its generalizations.

 For an input-output (i-o) function , the input  effectively codes a problem we�²%³ %
wish to solve (e.g., a visual field light intensity function), and the output  codes a�²%³
solution (e.g., identification of object pictured).  The function  is generally not known�
explicitly, and only partial information (in the form of examples)
& ~ 5� ~ ²�²% ³Á �²% ³ÁÃ Á �²% ³³ �� � �  is given about .  The goal, as mentioned above, is
to identify  from this partial information.�

Work dealing with the function approximation problem is closely related to statistical
learning theory [Va].  Other theories and approaches have included learning in neural
network theory [RHW], computational learning theory [KV], regularization theory [Ti,
TA, PG1,2], regression theory in statistics, the maximum entropy method [Ja1,2], the
theory of V-C dimension and approximation [Va, PG2], and approximation theory [MR].
Some of these theories are much more inclusive than others; we wish to develop a theory
of optimal algorithms in the broader context.  We also wish more precisely to define
optimality within the classes of approaches, and to be able to identify optimal algorithms
within them.   From this we can form a normative index of such methods according to
their optimality properties.

In this paper we attempt to integrate a number of approaches to the function
approximation problem, in order to expand the basis for comparison of methods and
algorithms.  A number of currently used methods seem outside of the domain of the
information-based continuous complexity model, but we will show that a specific class of
algorithms in this model includes these existing approaches.  This will hopefully move us
closer to formulation of a more inclusive theory of continuous optimal algorithms, one
into which most current approaches for function extrapolation would fit.

In particular we argue for a unified approach to the problem of function
approximation, which has been studied through large numbers of different approaches,
through an explicit separation of information into a priori a posteriori and information.
The first, consists of our prior information regarding the i-o functiona priori information, 
� we seek to approximate, before data are gathered.  information consists ofA posteriori 
data .  We believe almost all approaches to prediction and classification can be5�
formulated in a uniform setting classifying methods of combining a priori and a posteriori
information, as is done in information-based complexity.
 
 In most continuous complexity approaches,  information usually indicates thata priori
� - belongs to a balanced convex set of functions   (the  set) in a normed linear� a priori
space .  The  information restricts the class of potential functions - & ~ 5� � a posteriori
to be in   Optimal algorithmic solutions to the problem of estimating  in the norm5 &À �c�

P h P-  consist of finding the center (or approximating it for almost optimal solutions) of
the set  through some algorithm , and  is the approximation to - q 5 & ²5�³ ��

c� � �
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obtained through this procedure.  We have an  class  and an  classa priori a posteriori-�

5 & �c� , and we seek the “true” in their intersection.  We will call this the interpolatory
approach.
 
 In maximum likelihood methods of Bayesian statistics, the approach is generally an
optimization approach, dealing with  optimization functionals (i.e., the a priori a priori
probability distributions), which are to be optimized to be consistent with a posteriori
data .  On the other hand, regression approaches in statistics have a more implicit5�
partition of a priori and a posteriori information.  Such a division can be made explicit,
and these approaches also can be classified in the optimization part of our model.
 
 Our approach extends the above (involving algorithms  which interpolate in�

- q 5 &³�
c�  to include optimization algorithms such as those in maximum likelihood

mentioned above.  In general, an optimization algorithm  can have one of two forms.�

First, it can approximate a desired  which minimizes a functional � � 5 & q - ²�³i c�
� $

subject to the constraint  Here the functional  incorporates � � 5 & q - ² ³c�
�. $ � a priori

preferences for functions with lower values of .   Second, if error terms  affect the� ��
measured values  in , such an algorithm can compromise between the a�²% ³ 5��

posteriori requirement  (with  the data) and the a priori one that  be small.5� ~ & & ²�³$

This can be done via minimization of a weighted combination
/ ²�³ ~ P5� c &P b ²�³�

� �$ .  This approach will be called the optimization approach.

 In fact, we feel that the union of the interpolatory and optimization approaches
constitutes a very comprehensive set of algorithms  which explicitly separate the�²5�³
two types of information.

 The approaches we discuss here should be compared with the so-called V-C
approaches of Vapnik and Chervonenkis [Va, VC]), in which a standardization is invoked
through the construction of indexed familles  of candidate  spaces increasing¸= ¹�  a priori
in complexity with .  There the approach is to find a  sufficiently small that the� �

candidate set  is small, so there is a reasonable process of selecting the5 & q =c�
�

approximation  of  from .  If this process is taken to the point where we� � 5 & q =i c�
�

find the  so that  is still non-empty (assumed for the moment tosmallest � 5 & q =c�
�

exist), then this set will consist of those points  (i.e., consistent with the data)� � 5 &i c�

which minimize the functional : .  Therefore, the algorithms we/²�³ ~ ¸ � � = ¹inf � �

present which consist of optimization approaches are consistent with the V-C approach.

