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Abstract

Let α ∈ (1, 2) and Xα be a symmetric α-stable (SαS) process with stationary increments given by
the mixed moving average

Xα(t) =
∫

X

∫
R
(G(x, t + u) − G(x, u))Mα(dx, du), t ∈ R,

where (X,X , µ) is a standard Lebesgue space, G : X × R 7→ R is some measurable function
and Mα is a SαS random measure on X × R with the control measure mα(dx, du) = µ(dx)du.
We show that if Xα is self-similar, then it is determined by a nonsingular flow, a related cocycle
and a semi-additive functional. By using the Hopf decomposition of the flow into its dissipative
and conservative components, we establish a unique decomposition in distribution of Xα into two
independent processes

Xα
d= XD

α + XC
α ,

where the process XD
α is determined by a nonsingular dissipative flow and the process XC

α is
determined by a nonsingular conservative flow. In this decomposition, the linear fractional stable
motion, for example, is determined by a conservative flow.

1 Introduction

In a fundamental paper, Rosiński (1995) considered general symmetric α-stable, real-valued stationary
processes {Xα(t)}t∈R (they may be indexed by t ∈ Z and can be complex-valued as well) having the
representation

{Xα(t)}t∈R
d=

{∫
S

ft(s)Mα(ds)
}

t∈R
, (1.1)

where d= stands for the equality in the sense of the finite-dimensional distributions. Here (S,S, ν)
is a standard Lebesgue space, {ft}t∈R ⊂ Lα(S, ν) with α ∈ (0, 2) and Mα is a symmetric α-stable
(SαS) random measure on S with the control measure ν(ds) (see Chapter 3 Samorodnitsky and
Taqqu (1994)). Recall that a random variable ξ is SαS with α ∈ (0, 2) if its characteristic function
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satisfies E exp(iθξ) = exp(−σα|θ|α) for some σ > 0 and all θ ∈ R and that a real-valued stochastic
process {Xα(t)}t∈R is SαS with α ∈ (0, 2) if all its linear combinations are SαS random variables.
An example of a standard Lebesgue space is the Euclidean space Rn, with a measure consisting of
Lebesgue measure and discrete point masses (for a general definition, see Section 3 below).

Assuming some minimality conditions on the spectral representation {ft}t∈R, Rosiński deduced
that there exist a unique (modulo ν) flow {φt}t∈R and a cocycle {at}t∈R for {φt}t∈R taking values in
{−1, 1} such that, for all t ∈ R,

ft(s) = at(s)
{

d(ν ◦ φt)
dν

(s)
}1/α

f0(φt(s)) a.e. ν(ds). (1.2)

(Informally, a flow means that φs+t = φs ◦ φt and a cocycle means that as+t = (as)(at ◦ φs) for all
s, t ∈ R. For a precise definition see Section 3 below.) Then, using standard results of ergodic theory,
Rosiński decomposed uniquely any stationary SαS process Xα having the representation (1.1) into
two independent processes

Xα
d= XD

α + XC
α . (1.3)

The process {XD
α (t)}t∈R is generated by a dissipative flow (see Section 3 for a definition) and has the

representation ∫
X

∫
R

g(x, t + u)Mα(dx, du), t ∈ R, (1.4)

where (X, µ) is some standard Lebesgue space, Mα is a SαS random measure on X × R with the
control measure µ(dx)du and g ∈ Lα(X×R, µ(dx)du). The process (1.4) is called a (stationary) mixed
moving average. The process {XC

α (t)}t∈R, on the other hand, is generated by a conservative flow (see
Section 3 for a definition). It can be further decomposed into a harmonizable process and, to use the
author’s language, a “third kind” process.

Subsequently, the ideas of Rosiński were adapted by Burnecki, Rosiński and Weron (1998) to
decompose self-similar stable processes {Xα(t)}t>0. Recall that the process Xα is self-similar with
index H > 0 (H-ss), if, for any c > 0,

{Xα(ct)}t∈R
d= {cHXα(t)}t∈R (1.5)

(R may be replaced by (0,∞) in (1.5)). To obtain a decomposition of self-similar stable processes, the
authors suggested two equivalent approaches: one may proceed directly by using the property of self-
similarity instead of that of stationarity, or one may use the well-known Lamperti transformation which
is a one-to-one correspondence between self-similar stable processes {Xα(t)}t>0 and stationary stable
processes {Yα(t)}t∈R (see Samorodnitsky and Taqqu (1994), p. 312). The decomposition of self-similar
stable processes obtained in Burnecki et al. (1998) is similar to the decomposition (1.3) of stationary
stable processes obtained by Rosiński (1995). For example, the self-similar processes {Xα(t)}t>0

described by dissipative flows are now called mixed fractional motions and have the representation∫
X

∫ ∞

0
uH− 1

α g

(
x,

u

t

)
M(dx, du), t > 0, (1.6)

where (X, µ) is again some standard Lebesgue space, Mα is a SαS random measure on X × R with
the control measure µ(dx)du and g ∈ Lα(X × R). When Lamperti’s transformation is applied, they
become stationary mixed moving averages XD

α in (1.4).
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To characterize stable processes with stationary increments, Surgailis, Rosiński, Mandrekar and
Cambanis (1998) used a transformation which allows one to go from stable processes with stationary
increments to stationary stable processes (the transformation used imposes some conditions on the
processes involved), obtain their decomposition by using Rosiński’s result (1.3) and then go back to
the original processes with stationary increments. The stable processes with stationary increments
were again characterized by flows and cocycles. The stable processes with stationary increments (zero
at t = 0) characterized by dissipative flows were shown in Surgailis et al. (1998) to have representation

{Xα(t)}t∈R
d=

{∫
X

∫
R
(G(x, t + u) − G(x, u))Mα(dx, du)

}
t∈R

, (1.7)

where Mα, α ∈ (0, 2), is a SαS random measure with the control measure mα(dx, du) = µ(dx)du, and
G : X × R 7→ R is a measurable function such that, for all t ∈ R,

Gt(x, u) = G(x, t + u) − G(x, u), u ∈ R, x ∈ X, (1.8)

is in Lα(X×R, µ(dx)du). We shall call the process Xα in (1.7) a (stationary increments) mixed moving
average because, if it were differentiable, its derivative would be the (stationary) mixed moving average
(1.4).

We shall focus on SαS processes that are both self-similar and have stationary increments (sssi
processes, in short). These processes are of interest, because in practice, one often wants a model to
have these two characteristics. To describe sssi processes, the decompositions obtained by Burnecki
et al. (1998) and Surgailis et al. (1998) are not that useful because they rely solely on either the self-
similarity or the stationarity of the increments property. It would be desirable to have a decomposition
of sssi processes which would incorporate both properties. We will show that such a decomposition
exists for a subclass of sssi processes, namely, for those self-similar processes with stationary increments
that have the representation (1.7). Such processes appear in a number of applications, for example in
the context of renewal reward processes (see Pipiras and Taqqu (2000)).

The basic question of this work is then the following. Suppose that the SαS process Xα, having
the representation (1.7) and hence with stationary increments, is also self-similar. We want to know
whether there is a way to decompose it, using both properties, the stationarity of the increments and
self-similarity. Two approaches are possible. One can try to specialize the Burnecki et al. (1998) flow
corresponding to self-similarity in order to take advantage of the special structure of the kernel in
(1.7). Alternatively, one can start directly with (1.7) which has built-in stationarity of the increments,
and then impose the further condition of self-similarity. We shall follow the second approach.

The Surgailis et al. (1998) flow for the process (1.7) is dissipative and Burnecki et al. (1998) flow
for the process (1.6) is also dissipative. But observe that a kernel may be associated with different
types of flows. We shall use the additional property of self-similarity to show that there is another flow
that can be associated with (1.7) which can be either dissipative or conservative. This will allow us
to decompose the process Xα in (1.7) in a dissipative component XD

α and a conservative component
XC

α , and we will have Xα =d XD
α + XC

α . This decomposition which looks like (1.3) is, in fact, quite
different, because the flows involved are different.

Our flow involves a finer characterization, because, as we shall show, it stems from only one
component of Burnecki et al. (1998) flow associated with self-similarity. We will be able, consequently,
to distinguish between processes which have both representations (1.6) and (1.7), that is, which are
dissipative both in the sense of Burnecki et al. (1998) and Surgailis et al. (1998). Consider for example
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the SαS process (see (6.1) below) which is obtained as a limit of renewal reward type processes and
is of the form (1.7) and consider also the linear fractional stable motion (see (6.2) below) process.
These two processes are dissipative in the sense of Surgailis et al. (1998) and, since they are also of
the form (1.6), they are both dissipative in the sense of Burnecki et al. (1998) as well. We show in
Section 6, however, that while the renewal reward limit process (6.1) is dissipative even in our sense,
linear fractional stable motion is conservative in our sense. This allows us, for example, to conclude
that these two processes are different, that is, they possess different finite-dimensional distributions.

The rest of the paper is organized as follows. In Section 2, we state the assumptions and describe
our results. In Section 3, we recall some basic definitions on flows and their related functionals and
prove some technical results which will be used in the sequel. The reader may want at first to skip
Section 3 and return to it when she/he wants to check a concept or result which is being used. In
Section 4, we characterize minimal kernels. The results about the decomposition of the process are
established in Section 5. Section 6 contains the examples. Finally, in Section 7, we provide a summary
and draw some conclusions.

2 Description of the results

We need first to introduce the notion of a minimal spectral representation introduced by Hardin (1982)
(and developed by Rosiński (1998)). Let T be an arbitrary index set, α ∈ (0, 2) and (E, E , m) be a
measure space. Suppose that {ft}t∈T ⊂ Lα(E, E , m) is a spectral representation of a SαS process Xα,
that is,

{Xα(t)}t∈T
d=

{∫
E

ft(x)Mα(dx)
}

t∈T
,

where Mα is a SαS random measure with the control measure m. Let F = {ft, t ∈ T}, sp(F ) =
{∑n

k=1 ckftk : ck ∈ R, tk ∈ T, n ∈ N} and sp(F ) be the closure of the span in Lα(E, m). We write
A = B m-a.e. if m(A4B) = 0 and say that two σ-algebras are equal modulo m if their sets are
equal m-a.e. Define supp(F ) (the support of ft, t ∈ T ) as a minimal (m-a.e.) set A ∈ E such that
m{x ∈ E : ft(x) 6= 0, x /∈ A} = 0 for every t ∈ T .

Definition 2.1 The spectral representation {ft}t∈T is called minimal for the process Xα if the fol-
lowing two conditions are satisfied:

(M1) supp(F ) = E m–a.e.,
(M2) ρ(F ) = E (modulo m), where ρ(F ) is the so-called ratio σ-algebra, that is, the smallest

σ–algebra generated by the extended-valued functions f/g, f, g ∈ sp(F ).

Minimality implies richness. For example, the representation Xα(t) =
∫ 1
0 1[0,t](x)Mα(dx), t ∈ [0, 1],

of the Lévy stable motion is minimal because the functions {1[0,t](x)}t∈[0,1] generate the Borel σ-algebra
on [0, 1] (one can take g = 1[0,1] here). It is known that every SαS process separable in probability
has a minimal spectral representation (Hardin (1982)).

Minimal spectral representations are useful to describe the structures of SαS processes. To un-
derstand why, suppose that a SαS process {Xα(t)}t∈T (T = R or Z) has two minimal representations
{f1

t }t∈T and {f2
t }t∈T on the standard Lebesgue spaces (E1, E1, m1) and (E2, E2, m2), respectively.

Then, by the Rigidity Lemma 4.1, (ii), below, there exist unique (modulo m2) functions Φ : E2 7→ E1
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and h : E2 7→ R \ {0} such that Φ is one-to-one and onto and, for each t ∈ T ,

f2
t (x) = h(x)f1

t (Φ(x)) and
d(m1 ◦ Φ)

dm2
(x) = |h(x)|α, (2.1)

a.e. m2(dx). Relation (2.1) allows one to go from one representation to the other. For example, one
gets ∫

E2

∣∣∣∣∣
n∑

k=1

θkf
2
tk

∣∣∣∣∣
α

dm2 =
∫

E2

∣∣∣∣∣
n∑

k=1

θkf
1
tk
◦ Φ

∣∣∣∣∣
α

d(m1 ◦ Φ)
dm2

dm2 =
∫

E1

∣∣∣∣∣
n∑

k=1

θkf
1
tk

∣∣∣∣∣
α

dm1,

for t1, . . . , tn ∈ T and θ1, . . . , θn ∈ R. This equality expresses the fact that the finite-dimensional
distributions of the process can be expressed through either representation.

To see how (2.1) can be used to characterize stationary SαS processes, suppose that {Xα(t)}t∈R
is a SαS stationary process having a minimal spectral representation {ft}t∈R as in (1.1). Then, by
stationarity, for any τ ∈ R, {ft+τ}t∈R is also a minimal spectral representation of the process Xα.
By using the result (2.1), for each τ ∈ R, there exist unique (modulo ν) functions Φτ : S 7→ S and
hτ : S 7→ R \ {0} such that fτ (s) = hτ (s)f0(Φτ (s)) a.e. ν(ds) (plus the condition on hτ ). Then,
for any τ1, τ2 ∈ R, by iterating twice, fτ1+τ2(s) = hτ1(s)hτ2(Φτ1(s))f0(Φτ2(Φτ1(s))) a.e. ν(ds) and,
hence, by uniqueness, Φτ1+τ2 = Φτ1 ◦ Φτ2 a.e. ν(ds). After some technical (but by no means trivial)
work, one can modify {Φτ}τ∈R to a flow {φτ}τ∈R to get the representation (1.2) and then perform
the decomposition of the process Xα based on the ergodic properties of the flow in (1.2) (see Rosiński
(1995)). The flows satisfying the relation φτ1+τ2 = φτ1 ◦φτ2 , τ1, τ2 ∈ R, are (additive) flows. The flows
that we will consider are multiplicative, namely such that φτ1τ2 = φτ1 ◦ φτ2 , τ1, τ2 > 0.

Suppose now that the spectral representation {Gt}t∈R, as defined in (1.8), is minimal for the
process Xα in (1.7) which has stationary increments and is assumed to be self-similar. By using the
methodology described above, we show in Section 4 below that there exist a multiplicative flow {ψc}c>0

on (X, µ), a cocycle {bc}c>0 taking values in {−1, 1} and a semi-additive functional {gc}c>0 for the
flow {ψc}c>0 (see Section 3 for definitions) such that, for any c > 0 and t ∈ R,

c−κ(G(x, c(t + u)) − G(x, cu))

= bc(x)
{

d(µ ◦ ψc)
dµ

(x)
}1/α

(G(ψc(x), t + u + gc(x)) − G(ψc(x), u + gc(x))) (2.2)

a.e. µ(dx)du, where
κ = H − 1/α. (2.3)

Note that (2.2) is consistent with the fact that (1.7) is assumed to be self-similar since, for t1, . . . , tn ∈
R, θ1, . . . , θn ∈ R and c > 0, (2.2) yields∫

X

∫
R

∣∣∣∣∣
n∑

k=1

θkc
−κ(G(x, c(tk + u)) − G(x, cu))

∣∣∣∣∣
α

µ(dx)du

=
∫

X

∫
R

∣∣∣∣∣
n∑

k=1

θk (G(ψc(x), tk + u + gc(x)) − G(ψc(x), u + gc(x)))

∣∣∣∣∣
α

d(µ ◦ ψc)
dµ

(x) µ(dx)du

=
∫

X

∫
R

∣∣∣∣∣
n∑

k=1

θk (G(ψc(x), tk + u) − G(ψc(x), u))

∣∣∣∣∣
α

(µ ◦ ψc)(dx)du

5



=
∫

X

∫
R

∣∣∣∣∣
n∑

k=1

θk (G(x, tk + u) − G(x, u))

∣∣∣∣∣
α

µ(dx)du. (2.4)

Another way of expressing (2.2) is to set

ϕc(x, u) =
(

ψc(x),
u

c
+ gc(x)

)
. (2.5)

We will verify below (see Example 3.4) that ϕc, c > 0, is a multiplicative flow on X × R. Moreover,
for all t > 0,

Gt(x, u) = G(x, t(1 + t−1u)) − G(x, tt−1u)

= tκ bt(x)
{

d(µ ◦ ψt)
dµ

(x)
}1/α (

G(ψt(x), 1 + t−1u + gt(x)) − G(ψt(x), t−1u + gt(x))
)

= tH− 1
α bt(x)

{
d(µ ◦ ψt)

dµ
(x)

}1/α

G1(ψt(x), t−1u + gt(x))

= tH bt(x, u)
{

d((µ ⊗ L) ◦ ϕt)
d(µ ⊗ L)

(x)
}1/α

G1(ϕt(x, u)) (2.6)

a.e. µ(dx)du, where L denotes the Lebesgue measure and bt(x, u) = bt(x). While (2.6) and (1.2) look
similar, we shall base our decomposition of the process Xα into two parts, a dissipative and conservative
one, only on the flow ψt(x), that is, on the first component of the flow ϕt(x, u) = (ψt(x), u

t + gt(x)).
We will be able to proceed in the spirit of Rosiński (1995). We say that an H-ss process Xα with
stationary increments, having the representation (1.7), is generated by a multiplicative flow {ψc}c>0

if the representation (2.2) and some condition on the support of functions Gt, t ∈ R, hold (see Section
5). We then show that, for α ∈ (1, 2), any H-ss process Xα with stationary increments, having the
representation (1.7), is generated by a multiplicative flow. (When α ∈ (0, 1], the arguments which
we use work only for a subclass of such processes Xα, as noted in the remark following Theorem
4.2. In order not to obscure the arguments, we decided to provide a decomposition in the case
α ∈ (1, 2) only.) We also show that, if the process Xα is generated by a dissipative (conservative,
resp.) flow in one spectral representation, then, in any other spectral representation, the flow has to
be dissipative (conservative, resp.) as well. This allows us to decompose the process Xα uniquely into
two independent parts:

Xα
d= XD

α + XC
α , (2.7)

where the process XD
α is generated by a dissipative flow and the process XC

α is generated by a conser-
vative flow. Finally, in Section 6 we show that the limit of the renewal reward processes is a process
generated by a dissipative flow and that the usual linear fractional stable motion, the log-fractional
stable motion and the Lévy stable motion are processes generated by conservative flows.

In a subsequent paper, Pipiras and Taqqu (2001), we examine processes generated by dissipative
and conservative flows in greater detail. In particular, we show that processes generated by dissipative
flows can be represented in distribution as∫

Y

∫
R

∫
R

e−κs(F (y, es(t + u)) − F (y, esu))Mα(dy, ds, du), t ∈ R, (2.8)

where (Y,Y, ν) is some standard Lebesgue space, F : Y × R 7→ R is a measurable function, Mα is a
SαS random measure on Y ×R×R with the control measure ν(dy)dsdu and κ = H − 1/α. The case
of processes generated by conservative flows, which is also considered, is more involved.
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3 Flows, cocycles and other functionals

A standard Lebesgue space (X,X , µ) is made up of a standard Borel space (X,X ) and a σ-finite
measure µ. A standard Borel space is a measurable space measurably isomorphic (i.e. there is a
one-to-one, onto and bimeasurable map) to a Borel subset of a complete separable metric space1. A
standard Borel space, when equipped with a finite measure µ, is called a Lebesgue space in ergodic
theory2. The term “standard Lebesgue”, found in Rosiński (1995), extends this use to the case of a
σ-finite, possibly infinite, measure µ. As indicated in the introduction, a typical example is Rn with
a measure consisting of Lebesgue measure and discrete point masses.

Let (X,X , µ) be a standard Lebesgue space. A family {φt}t∈R of measurable maps from X onto
X is called an (additive) flow if φ0(x) = x and

φt1(φt2(x)) = φt1+t2(x), (3.1)

for all t1, t2 ∈ R and x ∈ X. The flow {φt}t∈R is said to be nonsingular if µ(φ−1
t (B)) = 0 if and only

if µ(B) = 0 for every t ∈ R and B ∈ X . It is said to be measurable if the map φt(x) : R × X 7→ X is
measurable. Similarly, a family {ψc}c>0 of measurable maps from X onto X is called a (nonsingular,
measurable) multiplicative flow if {φt}t∈R = {ψet}t∈R is a (nonsingular, measurable) flow. Hence,
{ψc}c>0 is a multiplicative flow if ψ1(x) = x and, for all c1, c2 > 0 and x ∈ X,

ψc1(ψc2(x)) = ψc1c2(x). (3.2)

Example 3.1 The flows φt(x) = x, t ∈ R, x ∈ X (identity flow), φt(x) = {x + t}, t ∈ R, x ∈ [0, 1)
(cyclic flow), where {·} denotes the fractional part function, φt(y, u) = (y, u + t), t ∈ R, y ∈ Y, u ∈ R,
are examples of additive flows. The corresponding multiplicative flows are

ψc(x) = x, ψc(x) = {x + ln c}, ψc(y, u) = (y, u + ln c),

where c > 0.

Let A = {−1, 1}. A measurable map at(x) : R × X 7→ A is said to be a cocycle for a measurable
flow {φt}t∈R if

at1+t2(x) = at2(x)at1(φt2(x)), (3.3)

for all t1, t2 ∈ R and x ∈ X. Similarly, a measurable map bc(x) : R+ × X 7→ A is said to be a cocycle
for a measurable multiplicative flow {ψc}c>0 if {at}t∈R = {bet}t∈R is a cocycle for a measurable flow
{φt}t∈R = {ψet}t∈R. Hence, {bc}c>0 is a cocycle for for the measurable multiplicative flow {ψc}c>0 if,
for all c1, c2 > 0 and x ∈ X,

bc1c2(x) = bc2(x)bc1(ψc2(x)). (3.4)

Example 3.2 Let {φt}t∈R be a flow on a space X and a : X 7→ {−1, 1} be a measurable function.
Then, the collection of maps

at(x) =
a(φt(x))
a(φ0(x))

=
a(φt(x))

a(x)
, t ∈ R, x ∈ X,

1See, for example, Appendix A in Zimmer (1984) or Arveson (1976) and Mackey (1957); these authors work in the
context of algebraic groups.

2See, for example, Walters (1982), Definition 2.3, or Petersen (1983), Definition 4.5.
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is a cocycle for the flow {φt}t∈R. Indeed, for t1, t2 ∈ R and x ∈ X,

at2(x)at1(φt2(x)) =
a(φt2(x))

a(x)
a(φt1(φt2(x)))

a(φt2(x))
=

a(φt1+t2(x))
a(x)

= at1+t2(x).

Similarly, if {ψc}c>0 is a multiplicative flow on X and b : X 7→ {−1, 1} is a measurable function, then

bc(x) =
b(ψc(x))

b(x)
, c > 0, x ∈ X,

is a cocycle for the flow {ψc}c>0.