 Neural network algorithms such as backpropagation and the Boltzmann machine use
examples  of an unknown i-o function .  Then they effectively apply an algorithm 5� � �

to , computing from  an approximation  chosen from a given5� � � ~ ²5�³i �

parameterized class  of network-computable functions.  Let us consider the set  of7 7
such functions (i-o functions for a network of fixed size, parameterized by its weights )$�

from which the “closest match” is sought.  First, if  is too large compared to the7
cardinality of the information , (i.e., there are too many neurons in the network5�
compared to examples ), then there are too many different close matches, and the�²% ³�
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problem becomes ill-posed.  If the class  is not too large, then the choice of7
approximation  reflects the a priori assumption that the function  can be closely� � 7 �i

approximated by an element of .  Such an  class , essentially, consists of a7 7a priori
sufficiently diverse class of smooth functions.  Philosophically, this class is not much
different from, say, a class  consisting of a ball in a Sobolev space, i.e. an  optimizing- -
for smoothness.  Indeed, when  is specialized to be a class of radial basis functions, we7
know that optimal approximations from  quite explicitly minimize for Sobolev norm.7
There are in fact many variations on this theme of optimization of i-o functions with
implicit a priori assumptions essentially consisting of smoothness in the interpolation
literature, formulated in different ways.

 The adaptive resonance theory (ART) algorithm [Ca,CG] in its simplest (winner take
all) form consists of a dynamic allocation procedure in which network weights are
determined in such a way that for various (appropriately sized) regions  in the input9�

space , different neurons  in the second (recognition) layer will respond.  Once the9 &�
programming of such a network is complete, the network is similar (again, in its simplest
from) to a feedforward RBF network, in which there is a second competitive processing
stage where the hidden neuron with highest activation suppresses all other neurons.
Effectively, this ART network computes the function

� ²%³ ~ ². ²%³ÁÃ Á. ²%³³i
� �arg sup , (1)

where the right hand side represents the choice of the function  with the maximum. ²%³�

value given the input .  Here  are the activation functions of the neurons in the% . ²%³�

second layer of the ART network.   The choice of might be coded as the choice of. ²%³�

neuron in the second layer,  if  is a radial function centered at % . % À� � �

 We remark that the above i-o functions  are a new class from the standpoint of� ²%³i

RBF networks, since they can be highly discontinuous functions, say of a type needed in
vision algorithms.  In the context an ART network built to approximate a single i-o
function , say the characteristic function of a single category which we wish the network�
to identify, the division into a priori and a posteriori information is again clear.  A
posteriori a priori information is the data vector , while  information consists of the fact%
that the i-o function will be approximable in the form (1), in this case with only two
choices  (which represents membership in the category) and , which. ²%³ . ²%³� �

represents non-membership).  This is equivalent to the assumption that the i-o function
will be in the class of threshold functions of a difference   This is in a. ²%³ c . ²%³À� �

sense an a priori assumption regarding smoothness of the separating classes  above,9�

placing the set of potential choices  into an  set of partitions defined as above9� a priori
by the class of activation functions   The algorithm  used on the information . ²%³À 5�� �

is a complex iterative one with the goal of finding the best approximation to  in the�²%³
parametric family of functions  above.� i

Finally, we note that viewpoints on learning from partial information have very close
parallels to data compression theory.  In data compression one transforms data into
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minimal form, and then uses a procedure (the decompression algorithm) on the minimal
information in the compressed data to reproduce the original.  Compression approaches
effectively search for minimal information ways of coding data, and thus implicitly
address the question of extrapolation of full data sets from this such minimal information.

This can be easily seen in the wavelet reconstruction algorithms for images developed
by Mallat [Ma].  In this case the minimal information kept about an image to be
compressed consists of the zeros of its wavelet transform.  The decompression process
takes these minimal ( ) data together with some  information.  Thea posteriori a priori
latter consists of the fact that the function to be recovered is the class of continuous
wavelet transform.  This exemplifies how algorithms which use minimal amounts of a
posteriori a priori information must rely on large amounts of  information regarding the
object to be reconstructed.  The iterated projection algorithm used by Mallat [Ma] is a
good example of how unexpectedly effective algorithms interpolating a priori and a
posteriori information can be constructed.

The Mallat algorithm is a good illustration of the principle that inference and
compression are closely related.  If we wish to be able to reconstruct from minimal 
information an element  known to be in a set , we might minimize information about� -
� 5� 5 by compressing it to , where  is a linear or nonlinear operator.  The
decompression from  to  is a regularization procedure  It is based on the fact& ~ 5� � À
that we know  that , and that the intersection  is sufficiently well-a priori � � - 5 & q -c�

defined (of small enough deterministic or average-case radius).  Sufficiently well-defined
means that its center or some point in it is a good approximation to  itself.  This of�
course contrasts with the set , which is generally large, especially in the case of high5 &c�

compression ratios.  This approach can be formulated in the language of optimization as
well (see below), as interpolation approaches such as the above in fact can be
incorporated into the class of optimization approaches.