A measurable map ft(x) : R × X 7→ R is said to be a semi-additive functional for a measurable
flow {φt}t∈R if

ft1+t2(x) = e−t2ft1(x) + ft2(φt1(x)) (3.5)

for all t1, t2 ∈ R and x ∈ X. (Relation (3.5) without the multiplicative term e−t2 defines additive
functionals for measurable flows - see Kubo (1969, 1970).) Similarly, a measurable map gc(x) : R+ ×
X 7→ R is said to be a semi-additive functional for a measurable multiplicative flow {ψc}c>0 if {ft}t∈R =
{get}t∈R is a semi-additive functional for a measurable flow {φt}t∈R = {ψet}t∈R. Hence, {gc}c>0 is a
semi-additive functional for {ψc}c>0 if

gc1c2(x) = c−1
2 gc1(x) + gc2(ψc1(x)), (3.6)

for all c1, c2 > 0 and x ∈ X.

Example 3.3 Let {φt}t∈R be a flow on a space X and F : X 7→ R be a measurable function. Then,
the collection of maps

ft(x) = F (φt(x)) − e−tF (x), t ∈ R, x ∈ X,

is a semi-additive functional for the flow {φt}t∈R because, for t1, t2 ∈ R and x ∈ X,

e−t2ft1(x) + ft2(φt1(x)) = e−t2(F (φt1(x)) − e−t1F (x)) + F (φt2(φt1(x))) − e−t2F (φt1(x))

= F (φt1+t2(x)) − e−(t1+t2)F (x) = ft1+t2(x).

Similarly, if {ψc}c>0 is a multiplicative flow on X and G : X 7→ R is a measurable function, then

gc(x) = G(ψc(x)) − c−1G(x), c > 0, x ∈ X,

is a semi-additive functional for the flow {ψc}c>0. This example is used in the proof of Proposition
3.1 below.

Example 3.4 Consider the collection of maps ϕc(x, u) = (ψc(x), u
c + gc(x)) with c > 0 and x ∈ X,

introduced in (2.5), where {ψc}c>0 is a multiplicative flow on a space X and {gc}c>0 is a semi-additive
functional for {ψc}c>0. Since

ϕc1(ϕc2(x, u)) = ϕc1

(
ψc2(x),

u

c2
+ gc2(x)

)
=

(
ψc1(ψc2(x)),

1
c1

(
u

c2
+ gc2(x)

)
+ gc1(ψc2(x))

)
=

(
ψc1c2(x),

u

c1c2
+ gc1c2(x)

)
= ϕc1c2(x, u),

for all c1, c2 > 0 and x ∈ X, the collection {ϕc}c>0 is a multiplicative flow on X × R.
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The preceding quantities can also be defined almost everywhere µ(dx). Thus, a measurable map
at(x) : R × X 7→ A is said to be an almost cocycle for a measurable flow {φt}t∈R if the relation (3.3)
holds a.e. µ(dx) for all t1, t2 ∈ R. An almost cocycle for a measurable multiplicative flow is defined
similarly. A measurable map ft(x) : R×X 7→ R is said to be an almost semi-additive functional for a
measurable flow {φt}t∈R if the relation (3.5) holds a.e. µ(dx) for all t1, t2 ∈ R. An almost semi-additive
functional for a measurable multiplicative flow is defined similarly.

The following elementary lemma is used many times throughout the paper.

Lemma 3.1 Suppose that (X1,X1, µ1) and (X2,X2, µ2) are two measure spaces. Let F : X1×X2 7→ R
be a measurable function on (X1 × X2,X1 ⊗ X2, µ1 × µ2). Then, (i) if for almost every x1 ∈ X1,
F (x1, x2) = 0 a.e. µ2(dx2), we have F (x1, x2) = 0 a.e. (µ1 × µ2)(dx1, dx2), and, conversely, (ii) if
F (x1, x2) = 0 a.e. (µ1 × µ2)(dx1, dx2), then for almost every x1 ∈ X1, F (x1, x2) = 0 a.e. µ2(dx2).

Let T be an arbitrary index set and let also {f1
t }t∈T and {f2

t }t∈T be collections of measurable
maps from X into X. Then {f2

t }t∈T is said to be a version of {f1
t }t∈T or that they are equal modulo

µ if µ(x : f1
t (x) 6= f2

t (x)) = 0, for all t ∈ T . The following two propositions will be useful in the
sequel. The first, which extends Proposition 1.2 of Kubo (1970), states that we can replace an almost
semi-additive functional by one that is semi-additive everywhere.

Proposition 3.1 Let {ft}t∈R be an almost semi-additive functional for a measurable flow {φt}t∈R.
Then {ft}t∈R has a version which is a semi-additive functional for {φt}t∈R.

Proof: We suppose first that µ(X) = 1. (As noted above, this is a typical assumption in ergodic
theory where standard Lebesgue spaces with µ(X) = 1 are called Lebesgue spaces). To prove the
proposition in this case, we will use some ideas of Kubo (1969, 1970). By Remark 3.1 in Kubo (1969),
it is sufficient to prove the proposition in the following two cases:

Case 1: The flow {φt}t∈R is an identity flow, that is, φt(x) = x for all t ∈ R and x ∈ X. In
this case, ft1+t2(x) = e−t2ft1(x) + ft2(x) a.e. µ(dx) for all t1, t2 ∈ R, and hence we also have that
ft1+t2(x) = e−t1ft2(x) + ft1(x) a.e. µ(dx). It follows that

e−t2ft1(x) + ft2(x) = e−t1ft2(x) + ft1(x)

a.e. µ(dx) and that
(e−t2 − 1)ft1(x) = (e−t1 − 1)ft2(x)

a.e. µ(dx). Thus, by fixing t2 and setting t = t1,

ft(x) = (e−t − 1)g(x)

a.e. µ(dx) for some measurable function g. Therefore, (e−t − 1)g(x), t ∈ R, x ∈ X, is a version of
ft(x), t ∈ R, x ∈ X, and is a semi-additive functional. This completes the proof for Case 1.

Case 2: This case is more delicate. It assumes that the flow {φt}t∈R is a special flow defined on a
space (Ω, E , P ). (The “almost” part in the proposition then refers to P .) The space and the special
flow are defined in the following way3.

3The concept of “special flow”, also known as “flow under a function”, is well-known in ergodic theory (see, for
example, Cornfeld, Fomin and Sinai (1982), Chapter 11).
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Definition 3.1 Let (Y,Y, ν) be a Lebesgue space, S be a nonsingular, one-to-one and bimeasurable
(that is, both S and S−1 are measurable) map of the space Y onto itself, and h be a positive measurable
function defined on Y such that h > θ for some θ > 0. Set Ω = {(y, u) : 0 ≤ u < h(y), y ∈ Y } and let
E be a restriction of Y ⊗ B to Ω, where B is the Borel σ-algebra on R. Take a measurable function
p(y, u) > 0 such that

∫ ∫
Ω p(y, u)ν(dy)du = 1 and let dP (y, u) = p(y, u)ν(dy)du. Then (Ω, E , P )

becomes a Lebesgue space.
Now consider the sequence of points {hn(y)}n∈Z on R defined by hn(y) =

∑n−1
k=0 h(Sky), if n ≥ 1,

hn(y) = 0, if n = 0, and hn(y) = −∑−1
k=n h(Sky), if n ≤ −1. Then

hn+m(y) = hn(y) + hm(Sny). (3.7)

Since h > θ, hn(y) → ∓∞ as n → ∓∞. The special flow {φt}t∈R on (Ω, E , P ) is defined as follows.
First φ0(y, 0) = (y, 0). Then for t > 0, φt(y, 0) = (y, 0+t) but only if t < h1(y). For h1(y) ≤ t < h2(y),
φt(y, 0) = (S(y), 0 + t − h1(y)), ... In general,

φt(y, u) = (Sny, u + t − hn(y)), for 0 ≤ u + t − hn(y) < h(Sny), (3.8)

or equivalently,

φt(y, u) = (Sny, u + t − hn(y)), for hn(y) ≤ u + t < hn+1(y). (3.9)

It is called a special flow built up by a function h such that h(y) > θ for all y and some θ > 0.

Remark. To verify that {φt}t∈R is indeed a flow on Ω, note first that (3.8) implies (Sny, u+t−hn(y)) ∈
Ω. Fix now s, t ∈ R and (y, u) ∈ Ω. Let n ∈ Z be such that 0 ≤ u + t − hn(y) < h(Sny) and m ∈ Z
be such that 0 ≤ u + s + t − hn(y) − hm(Sny) < h(Sn+my). Then, by applying (3.8) twice,

φs(φt(y, u)) = φs(Sny, u + t − hn(y)) = (Sn+my, u + s + t − hn(y) − hm(Sny)).

By using (3.7), we have φs(φt(y, u)) = (Sn+my, u + s + t − hn+m(y)). The same relation (3.7) implies
that 0 ≤ u + s + t − hn+m(y) < h(Sn+my) and hence φs+t(y, u) = (Sn+my, u + s + t − hn+m(y)). It
follows that φs ◦ φt = φs+t.

Consider now any almost semi-additive functional {ft}t∈R for the special flow {φt}t∈R on Ω. We
must prove that this {ft}t∈R has a version which is an (everywhere) semi-additive functional for
{φt}t∈R. A characteristic of the special flow (3.8) is that it mixes together the argument u and the
time t and also the argument y through the intermediary of h. This will help us in our goal.

Let us denote for convenience {ft(y, u)}t∈R by {f(t, (y, u))}t∈R. Since this is an almost semi-
additive functional for {φt}t∈R, we have that, for all s, t ∈ R,

f(s + t, (y, u)) = e−tf(s, (y, u)) + f(t, (Sny, u + s − hn(y))) (3.10)

a.e. dP for (y, u) such that hn(y) ≤ u + s < hn+1(y). Fixing u = u0 for which (3.10) holds would
make u0 depend on (s, t). To avoid this, we use Lemma 3.1, (i). Since f is jointly measurable in
its all arguments, the relation (3.10) also holds a.e. dsdtdP (y, u). Since h satisfies h(y) ≥ θ > 0 for
y ∈ Y , we have Y × (0, θ) ∈ Ω and the relation (3.10) holds a.e. for s, t ∈ R, y ∈ Y, u ∈ (0, θ) such that
hn(y) ≤ u + s < hn+1(y). Applying now Lemma 3.1, (ii), we conclude that there is u0 ∈ (0, θ) such
that

f(s + t, (y, u0)) = e−tf(s, (y, u0)) + f(t, (Sny, u0 + s − hn(y))) (3.11)
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a.e. for (s, t, y) such that hn(y) ≤ u0 + s < hn+1(y). Relation (3.11) will be used repeatedly in the
sequel. For convenience to the reader, when applying (3.11), we shall indicate by horizontal braces
the variables which play the roles of “s” and “t” (and sometimes “u0”).