2. Problems and solution strategies.

In the background of our general approach lies the assumption that the problem we
want to solve can be described in terms of a mapping

: ¢ - ¦ .À

Here  is the set of all problem instances, and  is the set of all possible solutions. For- .
� � - � ~ :²�³, the solution is given as . We do not assume anything special about the
sets  and  right now. They can be discrete or have continuous character. For instance,- .
if we want to know if a patient is ill at a particular moment, then  where  is- ~ 7 d ; �
in the set of all potential patients and  is a time interval, , and; . ~ ¸&� Á ��¹
:²�Á !³ ~ &� � ! if and only if  is ill at time . This is a decision problem. In another
example, suppose that one wants to compute the integral . Then  is a set of


�

�
�²%³�% -

possible integrands , and . This is a � ¢ ´�Á �µ ¦ . ~l l continuous problem.
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The problem is solved by means of an   The algorithm usually does not usealgorithm.
� � itself as data, but only some  . For instance, a judgment if a patientinformation about
is ill is made based on a finite number of parameters, such as body temperature, age,
symptoms, etc. The reason for that is that it is impossible to know everything about the
patient, but also that some characteristics can be simply neglected, as they would not
change the answer. Similarly, if the integrand  is a complicated function, one usually�

uses a quadrature  to approximate the integral. This quadrature obviously does�
�~�

�

� �� �²% ³

not use  itself, but only its values at a finite number of points.�

Information about  will be formally described as  where  is an� & ~ 5²�³ 5
information operator,

5 ¢ - ¦ @ ,

or more generally,  where& ~ 5²�Á ³�

5 ¢ - d ¦ @ À�

The first case represents situation where the value  of informationdeterministic &
depends on  only. The second case is , i.e.,  is also a function of a side� &non deterministic  
parameter , which is usually . This randomness may have different sources.� �� random
In many cases, it is a result of  in observations or computations, but also maynoise
represent randomness of the information itself.  For instance, if  is a function then we�
may have

& ~ 5²�³ ~ �²% ³Á �²% ³ÁÃ Á �²% ³ ²�³4 5� � �

where 's are some  from the domain of  (exact information), or% �� sample points

& ~ 5²�Á ³ ~ �²% ³ b ÁÃ Á �²% ³ b ²�³� � �4 5� � � �

where  represents noise in sampling (noisy information), or    ~ ² Á ÁÃ Á ³� � �

& ~ 5²�Á ³ ~ � % ² ³ � % ² ³ ÁÃ Á � % ² ³ ²�³� � � �6 74 5 4 5 4 5� � � � � �,

where the points 's are selected randomly (random or Monte Carlo information).%�
(Obviously, we may also have Monte Carlo information with noise.)

Similarly, the algorithm using information  is formally a mapping& � @

( ¢ @ ¦ .Á

or more generally,

( ¢ @ d ¦ .�

with a set  of random parameters. Thus, for , the algorithm  produces the� � � - (
value , , where  is information about . Composing the information  and the(²& ³ & � 5u
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algorithm  we obtain that the approximation  to  is given as( � � ~ :²�³
� ~ ( 5²�Á ³Á � ~ (²5²�³³4 5� u . In the pure deterministic case we just have .

Remark. We distinguished the deterministic and non deterministic cases for reader's
convenience only. Deterministic information and algorithm are obtained by putting  and�

� as singletons.

A  is a single information and algorithm using it, ( ), or a collectionstrategy < ~ (Á5
< ~ ¸< ¹ < ~ ²( Á5 ³Á 0� ��0 � � �,  where  is an index set. The purpose of introducing
strategies is to group procedures that use the same idea for constructing approximate
solutions.

Example   � (Numerical integration) The problem is to evaluate

:²�³ ~ �²%³ �%�
�

�

for a continuous function . That is,  and . The information� � � - ~ *²´�Á �µ³ . ~ l

is assumed to be of the form ( ) with arbitrary sample points . Possible approximations� %�
are provided, e.g.,  by trapezoidal rule

< ²�³ ~ �²�³ b �²�³ b � � Á
� �

�� ��
;

�~�

�c�6 6 77�
or by Simpson quadratures

< ²�³ ~ �²�³ b �²�³ b � � b � � À
� � c �°� �


� � ��
:

�~� �~�

� �c�6 6 7 6 77� �
We can think of strategies as single approximations  or , but it is more natural< <� �

; :

to consider only two different strategies,  and , since for< ~ ¸< ¹ < ~ ¸< ¹; ; : :
� ���� ���

all  the approximations are in both cases constructed based on the same rules - one takes�
the integral of piecewise linear or piecewise quadratic function interpolating . There are�
obviously many other strategies for approximate computation of integrals including, e.g.,
Gauss-Legendre Monte Carlo  quadratures. In the case of quadratures (which are applied
to multi-dimentional rather than one-dimensional integration), we use random
information ( ) with the random parameter  uniformly distributed on , and� ´�Á �µ� �

< ²�Á ³ ~ � % ² ³ À
�

��
4*

�~�

�

�� �� 4 5
This is another kind of strategy  } .Á < ~ ¸<4* 4*

� ���

Example 2  (Data fitting) Suppose now we want to recover a surface from noisy data
about its values at some points. That is,  is a set of possible surfaces which are- ~ .
represented as functions  with . The information  is given by ( ). We� ¢ + ¦ + � & �l l�
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write for convenience

& ~ 5²�³ b Á�

where  and  is the . A standard strategy used5²�³ ~ �²% ³ÁÃ Á �²% ³ �4 5� �
�� l noise

in Bayesian statistics is to approximate the surface  by a surface  which minimizes the� �&
penalty functional

OO�OO b h & c �²% ³ À
�

�

�~�

�

� �
�

  
� �4 5

Here   is a norm on a subspace , the minimization is over , and  is aOO h OO - � - -� � �

suitably chosen positive parameter.