Setting n = 0 and s = u− u0 in (3.11), we can isolate the last term on the right-hand side of that
relation and express it as

f(t, (y, u)) = f(t + u − u0, (y, u0)) − e−tf(u − u0, (y, u0)). (3.12)

Focus on the two terms on the right-hand side of (3.12). For the first term, observe that by (3.11),

f(t + u − u0, (y, u0)) = f(hn(y) − v︸ ︷︷ ︸
s

+ t + u − u0 − hn(y) + v︸ ︷︷ ︸
t

, (y, u0))

= e−(t+u−u0−hn(y)+v)f(hn(y) − v, (y, u0))

+f(t + u − u0 − hn(y) + v, (Smy, u0 + hn(y) − v − hm(y))) (3.13)

a.e. for (t, u, v, y) such that hm(y) ≤ u0 + hn(y) − v < hm+1(y). Now, by Lemma 3.1, (ii), take
v0 ∈ (0, u0) for which (3.13) holds a.e. for (t, u, y). Since u0 ∈ (0, θ), one has v0 ∈ (0, θ) and hence
0 ≤ u0 − v0 < θ < h(y) or hn(y) ≤ u0 − v0 + hn(y) ≤ hn+1(y), so that (3.13) holds with m = n.
Therefore

f(t + u − u0, (y, u0)) = e−(t+u−u0−hn(y)+v0)f(hn(y) − v0, (y, u0))

+f(t + u − u0 − hn(y) + v0, (Sny, u0 − v0)), (3.14)

which is an expression for the first term on the right-hand side of (3.12). To get an expression for the
second term, we start with (3.11) again and observe that

f(u − u0︸ ︷︷ ︸
t

+ v0︸︷︷︸
s

, (y, u0 − v0︸ ︷︷ ︸
u0

)) = e−(u−u0)f(v0, (y, u0 − v0)) + f(u − u0, (y, u0))

a.e. for (u, y), since here n = 0 because u0 − v0 + v0 = u0 ∈ (0, θ). Hence

f(u − u0, (y, u0)) = f(u − u0 + v0, (y, u0 − v0)) − e−(u−u0)f(v0, (y, u0 − v0)) (3.15)

a.e. for (u, y), which gives an expression for the second term on the right-hand side of (3.12).
Set now

F (y, u) = f(u − u0 + v0, (y, u0 − v0)) (3.16)

and
Fn(y) = ehn(y)−v0f(hn(y) − v0, (y, u0)) + f(v0, (y, u0 − v0)). (3.17)

Then, by using (3.14) and (3.15), relation (3.12) can be rewritten as follows:

f(t, (y, u)) = e−(t+u−u0)
(
ehn(y)−v0f(hn(y) − v0, (y, u0)) + f(v0, (y, u0 − v0))

)
+f(t + u − u0 − hn(y) + v0, (Sny, u0 − v0)) − e−tf(u − u0 + v0, (y, u0 − v0))

= e−(t+u−u0)Fn(y) + F (φt(y, u)) − e−tF (y, u) (3.18)

a.e. (t, y, u) for hn(y) ≤ t + u < hn+1(y), n ∈ Z, where F (φt(y, u)) uses the expressions (3.8) and
(3.16). Hence f is the sum of two terms e−(t+u−u0)Fn(y) and F (φt(y, u)) − e−tF (y, u). The second
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term is a semi-additive functional by Example 3.3. Since f is assumed to be an almost semi-additive
functional, the first term will also be so. We want to replace it by a semi-additive functional version
e−(t+u−u0)F̃n(y).

We shall now determine F̃n. Observe that we have simplified the problem considerably because
the function Fn depends only on a single argument y. By using (3.7) and applying (3.11) twice, one
gets

Fn+m(y) = ehn+m(y)−v0f(hn+m(y) − v0, (y, u0)) + f(v0, (y, u0 − v0))
= ehn(y)+hm(Sny)−v0f(hn(y)︸ ︷︷ ︸

s

+ hm(Sny) − v0︸ ︷︷ ︸
t

, (y, u0)) + f(v0, (y, u0 − v0))

= ehn(y)+hm(Sny)−v0

(
e−hm(Sny)+v0f(hn(y), (y, u0))

+f(hm(Sny) − v0, (Sn(y), u0 + hn(y) − hn(y)))
)

+ f(v0, (y, u0 − v0))

= ehn(y)f(hn(y) − v0︸ ︷︷ ︸
s

+ v0︸︷︷︸
t

, (y, u0))

+ehn(y)+hm(Sny)−v0f(hm(Sny) − v0, (Sn(y), u0)) + f(v0, (y, u0 − v0))

= ehn(y)
(
e−v0f(hn(y) − v0, (y, u0)) + f(v0, (Sny, u0 − v0))

)
+ehn(y)+hm(Sny)−v0f(hm(Sny) − v0, (Sn(y), u0)) + f(v0, (y, u0 − v0))

= Fn(y) + ehn(y)Fm(Sny)

a.e. for y. Since h0(y) = 0, this gives F0(y) = 0 a.e., and by setting m = 1, one gets that Fn, n 6= 0, is
determined by F1. In fact,

Fn(y) = F̃n(y) a.e. for y,

where F̃n(y) =
∑n−1

k=0 ehk(y)F1(Sky), if n ≥ 1, F̃n(y) = 0, if n = 0, and F̃n(y) =
∑−1

k=n ehk(y)F1(Sky), if
n ≤ −1. Observe that, by using (3.7), for all y (and, say, for n + m ≥ 1),

F̃n+m(y) =
n+m−1∑

k=0

ehk(y)F1(Sky)

=
n−1∑
k=0

ehk(y)F1(Sky) +
m−1∑
k=0

ehn+k(y)F1(Sn+ky)

=
n−1∑
k=0

ehk(y)F1(Sky) + ehn(y)
m−1∑
k=0

ehk(Sny)F1(Sk(Sny))

= F̃n(y) + ehn(y)F̃m(Sny). (3.19)

Let us now verify that the function

F̃s(y, u) = e−(s+u−u0)F̃n(y), for hn(y) ≤ u + s < hn+1(y), (3.20)

is a semi-additive functional. Fix s, t ∈ R and (y, u). Let n be such that 0 ≤ s + u−hn(y) < h(y) and
m be such that hm(Sny) ≤ t + s + u − hn(u) < hm+1(Sny), so that, by (3.20),

F̃t(φs(y, u)) = F̃t(Sny, s + u − hn(u)) = e−(t+s+u−hn(u)−u0)F̃m(Sny).
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Using (3.20) again and also (3.19), we get

e−tF̃s(y, u) + F̃t(φs(y, u)) = e−(t+s+u−u0)(F̃n(y) + ehn(u)F̃m(Sny)) = e−(t+s+u−u0)F̃n+m(y). (3.21)

Since hn+m(y) ≤ t+s+u < hn+m+1(y) (which follows from hm(Sny) ≤ t+s+u−hn(u) < hm+1(Sny)
and (3.7)), we have from (3.20) that e−(t+s+u−u0)F̃n+m(y) = F̃s+t(y, u) and hence (3.21) shows that
F̃s is a semi-additive functional.

In view of (3.18), define

f̃(t, (y, u)) = f̃t(y, u)) = e−(t+u−u0)F̃n(y) + F (φt(y, u)) − F (y, u),

for hn(y) ≤ u + t < hn+1(y). Consequently, {f̃t}t∈R is a semi-additive functional for the flow {φt}t∈R.
To show that it is a version, we must show that the relation

P (f(t, (y, u)) 6= f̃(t, (y, u))) = 0,

which holds a.e. for t ∈ R, holds in fact for all t ∈ R. Proceeding as in Kubo (1970), set δ(t, (y, u)) =
f(t, (y, u)) − f̃(t, (y, u)), Ωt = {(y, u) : δ(t, (y, u)) = 0} and, in view of (3.10), set also Ωs,t = {(y, u) :
δ(s + t, (y, u)) = e−tδ(s, (y, u)) + δ(t, φs(y, u))}. Then P (Ωt) = 1 a.e. for t and P (Ωs,t) = 1 for all
s, t ∈ R. If now r ∈ R, then there are s and t such that s + t = r and P (Ωs) = P (Ωt) = 1. Since φs is
a one-to-one and onto map, one also has P (φ−sΩt) = 1 Then, for (y, u) ∈ Ωs,t ∩ Ωs ∩ φ−sΩt, we have
δ(r, (y, u)) = e−tδ(s, (y, u)) + δ(t, φs(y, u)) = 0. Therefore, P (f(r, (y, u)) 6= f̃(r, (y, u))) = 0 for any
r ∈ R. That is, {f̃t}t∈R is a version of {ft}t∈R.

Consider now the case when µ is a σ-finite measure on the space X. Then X is a disjoint union of
measurable sets Xn, n ≥ 1, such that µ(Xn) < ∞. Defining µ̃(A) =

∑∞
n=1 µ(A ∩ Xn)/(µ(Xn)2n) for

A ∈ X , we get a measure µ̃ on X equivalent to µ with µ̃(X) = 1. Then, since µ̃ ∼ µ, {ft}t∈R is also
an almost semi-additive functional with respect to µ̃. The result of the proposition then follows from
the case considered earlier. 2

Proposition 3.2 Let {at}t∈R be an almost cocycle for a flow {φt}t∈R and suppose that at takes values
in {−1, 1}. Then {at}t∈R has a version which is a cocycle for {φt}t∈R and which also takes values in
{−1, 1}.

Proof: As in the proof of Proposition 3.1, we may again prove the result in two cases: (1) the flow
{φt}t∈R is an identity flow, and (2) the flow {φt}t∈R is a special flow built up by a function h such that
h(y) > θ for all y and some θ > 0. For the case (1), we have that, for all s, t ∈ R, as+t(x) = as(x)at(x)
a.e. µ(dx). Then at(x) = at/2(x)at/2(x) a.e. µ(dx) and, since at/2 ∈ {−1, 1}, at(x) = 1 a.e. µ(dx).
(This elementary result also follows from the proofs of Proposition 5.1 in Rosiński (1995).) In other
words, in the case where {φt}t∈R is an identity flow, {at}t∈R is a version of a cocycle {ãt}t∈R defined
by ãt(x) = 1. The case (2) may be proved as in Proposition 3.1. The basic idea is to replace relations
of the type (3.10) by a similar relation, where there is no factor e−t and where the addition on the
right-hand is replaced by a multiplication. In this way, one makes a semi-additive functional into a
cocycle. 2

Remarks

1. The results of Propositions 3.1 and 3.2 are clearly valid for multiplicative flows as well.
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2. Proposition 3.2 is also proved in a more general setting by Zimmer (1984), Theorem B.9, p. 200.
(This reference is indicated in Rosiński (2000).) There, almost cocycles are called cocycles and
cocycles are called strict cocycles. This terminology is also used by Rosiński (1995, 2000).

The Hopf decomposition

It is important for the sequel that every nonsingular flow has the so-called Hopf decomposition
(see, for example, Krengel (1985), p. 17, and Rosiński (1995), p. 1171). Consider a nonsingular map
V : X 7→ X. A set B ∈ X is called wandering if the sets V −kB = {x ∈ X : V k(x) ∈ B}, k ≥ 1, are
disjoint. The map V is called conservative if there is no wandering set of positive measure µ . Given
any nonsingular map V : X 7→ X there exists a decomposition of X into two disjoint measurable sets C
and D such that (i) C and D are V -invariant, that is, V −1C = C and V −1D = D, (ii) the restriction
of V to C is conservative, and (iii) D = ∪∞

k=−∞V kB for some wandering set B. The decomposition
of X into sets D and C is unique (modulo µ). It is called the Hopf decomposition. The sets D and
C are called the dissipative part and the conservative part, respectively. If {φt}t∈R is a nonsingular
flow, then for every t ∈ R, each nonsingular map φt has the Hopf decomposition X = Dt ∪ Ct. One
can show (Krengel (1969), see Lemma 2.7) that all Dt, t 6= 0, are equal to each other modulo µ and
that there is a set D, invariant under the flow, such that for every t 6= 0, D = Dt modulo µ. The
decomposition of the space X into the sets D and C := X \D is called the Hopf decomposition for the
flow {φt}t∈R. A flow is called dissipative if X = D and conservative if X = C (modulo µ). We also
have the same notions for a nonsingular multiplicative flow {ψc}c>0. A useful representation for the
dissipative and the conservative parts of an additive flow {φt}t∈R is given by

D =
{

x ∈ X :
∫

R
g(φt(x))

d(µ ◦ φt)
dµ

(x)dt < ∞
}

a.e. dµ, (3.22)

C =
{

x ∈ X :
∫

R
g(φt(x))

d(µ ◦ φt)
dµ

(x)dt = ∞
}

a.e. dµ, (3.23)

where g is any L1(X, µ) function such that g ≥ 0 a.e. and supp{g} = X a.e. This fact follows from
the proof of Theorem 4.1 in Rosiński (1995) (see also Lemma 2.7 in Krengel (1969)).