Example 3  (Assigning probabilities) In this problem, we want to assign unknown
probabilities  to  different events, based on information about expectations of some� ��

random variables. Formally, we are given a discrete set , and+    ~ ¸ Á ÁÃ Á ¹� � �

- ~ . � ~ ¸� Á � ÁÃ Á � ¹ À are all possible probability distributions  on  We� � � +

obviously assume   and . The problem is to recover a distribution � � � � ~ � � � -� �
�~�

��
from information , where& ~ ²& ÁÃ Á & ³� �

& ~ 4�

and  is an    matrix,  . Note that, given , we know for sure that  is in4 �d� � � � & �
the set . What element of  should we choose as an approximate-²&³ ~ - q4 ²&³ - ²&³c�

solution? There are many possible strategies. For instance, we can take as  the<²�³
(Chebyshev) center of  with respect to, say, Euclidean norm in , or an element-²&³ l�

with minimal uniform norm. Physicists, however, prefer to choose the distribution
� � -²&³ that has maximal entropy, i.e., the one maximizing the entropy functional

/²�³ ~ c � � À�
�~�

�

� �log

3. Comparing different strategies.

It is clear that the strategy  is supposed to work "well".  In an ideal situation it<
would give exact solution  for any problem instance . This is however<²�³ ~ :²�³ �
usually impossible since, due to incomplete and/or noisy information, there are many
elements  sharing the same information  and having different solutions . For� & :²� ³� �

instance, it is usually not possible to determine for sure if a patient is ill knowing only his
name, or based only on visual investigation.  Similarly, it is usually impossible to
evaluate the integral based only on information that the integrand takes zero at , , and� �À	
�. Existence of noise makes the situation even more difficult. In the above sense, the
problem is , and we are in an uncomfortable situation where we have to chooseill-posed
one "bad" strategy among many other "bad" strategies. How should we proceed? What
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strategy should we choose to approximate ? One way to go is to pick a strategy that:²�³
"seems to work well" and check on some examples if it "really works well". This intuitive
or approach (although sometimes met in practice and often connected with someheuristic 
rational thinking) is not what we want to propose. For we aim in developing a general,
rigorous theory, based on strictly defined mathematical components. A rigorous approach
is to define something that will enable us to compare different strategies, and to select the
best one.

We formally proceed as follows. Let  be a class of  strategies. (TheK admissible
restrictions on using strategies may have different sources, including limitations in
information available or in computation capabilities.) We define on  a relationK Kd
" " which makes  a  set. We say that a strategy  is � < �K Kpartially ordered not worse�

than  (or that  is than ) iff< � < <� � �K not better 

< � <� �.

(Note that partial ordering means that not always two strategies can be compared.) We
shall say that a strategy  is iff .< < � <Á D< �i ioptimal K

This is a very general and universal scheme. To be more specific, we now give some
examples. For simplicity, we consider below only deterministic strategies.

Example 4  In classical numerical analysis, one usually judges about a strategy by
looking at how fast the successive approximations converge to the solution as the number
of samples used goes to infinity. One introduces the notion of  For a strategyexponent.
< ~ ¸< ¹� , the exponent is defined as the largest  (or the supremum of) such that for any�

"sufficiently smooth" (i.e., as many times differentiable as you please) function  the�
error

|:²�³ c < ²�³O � 2²�³ h � À�
c

�

�

Here  is independent of , and  is the smallest index among such  that  uses at2²�³ � � � <� �

most  samples. Then for two strategies we have    iff the corresponding� < � <� �

exponents .� �� ��
Consider, for instance, the integration problem of Example 1. For the trapezoidal rule

we have

�
�

�

�
; ²�³

� ��²%³ �% ~ < ²�³ c � ² ³Á
�

���
�

while for the Simpson rule we have

�
�

�

� �
²�³

��²%³ �% ~ < ²�³ c � ² ³Á
�

�����
S �

where ,  are some points in . Hence  converges with exponent  and � �� �
; :´�Á �µ < � <

converges with exponent . Then  .� < � <: ;
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Example 5  Another useful way of comparing strategies relies on introducing an error
¸� ²< ³¹ < � < � ²< ³ � � ²< ³ D� � 0 2� ��0 � �

� � � �. Then  , e.g., iff  , ,  or iff  there is a 
independent of  such that for all  we have   The error can be� � � 0 �²< ³ � 2 �²< ³À� �

� �

defined in different ways. One first introduces the notion of distance between�� !²� Á � ³� �

elements in  (If  is a linear space then the distance is usually induced by a norm .). - OO h OO
Then the error may be defined, e.g., as a errorworst case 

� ²< ³ ~ �� ! :²�³Á < ²�³ ¢ � � - Á�
$��

� �sup  D 4 5 E
where  is a class of problem instances included in , or as an  error as- -� average case

� ²< ³ ~ �� ! :²�³Á < ²� ²��³�
�#�

-
�� 4 5) ,�

where  is a probability measure on  (or on a subset ), etc.� - - � -�

To be more specific, for the integration problem we have

�� ! :²�³Á < ²�³ ~ :²�³ c < ²�³ À4 5 d d� �

In the worst case setting, one may take

- ~ � � * ²´�Á �µ³ ¢ OO� OO � �Á � � � � � ²�³� B
� ²�³D E.