4 Minimal kernels

Burnecki et al. (1998) have characterized the minimal kernel of self-similar processes. In this section,
we specify the minimal kernel for the processes (1.7), that is, for self-similar processes that are mixed
moving averages with stationary increments. These additional characteristics, which allow for a more
detailed specification of a minimal kernel, render the proof more delicate. Proposition 3.1 in particular,
will play a key role. We shall also use the following “rigidity” lemma mentioned in Section 2. It is due
to Hardin (1982) and Rosiński (1994, 1995) (see Theorems 1.1 and 2.2, (b), in Rosiński (1995)).

Lemma 4.1 (Rigidity lemma) Let α ∈ (0, 2) and {f (i)
t }t∈R ⊂ Lα(Ei, Ei, mi), i = 1, 2, be two

spectral representations of a SαS process {X(t)}t∈R, where (Ei, Ei, mi) are standard Lebesgue spaces.
(i) Suppose that supp{f (2)

t : t ∈ R} = E2 m2-a.e. Then, for every σ-finite measure λ on R, there
are Borel functions Φ : E2 7→ E1 and h : E2 7→ R \ {0} such that

f
(2)
t (x) = h(x)f (1)

t (Φ(x)) (4.1)
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a.e. λ(dt)m2(dx).
(ii) If both representations {f (i)

t }, i = 1, 2, are minimal for the process Xα, then there are unique
modulo m2 functions Φ : E2 7→ E1 and h : E2 7→ R \ {0} such that Φ is one-to-one, onto and
bimeasurable, and for each t ∈ R, the relation (4.1) holds a.e. m2(dx) and

d(m1 ◦ Φ)
dm2

(x) = |h(x)|α a.e. m2(dx). (4.2)

Minimality thus implies that the function Φ in (4.1) satisfies additional regularity conditions and
that |h(x)|α plays the role of the Jacobian (Radon-Nikodym derivative) of the transformation. The
following theorem provides a necessary condition for a kernel to be minimal.

Theorem 4.1 Let α ∈ (0, 2), H > 0 and κ = H − 1/α. Suppose that the process Xα, given by (1.7),
is self-similar with index H and that {Gt}t∈R ⊂ Lα(X × R, µ(dx)du) given by (1.8), is its minimal
spectral representation. Then there are a unique modulo µ measurable nonsingular multiplicative flow
{ψc}c>0 on the space X, a semi-additive functional {gc}c>0 for {ψc}c>0 and a cocycle {bc}c>0 for
{ψc}c>0 taking values in {−1, 1} such that, for any c > 0 and t ∈ R,

c−κ (G(x, c(t + u)) − G(x, cu))

= bc(x)
{

d(µ ◦ ψc)
dµ

(x)
}1/α

(G(ψc(x), t + u + gc(x)) − G(ψc(x), u + gc(x))) (4.3)

almost everywhere µ(dx)du.

Remark. The converse of Theorem 4.1 is not true. In other words, a kernel G which satisfies (4.3)
need not to be minimal. Consider, for example, the process∫ 1

0

∫
R

(
(t + u)κ

+ − uκ
+

)
Mα(dx, du), (4.4)

where κ = H − 1/α, α ∈ (0, 2), H ∈ (0, 1) and Mα has the Lebesgue control measure on [0, 1) × R.
The kernel Gt(x, u) = (t + u)κ

+ − uκ
+ in (4.4) satisfies (4.3) with ψc(x) = x for all x ∈ X = [0, 1),

bc ≡ 1, gc ≡ 0 but it is not minimal because it does not satisfy condition (M2) in Definition 2.1.

Proof: The self-similarity of the process Xα implies that∫
X

∫
R

c−κ(G(x, c(t + u)) − G(x, cu))Mα(dx, du) d=
∫

X

∫
R
(G(x, t + u) − G(x, u))Mα(dx, du), t ∈ R,

in the sense of the finite-dimensional distributions. Since the spectral representation {Gt}t∈R is min-
imal, Lemma 4.1, (ii), implies that, for every c > 0, there are unique modulo µ(dx)du functions
Φc(x, u) = (Φ1

c(x, u), Φ2
c(x, u)) : X × R 7→ X × R and εc(x, u) : X × R 7→ R \ {0} such that Φc is

one-to-one and onto, and, for each t ∈ R,

c−κ (G(x, c(t + u)) − G(x, cu))

= εc(x, u)
(
G(Φ1

c(x, u), t + Φ2
c(x, u)) − G(Φ1

c(x, u), Φ2
c(x, u))

)
(4.5)
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and
|εc(x, u)|α =

d (µ ⊗ L) ◦ Φc

d (µ ⊗ L)
(x, u) (4.6)

a.e. µ(dx)du, where L denotes the Lebesgue measure on R. We divide the proof in a number of steps.
In Step 1 we show that one can take

Φc(x, u) = (Φ1
c(x), u + Φ2

c(x)),

εc(x, u) = εc(x) = Ψc(x)

{
d(µ ◦ Φ1

c)
dµ

(x)

}1/α

,

where the function Ψc takes values in {−1, 1}. This yields expression (4.3). In Step 2 we establish
that, for any c1, c2 > 0,

Φ1
c1c2(x) = Φ1

c2(Φ
1
c1(x)) a.e. µ(dx), (4.7)

Φ2
c1c2(x) = c−1

2 Φ2
c1(x) + Φ2

c2(Φ
1
c1(x)) a.e. µ(dx), (4.8)

Ψc1c2(x) = Ψc1(x)Ψc2(Φ
1
c1(x)) a.e. µ(dx). (4.9)

Modulo the “a.e.”, these relations state that Φ1 is a multiplicative flow, Φ2 is a semi-additive functional
associated with Φ1 and Ψ is a cocycle for the flow Φ1. In Step 3 we show that the functions Φ1

c , Φ2
c

and Ψc have versions ψc, gc and bc, respectively, that are measurable in (c, x) and satisfy the equations
(4.7), (4.8) and (4.9), respectively, for all c1, c2 > 0 and all x ∈ X. This will conclude the proof.

Step 1. Let c > 0 be fixed. For any h ∈ R, by replacing u by u + h in (4.5), we have that

c−κ (G(x, c(t + h + u)) − G(x, c(h + u)))

= εc(x, u + h)
(
G(Φ1

c(x, u + h), t + Φ2
c(x, u + h)) − G(Φ1

c(x, u + h), Φ2
c(x, u + h))

)
a.e. µ(dx)du. On the other hand, by subtracting the relation (4.5) with t = h from the same relation
with t + h, we also have

c−κ (G(x, c(t + h + u)) − G(x, c(h + u)))

= εc(x, u)
(
G(Φ1

c(x, u), t + h + Φ2
c(x, u)) − G(Φ1

c(x, u), h + Φ2
c(x, u))

)
The uniqueness of (Φ1

c , Φ
2
c) and εc now implies that, for any h > 0,

Φ1
c(x, u + h) = Φ1

c(x, u) a.e. µ(dx)du,

Φ2
c(x, u + h) = Φ2

c(x, u) + h a.e. µ(dx)du,

εc(x, u + h) = εc(x, u) a.e. µ(dx)du.

By Lemma 3.1, (i), we also have that these equations hold a.e. dhµ(dx)du. Then, making the change of
variables z = u+h, we have that Φ1

c(x, z) = Φ1
c(x, u), Φ2

c(x, z) = Φ2
c(x, u)+z−u and εc(x, z) = εc(x, u)

a.e. dzµ(dx)du. Now, by Lemma 3.1, (ii), fix u = u0 for which the equations hold a.e. dzµ(dx). We
then get that, for some functions Φ1

c(x), Φ2
c(x) and εc(x), Φ1

c(x, z) = Φ1
c(x), Φ2

c(x, z) = Φ2
c(x) + z and

εc(x, z) = εc(x) a.e. dzµ(dx). We also have that

|εc(x)|α = |εc(x, z)|α =
d (µ ⊗ L) ◦ Φc

d (µ ⊗ L)
(x, z) =

d(µ ◦ Φ1
c)

dµ
(x)
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a.e. dzµ(dx), so that we can take

εc(x) = Ψc(x)

{
d(µ ◦ Φ1

c)
dµ

(x)

}1/α

, (4.10)

where the function Ψc takes values in {−1, 1}. Finally, we note that (4.5) now becomes

c−κ(G(x, c(t + u)) − G(x, cu))

= εc(x)
(
G(Φ1

c(x), t + u + Φ2
c(x)) − G(Φ1

c(x), u + Φ2
c(x))

)
, (4.11)

for each t ∈ R a.e. µ(dx)du, where εc is given by (4.10).

Step 2. The following argument is standard but we repeat it for convenience to the reader. Let
c1, c2 > 0. Then, by (4.11),

(c1c2)−κ(G(x, c1c2(t + u)) − G(x, c1c2u))

= εc1c2(x)
(
G(Φ1

c1c2(x), t + u + Φ2
c1c2(x)) − G(Φ1

c1c2(x), u + Φ2
c1c2(x))

)
.

On the other hand, by iterating the relation (4.11) twice we get that

(c1c2)−κ(G(x, c1c2(t + u)) − G(x, c1c2u))

= c−κ
2

(
c−κ
1 (G(x, c1(c2t + c2u)) − G(x, c1(c2u)))

)
= εc1(x)c−κ

2

(
G(Φ1

c1(x), c2(t + u + c−1
2 Φ2

c1(x))) − G(Φ1
c1(x), c2(u + c−1

2 Φ2
c1(x)))

)
= εc1(x)εc2(Φ

1
c1(x))

(
G(Φ1

c2(Φ
1
c1(x)), t + u + c−1

2 Φ2
c1(x) + Φ2

c2(Φ
1
c1(x)))

−G(Φ1
c2(Φ

1
c1(x)), u + c−1

2 Φ2
c1(x) + Φ2

c2(Φ
1
c1(x)))

)
The uniqueness implies that the conditions (4.7) and (4.8) are satisfied. The condition (4.9) follows
again from uniqueness and the expression (4.10), since

d(µ ◦ Φ1
c1c2)

dµ
=

d(µ ◦ Φ1
c2 ◦ Φ1

c1)
dµ

=

(
d(µ ◦ Φ1

c2)
dµ

◦ Φ1
c1

)
d(µ ◦ Φ1

c1)
dµ

.

Step 3. We have to deal with joint measurability and a.e. issues. Let

Fc(x, u) = Φc

(
x,

u

c

)
=

(
Φ1

c(x),
u

c
+ Φ2

c(x)
)

. (4.12)

It is easy to see that, for all c1, c2 > 0,

Fc1c2(x, u) = Fc1(Fc2(x, u))

a.e. µ(dx)du. As in the proof of Theorem 3.1 in Rosiński (1995), we conclude that there is a measurable
nonsingular multiplicative flow {ϕc}c>0 which is a version of {Fc}c>0 and that we may also assume
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without loss of generality that the function εc(x) above is measurable in (c, x). The basic difficulty is
to show that we can in fact take this flow {ϕc}c>0 to be of the form ϕc(x, u) = (ψc(x), u

c + bc(x)), that
is, it can have the same form (4.12) as Fc.

Let us deal with the function Φ1
c first. Suppose that ϕc(x, u) = (φ1

c(x, u), φ2
c(x, u)). Then, for any

c > 0, Φ1
c(x) = φ1

c(x, u) a.e. µ(dx)du and Φ1
c(x) =

∫ 1
0 Φ1

c(x)du =
∫ 1
0 φ1

c(x, u)du =: ψ̃c(x). Since φ1
c(x, u)

is measurable in (c, x, u), the function ψ̃c(x) is measurable in (c, x). Moreover, {ψ̃c}c>0 is a version
of {Φ1

c}c>0 and it satisfies ψ̃c1c2(x) = ψ̃c2(ψ̃c1(x)) a.e. µ(dx) for all c1, c2 > 0. By applying the same
arguments as in the proof of Theorem 3.1 in Rosiński (1995), we conclude that there is a measurable
nonsingular multiplicative flow {ψc}c>0 which is a version of {ψ̃c}c>0. Observe that {ψc}c>0 is also a
version of {Φ1

c}c>0.
Let us now deal with the functions Φ2

c . Arguing as for the map Φ1
c above, we may assume without

loss of generality that the map Φ2
c(x) : (0,∞)×X 7→ R is measurable in (c, x). It satisfies the relation

Φ2
c1c2(x) = c−1

2 Φ2
c1(x) + Φ2

c2(ψc1(x))

a.e. µ(dx) for all c1, c2 > 0. In other words, the collection of maps {Φ2
c}c>0 is an almost semi-additive

functional for the flow {ψc}c>0 on (X, µ). It follows by Proposition 3.1 that {Φ2
c}c>0 has a version

{gc}c>0 which is a semi-additive functional for the flow {ψc}c>0.
As for the functions Ψc(x), we also have that

Ψc1c2(x) = Ψc1(x)Ψc2(ψc1(x))

a.e. µ(dx). In other words, the collection {Ψc}c>0 is an almost cocycle for the flow {ψc}c>0 on (X, µ).
Then, by Proposition 3.2, {Ψc}c>0 has a version {bc}c>0 which is a cocycle for {ψc}c>0 taking values
in {−1, 1}. 2

The following lemma will be used a number of times. It concerns the support of Gt, t ∈ R.

Lemma 4.2 Let (X,X , µ) be a σ-finite measure space, G : X × R 7→ R a measurable function on
(X × R,X ⊗ B, µ(dx)du) and Gt(x, u) = G(x, t + u) − G(x, u), for x ∈ X, u, t ∈ R. Then there is a
set X0 ∈ X such that

supp{Gt, t ∈ R} = X0 × R a.e. µ(dx)du. (4.13)

Moreover, if

Xα(t) =
∫

X

∫
R

Gt(x, u)Mα(dx, du), t ∈ R, (4.14)

as in (1.7), where Mα has the control measure µ(dx)du, then we may suppose without loss of generality
that

supp{Gt, t ∈ R} = X × R a.e. µ(dx)du. (4.15)

Proof: Observe that supp{Gt, t ∈ R} = supp{Gs,t, s, t ∈ R}, where Gs,t = Gt − Gs. Indeed, on
one hand Gt,0 = Gt, so that supp{Gt, t ∈ R} ⊂ supp{Gs,t, s, t ∈ R}; on the other hand, {Gs,t 6= 0} ⊂
{Gs 6= 0} ∪ {Gt 6= 0}, so that supp{Gs,t, s, t ∈ R} ⊂ supp{Gt, t ∈ R} as well. It is also clear that, for
all h ∈ R,

supp{Gs,t, s, t ∈ R} = supp{Gs+h,t+h, s, t ∈ R} = supp{Gs,t, s, t ∈ R} + h, (4.16)
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where by E + h, for E ∈ X ⊗ B and h ∈ R, we mean the set {(x, u + h) : (x, u) ∈ E}. Setting E0 =
supp{Gs,t, s, t ∈ R} and using Lemma 3.1, (i), relation (4.16) implies that 1E0(x, u + h) = 1E0(x, u)
a.e. µ(dx)dudh. By making the change of variables v = u + h and then fixing v = v0 for which the
relation holds a.e. µ(dx)du, we get 1E0(x, v0) = 1E0(x, u) a.e. µ(dx)du. Since 1E0(x, v0) = 1X0×R(x, u),
where X0 = {x : (x, v0) ∈ E0}, we obtain (4.13).

If (4.14) holds, then we may suppose (4.15) without loss of generality, since replacing X by X0

does not change the distribution of the process. 2

Example 4.1 Let α ∈ (0, 2) and {Xα(t)}t∈R be a non-degenerate SαS process with stationary incre-
ments, having the representation

{Xα(t)}t∈R
d=

{∫
R
(G(t + u) − G(u))Mα(du)

}
t∈R

,

where Mα has the Lebesgue control measure. Denote Gt(u) = G(t+u)−G(u), u, t ∈ R. Observe that
in contrast with (1.7) there is no ”x” here. We will show that the spectral representation {Gt}t∈R of
Xα is minimal. Consequently, if the process Xα is also self-similar, then Theorem 4.1 implies that the
kernel function G satisfies condition (4.3). This fact is used in Pipiras and Taqqu (2001) to characterize
linear fractional stable motions, log-fractional stable motion and stable Lévy motion.

To show that {Gt}t∈R is minimal for Xα, one needs to verify conditions (M1) and (M2) stated in
Definition 2.1. By Lemma 4.2, the support of the functions Gt, t ∈ R, is either R or ∅ a.e. du (the
support is ∅ a.e. du, if the set X0 in Lemma 4.2 is ∅). If the support is R, then condition (M1) holds.
If it is ∅, then Gt(u) = 0 a.e. du and hence Xα ≡ 0 which is a contradiction (Xα is degenerate). To
verify condition (M2), by Theorem 3.8 (iii) in Rosiński (1998), it is enough to prove that, if for some
measurable nonsingular map φ : R 7→ R, a measurable function k : R 7→ R \ {0} and all t ∈ R,

Gt(φ(u)) = G(t + φ(u)) − G(φ(u)) = k(u)(G(t + u) − G(u)) = k(u)Gt(u) a.e. du, (4.17)

then φ(u) = u a.e. du. By replacing t by t + v in (4.17), we get, for all t, v ∈ R,

G(t + v + φ(u)) − G(φ(u)) = k(u)(G(t + v + u) − G(u)) a.e. du (4.18)

and, by subtracting (4.17) from (4.18),

G(t + v + φ(u)) − G(t + φ(u)) = k(u)(G(t + v + u) − G(t + u)) a.e. du. (4.19)

By Lemma 3.1, (i), relation (4.19) holds also a.e. dtdvdu. By making the change of variables t+u = z,
we then get

G(v + z + φ(u) − u) − G(z + φ(u) − u) = k(u)(G(v + z) − G(z)) a.e. dzdvdu. (4.20)

Let us show that, unless φ(u) = u a.e. du, relation (4.20) implies G(u) = const a.e. du and hence
Xα ≡ 0 which is a contradiction. Thus suppose there is a set of positive Lebesgue measure on which
φ(u) 6= u. Then, (4.20) implies there is a set V , whose complement has Lebesgue measure 0, such that
for every v ∈ V , G(v + z + φ(u) − u) − G(z + φ(u) − u) = k(u)(G(v + z) − G(z)) a.e. dzdu. Now, for
every v ∈ V , fix u = u0 = u0(v) for which φ(u0) 6= u0 and

G(v + z + φ(u0) − u0) − G(z + φ(u0) − u0) = k(u0)(G(v + z) − G(z)) a.e. dz. (4.21)
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By integrating both sides of (4.21), we get for all v ∈ V ,
∫
R |G(v + z + φ(u0) − u0) − G(z + φ(u0) −

u0)|αdz = |k(u0)|α
∫
R |G(v + z)−G(z)|αdz < ∞. By the translation of the Lebesgue measure, the two

integrals are equal. Then, either
∫
R |G(v + z)−G(z)|αdz = 0 which implies G(v + z) = G(z) a.e. dz or

|k(u0)| = 1. In the latter case, however, by (4.21), the function h(z) = |G(v + z) − G(z)| is periodic
with a period |φ(u0) − u0| 6= 0. Since h ∈ Lα(R), we necessarily have that h(z) = 0. In either case,
the conclusion is that for all v ∈ V , G(v + z) = G(z) a.e. dz. By Lemma 3.1, (i), G(v + z) = G(z)
a.e. dzdv and, by making a change of variables, G(v) = G(z) a.e. dzdv. By fixing v for which this
equation holds a.e. dz, we obtain G(z) = const a.e. dz which is what we wanted to show. This proves
that {Gt}t∈R is minimal for Xα.

The preceding example extends a result of Rosiński (1998) valid for stationary processes of the
form

∫
R G(t + u)Mα(du) to processes with stationary increments. While not all representations are

minimal, the following theorem states that one can always make a transformation and obtain a minimal
representation. Note that we restrict the range of parameter α to (1, 2). We comment on the case
α ∈ (0, 1] in a remark after the proof.

Theorem 4.2 Let α ∈ (1, 2), H > 0 and Xα be a SαS H-ss process with stationary increments
given by (1.7) and (1.8). Then, there exists another standard Lebesgue space (X̃, X̃ , µ̃) and measurable
function G̃ : X̃ × R 7→ R such that

{Xα(t)}t∈R
d=

{∫
X̃

∫
R
(G̃(x̃, t + u) − G̃(x̃, u))M̃α(dx̃, du)

}
t∈R

=
{∫

X̃

∫
R

G̃t(x̃, u)M̃α(dx̃, du)
}

t∈R
,

where M̃α has the control measure µ̃(dx̃)du, and that the spectral representation {G̃t}t∈R is minimal
for Xα.

Proof: Consider the collection of functions {Gt(x, u) = G(x, t + u) − G(x, u), t ∈ R} where G :
X×R 7→ R. By Lemma 4.2, we may suppose without loss of generality that supp{Gt, t ∈ R} = X×R.
Consider now a SαS stationary process Yα given by

Yα(t) =
∫ t

−∞
e−(t−s)(X(t) − X(s))ds

= Xα(t) −
∫ t

−∞
e−(t−s)Xα(s)ds (4.22)

=
∫

X

∫
R

(
G(x, t + u) −

∫ t

−∞
e−(t−s)G(x, s + u)ds

)
Mα(dx, du), (4.23)

which can be rewritten as
Yα(t) =

∫
X

∫
R

g(x, t + u)Mα(dx, du), (4.24)

where
g(x, u) = G(x, u) − e−u

∫ u

−∞
esG(x, s)ds.

The process Yα is well-defined for α ∈ (1, 2) and the equality of (4.22) and (4.23) hold, since∫ t
−∞ e−(t−s)E|Xα(s)|ds = E|Xα(1)| ∫ t

−∞ e−(t−s)|s|Hds < ∞ (see Chapter 11 in Samorodnitsky and
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Taqqu (1994)). Moreover, the relation (4.22) is invertible in the sense that

Xα(t) = Yα(t) − Yα(0) +
∫ t

0
Yα(s)ds (4.25)

=
∫

X

∫
R

(
g(x, t + u) − g(x, u) +

∫ t

0
g(x, s + u)ds

)
Mα(dx, du) (4.26)

and that
G(x, u) = g(x, u) +

∫ u

0
g(x, s)ds.