In the average case setting, one may assume that  is an -fold Wiener measure. (Recall� �
that  is for  the classical Wiener measure, or Brownian motion, characterized� � ~ �
uniquely by the equality  . )


-
�² ³�²!³ ²��³ ~ ² Á !³� min

Example 6  In computational complexity theories, as information-based complexity
or , it is important to know the cost of obtaining antheoretical computer science
approximation with a given error . In this case, one first introduces a 	 computational
model  cost. Then, based on this model, one defines a notion of  of evaluating an
approximation, and of a strategy. Strategies are compared with respect to thecomplexity 
complexity of obtaining an -approximation.  More precisely, we have	

comp cost ²< Á ³ ~ ²< ³ ¢ �²< ³ � Á � � 0 À	 	inf D E� �

We may define, e.g.,   iff< � <� �

lim sup
	¦�

�

�
b

comp
comp

.
²< Á ³

²< Á ³
� B

	

	

Consider, for instance, the integration problem of Example 1. Let the error be the
worst case error over the set  defined as in ( ) with . Let cost  be the number- � � ~ � ²< ³� �

of samples used by . Then, for the  trapezoidal rule we have that  comp ,< ²< Á ³ ��
; �°�	 	

while for Simpson rule  comp .  As a consequence,  .²< Á ³ � < � <: �°� : ;	 �

Example 7  Many existing techniques use what can be called optimization
functionals. We already gave two examples of such functionals: the penalty functional of
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Example 2, and the entropy functional of Example 3. In such cases, one compares
different strategies by comparing the corresponding values of  the optimization
functional. Note that the error (as defined in Example 5) can be also viewed as a special
optimization functional.

4.  Incorporating a priori information.

There is a number of possibilities of defining the relation " ", and examples of the�
previous section are just some specific cases.  How to practically compare strategies (i.e.,
how to construct " ") is a very delicate question and we are going to discuss this point�
now.  In any case, however, we have to be aware that we always have optimality with
respect to some criterion.  If the criterion (relation " ") changes, another strategy may�
turn out to be optimal.

First of all, we notice that there are in general no strategies that are universally good.
If the problem is not trivial then, for any two "reasonable" strategies  and  (with the< <� �

index set  being a singleton, for simplicity), we can find a set of 's for which  is0 � < ²�³�

closer (or even equal) to  than , but there is also another set of 's for which:²�³ < ��

< ²�³ :²�³ < ²�³� � is closer to  than . At first sight, this observation (which is just the
consequence of the fact that information is only partial and/or noisy) may lead to the
pessimistic conclusion that any attempts to construct a reasonable relation " "  are�
hopeless, since too many strategies cannot be compared with each other. On the other
hand, such a conclusion would contradict all the practical computations, where many
existing strategies for solving different kind of problems are known to be extremely
powerful. The point is that those "powerful strategies" are tested and then used only for
problem instances  possessing some additional, particular properties. These properties�
are in a natural way incorporated into the definition of the problem and influence the
process of designing a strategy. (Indeed, it is much easier to recover a picture from only
parts of it if we know that this is the picture of a chair. It is easier to guess whether a
patient is ill if we restrict considerations only to patients who are old and smoked in the
past, etc.)

It often happens that we know much more about the problem instance  than just the�
obvious fact that it is in the domain  of the mapping . For example, if  is a function- : �
representing an image, then we may know that  is in a sense "smooth", or that it has�
sudden jumps or sharp edges, etc., depending on what kind of image  is supposed to�
represent. If  is a distribution that we want to recover then we may know that uniform�
distributions are more likely than non uniform ones. In the case of noisy information, we
may also know something about the noise , e.g., that it is bounded, Gaussian, etc.  Such�

statements can be formally described as, e.g.,  or , and/or that� � - � - � @ � @� ��

these are distributed (or are stochastic processes) according to known probability
measures,  or , etc.  This kind of information will be called � � �� � �� a priori
information about , as opposed to the information  about , introduced earlier, which� & �
comes from additional observations (measurements, computations) on . The latter will�
be called, in contrast, .a posteriori information
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We now give one simple example of how a priori information can be incorporated
into the definition of the problem and, consequently,  how it can imply the definition of
" ".�

Example 8  Suppose we want to know the value of a real parameter  based on�
information , where  is some noise. In this case, it is natural to put& ~ � b � �

<²�Á ³ ~ ( ²&³ ~ &� � . Does this strategy work well? How to compare it with other
strategies? If we do not put any additional assumptions on  and/or  then we are� �

hopeless. Hence we assume that for any  the noise  has normal distribution with mean� �

� � � ( ¢ ¦ and variance , and we allow any measurable strategies (algorithms) .� l l�

Then we may define the error of any  as(

�²(³ ~ �²(Á �³Ásup
��l

(5)

where  is the (average) error for particular ,�²(Á �³ �

�²(Á �³ ~ � c (²� b ³ ² c °²� ³ ³ � À
�

�
6 7l � d d

��
� � � �

�

� � �
�°�

l

exp

With such an error, it turns out that the algorithm  is optimal indeed, and its error(�

equals just . Hence the algorithm works very well provided the noise is zero mean�

normal, and  is "small". If, however, we knew a priori that , the algorithm would� �O� O �
not be optimal since, as a consequence of noise, we may have . A betterO( ²&³O �� �

algorithm would be  for ,   for , and  for(²&³ ~ & O&O � (²&³ ~ c & � c (²&³ ~� � � �

& � �. However, to make this algorithm better not only conceptually, but also formally,
we have to change the definition of error to

�²(³ ~ �²(Á �³ ,sup
��´c Á µ� �

so that it now corresponds more to the assumption (our a priori knowledge) on .�

Another kind of assumption about  could be that it is a random variable, e.g., zero�
mean normal with variance . In such a case, it is natural to define the error as the�� � �
average error

�²(³ ~ �²�Á (³ ² c � °²� ³³ �� À
�

�
6 7l �

��
�

�

� � �
�°�

l

exp

The algorithm  is again not optimal. Indeed, it does not incorporate the a( ²&³ ~ &�

priori information that it is more probable that  is closer to  than to any other number.� �
An algorithm that shifts the information  a little towards zero should be better. Formally,&
we still have that , while the minimal error that can be achieved in this case�²( ³ ~� �

equals
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� ~ h Á
�

� b °
��� � �

�
� �o

and is obtained by the algorithm

( ²&³ ~ � b h &À�

�

�
6 7�

�

These formulas illustrate very well how different a priori assumptions (here the values
of  and ) influence the choice of algorithm (strategy) and its error. We note that the� �

initial definition (5) can be viewed as the case where we do not have any a priori
information about , but only about the noise. This is the limiting case when ,� ¦ bB�

i.e., when the distribution of 's becomes more and more "uniform".�

5.  Optimization functionals.

We saw that, when solving a problem, two kinds of information has to be taken into
account: a priori and a posteriori.  While the a posteriori information has a rather
objective character (this is just our numerical data ,  about ), a priori& ~ 5²� ³ ��

information has in most cases a subjective character.  Indeed, initially it is described in a
very general way (e.g., that the object is "smooth", that "most of 's" are in a specific�
region, that the distribution of 's is "uniform", etc.), and only then one tries to find a�
mathematical formulation for such information in order to use it to compare different
strategies and, eventually, to choose the best one.  We stress that, in theoretical
considerations, we frequently assume even more about  (and possibly also about noise � �

if it exists) than our a priori information indicates. The reason is simple: some problems
are so difficult that it is impossible to say something reasonable about different strategies
of solving it without putting some additional, sometimes maybe unrealistic, assumptions.
A good example is the problem of solving a complicated partial differential equation
(PDE). When analyzing algorithms for solving PDE's one usually assumes that the
coefficients or even  the solution itself have some degree of smoothness, even though
everyone is aware that such assumptions are, as a rule, not met in reality. We want to
stress this, although from the point of view of pure mathematical formulation it is not
important at all whether the a priori information is  in a natural way, or it isgiven
assumed.

Even though the question what can and what cannot be assumed as a priori
information belongs to philosophy rather than to mathematics, it is impossible to ignore
it.  For any specific answer immediately implies what mathematical model and tools will
be used to solve the problem.  The differences in a priori assumptions may even lead to
divisions among researchers dealing with seemingly the same problems, as happened,
e.g., with Bayesian and non-Bayesian statistics.  Here is another example.

Example 9  In theory, one compares strategies usinginformation-based complexity 
the concepts of error and cost. For simplicity, we concentrate on the error only, namely
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the worst case error. Supposing that  and  are linear spaces, the (global) - . worst case
error of an algorithm  using (deterministic) information  is defined as( & ~ 5²�³

�²(³ ~ OO:²�³ c (²5²�³³OOsup
��-�

.

Here  is a norm on , and  is a subset of , e.g., the unit ball with respect toOO h OO . - -�

some seminorm || || ,h -

- ~ ¸ � � - ¢ OO� OO � � ¹À� -

A good thing about this model is that the error is always well defined and any two
strategies, even those using different information, can be easily compared. However, for
some researches, as classical , it is difficult to accept this definition,numerical analysts  
because it explicitly states with certainty that   is in a specified ball, and this information�
is usually not available.  For instance, even if we know that  is a function with bounded�
second derivative, we usually do not know the bound itself.  That is why in classical
numerical analysis one compares strategies using the concept of speed of convergence
rather than the (global) error, as explained in Example 4. (Surprisingly enough, the two
approaches are not so different as it may seem at first sight, as will be explained later.)