(These transformations between stationary processes and processes with stationary increments are
used in Surgailis et al. (1998).) Let also gt(x, u) = g(x, t + u) and observe that, by Lemma 4.3 below,
supp{gt, t ∈ R} = supp{Gt, t ∈ R} = X × R a.e. Now, since Yα(t) =

∫
X

∫
R g(x, t + u)Mα(dx, du) is

stationary, supp{g(x, t + u), t ∈ R} = X ×R a.e. µ(dx)du and
∫
R |g(x, t + u)|αdt =

∫
R |g(x, t)|αdt < ∞

a.e. µ(dx), Corollary 4.2 in Rosiński (1995) implies that the process Yα is generated by a dissipative
flow. Then, by Theorem 4.4 in Rosiński (1995) there is another standard Lebesgue space (X̃, µ̃) and
measurable function g̃ : X̃ × R 7→ R such that

{Yα(t)}t∈R
d=

{∫
X̃

∫
R

g̃(x̃, t + u)M̃α(dx̃, du)
}

t∈R
=

{∫
X̃

∫
R

g̃t(x̃, u)M̃α(dx̃, du)
}

t∈R

and the spectral representation {g̃t}t∈R is minimal for Yα. By (4.26), we have

{Xα(t)}t∈R
d=

{∫
X̃

∫
R
(g̃(x̃, t + u) − g̃(x̃, u) +

∫ t

0
g̃(x̃, s + u)ds)M̃α(dx̃, du)

}
t∈R

,

=
{∫

X̃

∫
R
(G̃(x̃, t + u) − G̃(x̃, u))M̃α(dx̃, du)

}
t∈R

,

where G̃(x̃, u) = g̃(x̃, u) +
∫ u
0 g̃(x̃, s)ds. Let G̃t(x̃, u) = G̃(x̃, t + u)− G̃(x̃, u). To prove the theorem, it

is enough to show that the spectral representation {G̃t}t∈R is minimal for Xα. By Lemma 4.3 below,
supp{G̃t, t ∈ R} = supp{g̃t, t ∈ R} = X̃ × R a.e. µ̃(dx̃)du. Let E be the σ–algebra associated with
X̃ × R. To establish minimality, it is sufficient to show that ρ(G̃t, t ∈ R) = E , where ρ is the ratio
σ-algebra defined in Section 2. Since {g̃t}t∈R is minimal, we have ρ(g̃t, t ∈ R) = E and hence it is
sufficient to show that ρ(g̃t, t ∈ R) ⊂ ρ(G̃t, t ∈ R). This follows from Lemma 4.3 below, since for each
t(1), t(2) ∈ R, g̃t(1)/g̃t(2) is an a.e. limit of

∑
cnG̃

t
(1)
n

/
∑

dnG̃
t
(2)
n

type sums. 2

Remark. When α ∈ (0, 1], there exist processes Xα (having the representation (5.1)) for which
the integral

∫ t
−∞ e−(t−s)X(s)ds and hence the transformation (4.22) is not defined (see, for example,

Samorodnitsky and Taqqu (1994), p. 510). As a consequence, when α ∈ (0, 1] the proof of Theorem
4.2 works only for the subclass of processes Xα for which this integral is well-defined. Although we
feel that the result of the theorem holds for α ∈ (0, 1] without this restriction, we do not have a proof.
Therefore, we will provide a decomposition of processes Xα for α ∈ (1, 2) only. It is clear from the
sequel that the results of this work hold for any Xα, α ∈ (0, 1], for which the conclusion of Theorem
4.2 is valid.

The following lemma was used in the proof of Theorem 4.2 above. It states that the kernels Gt

and gt used in that proof can be approximated by each other.
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Lemma 4.3 Let α ∈ (1, 2) and Xα be a SαS, H-ss process given by (1.7) and (1.8). Let also Yα

be a SαS, stationary process defined by (4.22) and having the representation (4.24). Then, for each
s, t ∈ R, there exist real numbers sn

l , an
l , n ≥ 1, l = 1, · · · , ln, and tnk , bn

k , n ≥ 1, k = 1, · · · , kn, such
that

ln∑
l=1

an
l Gsn

l
→ gs a.e.,

kn∑
k=1

bn
kgtn

k
→ Gt a.e., (4.27)

as n → ∞, where Gt(x, u) = G(x, t + u)−G(x, u) and gt(x, u) = g(x, t + u)− g(x, u) for t, u ∈ R and
x ∈ X.

Proof: Let us show the first convergence in (4.27). For n ≥ 1, let kn = k
n and set

Xn
α(s) =

∞∑
k=−∞

Xα(kn)1[kn,(k+1)n)(s) =
∫

X

∫
R

Gn
s (x, u)Mα(dx, du),

where

Gn
s (x, u) =

∞∑
k=−∞

(G(x, kn + u) − G(x, u))1[kn,(k+1)n)(s), (4.28)

and
Y n

α (s) = Xn
α(s) −

∫ s

−∞
e−(s−t)Xn

α(t)dt =
∫

X

∫
R

gn
s (x, u)Mα(dx, du),

where
gn
s (x, u) = Gn

s (x, u) −
∫ s

−∞
e−(s−t)Gn

t (x, u)dt. (4.29)

Since E|Xα(t2) − Xα(t1)| = |t2 − t1|HE|Xα(1)|, we have∫ s

−∞
e−(s−t)E|Xα(t) − Xn

α(t)|dt = E|Xα(1)|
∫ s

−∞
e−(s−t)

∞∑
k=−∞

|t − kn|H1[kn,(k+1)n)(t)dt = O

(
1

nH

)
,

as n → ∞, since the sum is bounded by 1/nH and
∫ s
−∞ e−(s−t)dt = 1. Then, for each s ∈ R, Y n

α (s) →
Yα(s) in L1(Ω) and, hence, in probability and distribution as well. This implies that gn

s → gs in
Lα(X×R) and, hence, there exists a subsequence {nk}k≥1 such that the convergence holds a.e. Observe
that by (4.29) and (4.28), the gn

s ’s are of the type
∑

an
l Gsn

l
, where the sums have an infinite number

of terms. After truncating these sums to a finite number of terms, we obtain the result. The second
convergence in (4.27) can be proved similarly by setting gn

s (x, u) =
∑∞

k=−∞ g(x, kn + u)1[kn,(k+1)n)(s)
with kn = k

n and using (4.26). 2

Definition 4.1 A flow ψ, its related cocycle b and semi-additive functional g constitute the triplet
(ψ, b, g).

The next result states that triplets corresponding to different minimal spectral representations
of the same process are equivalent in the sense of the following definition (see also Definition 3.2 in
Rosiński (1995)).
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Definition 4.2 Triplets (ψ(1), b(1), g(1)) and (ψ(2), b(2), g(2)), where b(i) = {b(i)
c }c>0 is a cocycle and

g(i) = {g(i)
c }c>0 is a semi-additive functional for a measurable nonsingular multiplicative flow ψ(i) =

{ψ(i)
c }c>0 on (Xi, µi), i = 1, 2, are said to be equivalent, denoted by (ψ(1), b(1), g(1)) ∼ (ψ(2), b(2), g(2)),

if there exists a measurable map Φ : X2 7→ X1 such that
(i) there is Ni ⊂ Xi with µi(Ni) = 0, i = 1, 2, such that Φ is one-to-one, onto and bimeasurable

between X2 \ N2 and X1 \ N1,
(ii) µ1 and µ2 ◦ Φ−1 are mutually absolutely continuous,
(iii) relation between flows: for all c > 0, ψ

(1)
c ◦ Φ = Φ ◦ ψ

(2)
c a.e. dµ2,

(iv) relation between cocycles: the cocycle {b(1)
c ◦Φ}c>0 is cohomologous to {b(2)

c }c>0, that is, there
is a measurable function b : X2 7→ {−1, 1} such that, for all c > 0, b

(1)
c ◦Φ = b

(2)
c · (b ◦ψ

(2)
c )/b a.e. dµ2,

(v) relation between semi-additive functionals: there is a measurable function g : X2 7→ R such
that g

(1)
c ◦ Φ = g

(2)
c + g ◦ ψ

(2)
c − c−1g a.e. dµ2.

Theorem 4.3 Let α ∈ (0, 2) and {G(i)(xi, t + u) − G(i)(xi, u), xi ∈ Xi, u ∈ R}t∈R ⊂ Lα(Xi ×
R, µi(dxi)du) be two minimal representations for a SαS, self-similar mixed moving average Xα. Let
also (ψ(i), b(i), g(i)), i = 1, 2, be the triplets corresponding to these minimal spectral representation by
Theorem 4.1. Then, (ψ(1), b(1), g(1)) ∼ (ψ(2), b(2), g(2)).

Proof: By using Lemma 4.1, (ii), we obtain that there are unique modulo µ2(dx2)du functions
Φ = (Φ1(x2, u), Φ2(x2, u)) : X2 × R 7→ X1 × R and h : X2 × R 7→ R \ {0} such that Φ is one-to-one,
onto and bimeasurable, and for all t ∈ R,

G(2)(x2, t + u) − G(2)(x2, u)

= h(x2, u)
(
G(1)(Φ1(x2, u), t + Φ2(x2, u)) − G(1)(Φ1(x2, u), Φ2(x2, u))

)
, (4.30)

h(x2, u) = b(x2, u)
{

d(µ1 ⊗ L) ◦ Φ
d(µ2 ⊗ L)

(x2, u)
}1/α

(4.31)

a.e. µ2(dx2)du with some b : X2 ×R 7→ {−1, 1}. Arguing as in Step 1 in the proof of Theorem 4.1, we
conclude that

Φ = (Φ1(x2, u), Φ2(x2, u)) = (Φ(x2), u + g(x2)), b(x2, u) = b(x2) (4.32)

a.e. µ2(dx2)du, where Φ : X2 7→ X1, g : X2 7→ R and b : X2 7→ {−1, 1} are some measurable functions.
Changing variables, we get Φ∗ = (Φ1(x2, u − g(x)), Φ2(x2, u − g(x))) = (Φ(x2), u) a.e. µ2(dx2)du.
Since Φ∗ is also one-to-one, we deduce that there is a set N2 ⊂ X2 with µ2(N2) = 0 such that Φ is
one-to-one on X2 \ N2. Then, the function (Φ(x2), u + g(x2)) is one-to-one on (X2 \ N2) × R and,
since it is equal a.e. to a bimeasurable and nonsingular function Φ, we conclude that the image of Φ
on X2 \ N2 is X1 \ N1 with µ1(N1) = 0 and that Φ−1 on X1 \ N1 is measurable as well. By using the
notation X1 and X2 for the spaces X1 \N1 and X2 \N2, respectively, we have from (4.30)–(4.32) that
there are a one-to-one, onto and bimeasurable map Φ : X2 7→ X1 and h : X2 7→ R \ {0} such that, for
all t ∈ R,

G(2)(x2, t + u) − G(2)(x2, u) = h(x2)
(
G(1)(Φ(x2), t + u + g(x2)) − G(1)(Φ(x2), u + g(x2))

)
, (4.33)
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h(x2) = b(x2)
{

d(µ1 ◦ Φ)
dµ2

(x2)
}1/α

(4.34)

a.e. µ2(dx2)du with some b : X2 7→ {−1, 1}. On the other hand, we know from Theorem 4.1 that, for
i = 1, 2, and all c > 0,

c−κ
(
G(i)(xi, c(t + u)) − G(xi, cu)