If we have a priori information that , or that , then one may in a natural� � - � �� �

way define the relation " " using, e.g., the concept of the worst case or average case�
error, correspondingly, as in Example 5. As noticed in Example 9, a practical difficulty is,
however, that even though we know a priori that  possesses a property, say , it is� ²7 ³
usually impossible to give or even estimate a quantitative value of . For instance, even²7 ³
if we know that  is a function with bounded second derivative, we usually do not know�
the bound itself. Or, even if we know that  has zero mean Gaussian distribution, we�
usually do not know the covariance operator exactly. How should we proceed if we do
not want to accept any additional assumptions about ? A commonly applied and quite�
natural approach in such situations relies on using optimization functionals.

Suppose that a posteriori information about  is fixed. That is, we formally consider�
only strategies  with fixed .  Let us first assume, for simplicity, that we are< ~ ²(Á5³ 5
in the deterministic case. In order to find a "good" approximation for  based on:²�³
information , we proceed as follows.  For the a priori property , we define a& ~ 5²�³ ²7 ³
corresponding functional

� ¢ - ¦ ´�Á bBµ ~ ´�Á bB³ r ¸ bB¹.

The value  gives us quantitative information about to what extent  is satisfied�²�³ ²7 ³
by .  We adopt the convention that the less  the more "  is present in ." Then� ²�³ ²7 ³ ��

we put , where( ²&³ ~ :² ³6
&�

� �& ~ ¸ ²�³ ¢ � � - Á 5²�³ ~ & ¹Àarg (6)min

(We assume, for simplicity, that the minimum above is attained.)  Hence, we pick as
approximation the image of the element which is consistent with information  and&
satisfies  "as much as possible". (We note that this approach formally corresponds to²7 ³
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the relation " " defined as, e.g.,   iff  for any information  there is� ²( Á5³ � ²( Á5³ &� �

� ( ²&³ ~ :²� ³ ( ²&³ £ :²�³ � � 5 ²&³& � & �
c� such that ,  and   for any  with

� �²�³ � ²� ³ 5²�³ ~ &&  .)

Example 10  One of the most striking examples of using optimization functionals is
provided by classical . That is, consider the problem of recovering a functionsplines
� ¢ ´�Á �µ ¦ & ~ ²& ÁÃ Á & ³ & ~ �²! ³ � � � �l from information  where , 0 , and� � � �

� ~ ! � ! � Ä � ! ~ � �� � � . The a priori assumption is that the function  is "smooth".
This assumption can be incorporated to the mathematical formulation of the problem by
introducing the functional

�²�³ ~ � ²!³ ��� 4 5
�

�
²�³ �

(and  if the integral is not well defined), which roughly represents the�²�³ ~ bB
"amount of smoothness in ". The solution of (6) is then the natural cubic spline�
interpolating the data .&

The situation becomes more complicated if information is corrupted by some noise,
& ~ 5²�³ b �. In this case, using the same optimization functional would not be
appropriate. Indeed, the procedure would lead to exact interpolation of data. However,
because of the noise, this data may be "rough" and hence the minimization of  could�²�³
result in  which only "weakly" satisfies the a priori assumption . Hence we have to�& ²7 ³
trade between interpolating data and maximizing . A natural way to go is as follows.²7 ³
We first define two functionals,  and , ,� �¢ - ¦ ´�Á bBµ ¢ - ¦ ´�Á bBµ & � @&

which represent the property  and fitness to the data , correspondingly. Then we²7 ³ &
combine these functionals in some way to obtain a functional  which is to� l& B¢ - ¦
be minimized over the whole space ..-

Example 11  We generalize the problem of Example 10 to the case of noisy
information, i.e., , . We define, e.g.,& ~ �²! ³ b � � � � �� � ��

�& � �
c� �

�~�

�

²�³ ~ � ²& c �²! ³³� ,  and

�
�

& � �
�

�
²�³ ��

�~�

�

²�³ ~ � ²!³ �� b h ²& c �²! ³³ À
�

� 4 5 �
Here  is a parameter which controls the tradeoff between the smoothness of  and� �

fitness to the data ; the more , the more we trust the data. This kind of optimization& �

functionals is widely used in statistical estimation. How to choose  is a separate problem�

and it can be solved again using some a priori assumptions or by optimizing another
functional. The latter approach is represented by, e.g., the well known cross validation
techniques.
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5. Equivalence of different techniques.

We presented a couple of techniques of incorporating a priori information into the
mathematical formulation of the problem. We now show some rather surprising results to
the effect that these techniques are not as different as may seem at first sight, and that in
many cases they eventually lead to similar strategies of solving the problem.

5.1.  Optimization and worst case approach.

Suppose, as in Section 4, that information  is fixed. Furthermore, we have5
functionals  , ,  which measure amount of property  in ,� �Á ¢ - ¦ ´�Á bBµ & � @ ²7 ³ �&

and fitness of  to the data , correspondingly.  Using the worst case approach, we may� &
define the error of an algorithm  as(

�²(Á5³ ~ �� ! :²�³Á (²&³ ¢ � � - Á & � @ Á  À!À ²�³ � �Á ²�³ � ÁsupD 4 5 E� � �&

where    is a metric in .  Note that we have two parameters,  and , which have to�� ! . � �

be chosen according to our belief (or knowledge) about the properties of  and the noise�
level in the information. The case  will be interpreted as exact (non-noisy)� ~ �
information.

In this case, the minimal error that can be achieved equals

�²5³ ~ �²(Á5³ ~ ��� :²- ³ Áinf sup
( &�@

&4 5
where   is the set of 's consistent with our a priori- ~ ¸� � - ¢ ²�³ � �Á ²�³ � ¹ �& &� � �

knowledge and information , and  is the  (Chebyshev) radius of a set. An& ���² h ³
optimal algorithm gives as  the center of  (if it exists).( ²&³ :²- ³i

&

As the center is sometimes difficult to construct, one often uses the interpolation
approach to construct almost optimal algorithms.  Specifically, one puts

( ²&³ ~ :²� ³0
&

where  is any element interpolating our a priori and a posteriori knowledge, i.e., such�&
that . Then the error of  is at most twice worse than the minimal error. Indeed,� � - (& & 0

since , we have for any  that(²&³ ~ :²� ³ � :²- ³ � � -& & &

�� ! :²�³Á ( ²&³ � ���� :²- ³ � � h ��� :²- ³4 5 4 5 4 50
& &

(  is the diameter), which gives  .����² h ³ �²( Á5³ � � h �²5³0

Let us now see what gives us the optimization functionals approach. We define

� � ��& &²�³ ~ ²�³Á ²�³ Ámax 4 5
where  is a parameter. To include also the exact information case, we also allow � � ~ B
(with convention  Let , and let  be informationB h � ~ �³À � � ¸ � � - ¢ ²�³ � B¹ &�&
about . Let  be such that  and  The optimization� 4 � B ²�³ � 4 ²�³ � 4° À� � �&

approach gives  where  minimizes  (assuming, for simplicity, that(²&³ ~ :² ³ ² h ³� � �& & &
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the minimum is attained). We have ,  which implies that� � �& & &² ³ � ²�³ � 4
� � � � �(  and . Hence  is nothing but the interpolatory algorithm& & &³ � 4 ² ³ � 4° (O

provided our a priori knowledge is   and . We conclude that the� � �²�³ � 4 ²�³ � 4°&

optimization approach leads to an algorithm which is optimal (within a factor of ) in the�
worst case setting with respect to any "balls"  and  whose "radii"� � �²�³ � � ²�³ �&

satisfy

� �°� ~ c�. 

Note that this relation is especially striking for exact information, since then we just
minimize  over  such that . For noisy information, we have to know the� �²�³ � ²�³ ~ �&

ratio . We already mentioned this difficulty in Example 11.�°�

5.2.  Optimization and asymptotic approach.

A relation between the optimization approach and the asymptotic approach described
in Example 4 is less obvious.  Therefore we present it only in its simplest form. We
assume exact information. A strategy is a sequence of algorithms ,¸( ²5 ² h ³³¹� � ���

where

5 ²�³ ~ 3 ²�³Á 3 ²�³ÁÃ Á3 ²�³ �� � � �
�4 5 l .

We stress that information is here , i.e., for each , information  consists ofnested � 5�

the  first functionals of a preselected infinite sequence . We also need more� ¸3 ¹� ���

specific assumptions. We assume that  is a Banach space with a norm  which- P h OO-
represents the property , and  is a normed space with a norm , so that the²7 ³ . OO h OO
distance in  can be measured in this norm. The functionals forming information are.
continuous linear, and  is also a continuous linear mapping.: ¢ - ¦ .

Let  be the algorithm that uses information  and results from optimization of( 5 ²�³O
� �

the functional . Then  is interpolatory and from Section 5.1 we obtain�²�³ ~ OO� OO (-
6

OO:²�³ c ( ²5 ²�³³OO � OO:²� ³ c :²� ³OO ¢ OO� OO � OO� OO Á 5 ²� ³ ~ 5 ²�³ À�
6

� � � � - - � � �supD E  

Now, some calculations using linearity of  and  give: 5�

OO:²�³ c ( ²5 ²�³³OO � �OO� OO OO:²�³OO ¢ OO�OO � �Á5 ²�³ ~ � ~ OO� OO �²5 ³Á�
6

� - - � - �supD E 2

where  is the minimal worst case error of the th information with respect to the�²5 ³ ��

unit ball in . Thus we obtained that, for given , the error of  tends to zero at- � � - (6
�

least as fast as the sequence of the worst case errors.
It turns out that this speed of convergence cannot be essentially improved; namely, we

have the following theorem. Let be any positive sequence converging to zero.¸ ¹�� ���

Let  be any strategy. Then for any nontrivial ball  there exists¸( ²5 ² h ³³¹ ) � -� � ���

� � ) OO:²�³ c ( ²5 ²�³³OO such that the sequence of errors  does not converge to zero� �

faster than the sequence .¸ �²5 ³¹�� �
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The above correspondence has generalizations to noisy information and also to some
nonlinear problems as, e.g., solving ordinary differential equations (ODE's).
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