)

= b(i)
c (xi)

{
d(µi ◦ ψ

(i)
c )

dµi
(xi)

}1/α (
G(i)(ψ(i)

c (xi), t + u + g(i)
c (xi)) − G(ψ(i)

c (xi), u + g(i)
c (xi))

)
(4.35)

a.e. µi(dxi)du. Then (see explanations below), for all c > 0,

c−κ
(
G(2)(x2, c(t + u)) − G(x2, cu)

)
= c−κh(x2)

(
G(1)(Φ(x2), c(t + u) + g(x2)) − G(1)(Φ(x2), cu + g(x2))

)
(4.36)

= h(x2)b(1)
c (Φ(x2))

{
d(µ1 ◦ ψ

(1)
c )

dµ1
(Φ(x2))

}1/α

·

·
(
G(1)(ψ(1)

c (Φ(x2)), t + u + c−1g(x2) + g(1)
c (Φ(x2))) − G(ψ(1)

c (Φ(x2)), u + c−1g(x2) + g(1)
c (Φ(x2)))

)
(4.37)

= h(x2)(b(1)
c ◦ Φ)(x2)

{(dµ1 ◦ ψ
(1)
c

dµ1
◦ Φ

)
(x2)

}1/α (
(h ◦ Φ−1 ◦ ψ(1)

c ◦ Φ)(x2)
)−1·

·
(
G(2)((Φ−1 ◦ ψ(1)

c ◦ Φ)(x2), t + u + c−1g(x2) + (g(1)
c ◦ Φ)(x2) − (g ◦ Φ−1 ◦ ψ(1)

c ◦ Φ)(x2))

−G(2)((Φ−1 ◦ ψ(1)
c ◦ Φ)(x2), u + c−1g(x2) + (g(1)

c ◦ Φ)(x2) − (g ◦ Φ−1 ◦ ψ(1)
c ◦ Φ)(x2))

)
(4.38)

a.e. µ2(dx2)du. For (4.36), we used (4.33); for (4.37), we used (4.35) with i = 1, where x1 is replaced by
Φ(x2) and u by u+c−1g(x2); for (4.38), we used (4.33) again, where x2 is replaced by (Φ−1◦ψ(1)

c ◦Φ)(x2)
and then u by u + c−1g(x2) + (g(1)

c ◦ Φ)(x2) − (g ◦ Φ−1 ◦ ψ
(1)
c ◦ Φ)(x2). By comparing (4.38) to (4.35)

with i = 2 and by using the uniqueness in Theorem 4.1, we conclude that for all c > 0,

ψ(2)
c = Φ−1 ◦ ψ(1)

c ◦ Φ a.e. dµ2, (4.39)

b(1)
c ◦ Φ =

b ◦ ψ
(2)
c

b
b(2)
c a.e. dµ2, (4.40)

g(1)
c ◦ Φ = g(2)

c + g ◦ ψ(2)
c − g

c
a.e. dµ2 (4.41)

(to obtain the equality (4.40), we also used (4.34) and

dµ1 ◦ Φ
dµ2

(
dµ1 ◦ ψ

(1)
c

dµ1
◦ Φ

) (
dµ1 ◦ Φ

dµ2
◦ Φ−1 ◦ ψ(1)

c ◦ Φ
)−1

=
dµ2 ◦ ψ

(2)
c

dµ2
a.e. dµ2,

which follows by using (4.39)). Then, in view of relations (4.39)–(4.41) and Definition 4.2, we have
(ψ(1), b(1), g(1)) ∼ (ψ(2), b(2), g(2)). 2
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5 Decomposition of the process in two components

Theorem 4.3 and part (iii) of Definition 4.2 show that the flows corresponding to two different minimal
representations of a self-similar mixed moving average are “a.e. isomorphic”. If two flows are a.e.
isomorphic and one of them is dissipative (conservative, resp.), then so is the other one. (This fact
can be proved by using the representations (3.22) and (3.23) for the dissipative and the conservative
parts of a flow.) Based on this observation, one may then classify self-similar mixed moving averages
into those whose minimal representations are associated with a dissipative flow and into those whose
minimal representations are associated with a conservative flow. In practice, however, it is not easy
to say when a representation is minimal and therefore to determine whether a process is generated
by a dissipative or a conservative flow. Since minimal representation kernels are of the form (4.3), it
is best to use (not necessarily minimal) kernels of that form (4.3) as a starting point and derive the
properties of the corresponding processes. In fact, many commonly used kernels (e.g. the kernel of
linear fractional stable motion in Example 6.2 below) are already of the form (4.3).

Let then α ∈ (0, 2), H > 0 and κ = H − 1/α. Let also (X,X , µ) denote as before a standard
Lebesgue space and Mα be a SαS random measure on X × R with the control measure µ(dx)du.

Definition 5.1 Let α ∈ (0, 2). A SαS H-ss process Xα with stationary increments, given by the
spectral representation

{Xα(t)}t∈R
d=

{∫
X

∫
R

Gt(x, u)Mα(dx, du)
}

t∈R
(5.1)

=
{∫

X

∫
R
(G(x, t + u) − G(x, u))Mα(dx, du)

}
t∈R

, (5.2)

is generated by a nonsingular measurable multiplicative flow {ψc}c>0 on (X, µ) associated with G (or
simply generated by a flow {ψc}c>0) if, for all t ∈ R and c > 0,

c−κ (G(x, c(t + u)) − G(x, cu))

= bc(x)
{

d(µ ◦ ψc)
dµ

(x)
}1/α

(G(ψc(x), t + u + gc(x)) − G(ψc(x), u + gc(x))) (5.3)

a.e. µ(dx)du, where {bc}c>0 is a cocycle for the flow {ψc}c>0 taking values in {−1, 1}, {gc}c>0 is a
semi-additive functional for the flow {ψc}c>0, and

supp {Gt, t ∈ R} = X × R, (5.4)

a.e. µ(dx)du.

Remarks

1. The flow is related to the kernel G and hence to the representation. Sometimes, for clarity, it
may be necessary to say “generated by a flow {ψc}c>0 associated with G”.

2. When a self-similar mixed moving average Xα is generated (through its representation) by a flow
ψ = {ψc}c>0 and a related cocycle b = {bc}c>0 and a semi-additive functional g = {gc}c>0, we
shall also say that Xα is generated by (or associated with) the triplet (ψ, b, g).
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3. If the process Xα is given by (5.1)–(5.2), then supp{Gt, t ∈ R} = X0 × R a.e. for some X0 ∈ X
and, by replacing X by X0 in (5.1) and (5.2), we may suppose without loss of generality that
(5.4) holds (see Lemma 4.2). In this case, to verify that the process Xα is generated by a flow,
one needs to check condition (5.3) only.

Proposition 5.1 Condition (5.3) is equivalent to the condition that, for all c > 0,

c−κG(x, cu) = bc(x)
{

d(µ ◦ ψc)
dµ

(x)
}1/α

G(ψc(x), u + gc(x)) + J(x, c) (5.5)

a.e. µ(dx)du, for some measurable function J .

Proof: It is obvious that (5.5) implies (5.3). For the converse implication, note that, by Lemma
3.1, (i), (5.3) holds also a.e. µ(dx)dtdu. But, by making the change of variables v = t + u, we get that

c−κG(x, cu) = bc(x)
{

d(µ ◦ ψc)
dµ

(x)
}1/α

G(ψc(x), u + gc(x)) + J(x, c, v)

a.e. µ(dx)dvdu. By fixing v = v0, for which this equation holds a.e. µ(dx)du we obtain (5.5). 2

If the spectral representation {Gt}t∈R of Xα is minimal (as in Example 4.1), then Xα is always
generated by a flow in the sense of Definition 5.1. But since we require in (5.1) only equality in
the sense of the finite-dimensional distributions, it is not necessary that the spectral representation
{Gt}t∈R be minimal.

Theorem 5.1 For α ∈ (1, 2), any SαS H-ss process Xα with stationary increments, having the repre-
sentation (5.1)–(5.2), is generated by a multiplicative flow in the sense of Definition 5.1 (with possibly
a new kernel G̃). Conversely, if the process Xα has the representation (5.1)–(5.2) with the kernel
function G satisfying (5.3), then it is self-similar with exponent H and has stationary increments.

Proof: The first part of the theorem follows from Theorems 4.2 and 4.1. To show the second part
of the theorem, use the computations in (2.4). 2

The next result shows that there is a map relating the various spectral representations.

Theorem 5.2 Let α ∈ (0, 2) and consider a SαS H-ss process {Xα(t)}t∈R, given by (5.1)–(5.2), with
supp{Gt, t ∈ R} = X × R a.e. µ(dx)du. Suppose that {Xα(t)}t∈R has another spectral representation

{Xα(t)}t∈R
d=

{∫
X̃

∫
R

G̃t(x̃, u)M̃α(dx̃, du)
}

t∈R
=

{∫
X̃

∫
R
(G̃(x̃, t + u) − G̃(x̃, u))M̃α(dx̃, du)

}
t∈R

,

where (X̃, X̃ , µ̃) is also a standard Lebesgue space, {G̃t}t∈R ⊂ Lα(X̃ × R, µ̃(dx̃)du), a SαS random
measure M̃α has the control measure µ(dx̃)du. Then there exist measurable functions Φ1 : X 7→ X̃,
h : X 7→ R \ {0} and Φ2, Φ3 : X 7→ R such that

G(x, u) = h(x)G̃(Φ1(x), u + Φ2(x)) + Φ3(x) (5.6)

a.e. µ(dx)du.
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Proof: By applying Lemma 4.1, (i), we obtain that there exist functions Φ̃1 : X × R 7→ X̃, h̃ :
X × R 7→ R \ {0} and Φ̃2 : X × R 7→ R such that

G(x, t + u) − G(x, u) = h̃(x, u)
(
G̃(Φ̃1(x, u), t + Φ̃2(x, u)) − G̃(Φ̃1(x, u), Φ̃2(x, u))

)
(5.7)

a.e. µ(dx)dtdu. Now, by making the change of variables v = t + u in (5.7), we get that

G(x, v) = h̃(x, u)G̃(Φ̃1(x, u), v − u + Φ̃2(x, u)) + Φ̃3(x, u) (5.8)

a.e. µ(x)dvdu, for some measurable function Φ̃3. By Lemma 3.1, (ii), fix u = u0, for which (5.8) holds
a.e. µ(dx)dv (and for which the functions involved are measurable) to obtain the result of the theorem
after the proper change of notation. 2

Corollary 5.1 Assume in Theorem 5.2 that the spectral representation {G̃t}t∈R ⊂ Lα(X̃×R, µ̃(dx̃)du)
is minimal and supp{Gt, t ∈ R} = X × R. Then there are measurable functions Φ1 : X 7→ X̃,
h : X 7→ R \ {0} and Φ2, Φ3 : X 7→ R such that (5.6) holds a.e. µ(dx)du, with µ̃ = µh ◦ Φ−1

1 on X̃ ,
where µh(dx) = |h(x)|αµ(dx)

Proof: By Lemma 4.1, (i), above and Remark 2.5 in Rosiński (1995), there exist unique modulo
µ(dx)du functions Φ̃1 : X × R 7→ X̃, h̃ : X × R 7→ R \ {0} and Φ̃2 : X × R 7→ R such that
the relation (5.7) holds and µ̃(dx̃)du = (µ

h̃
◦ Φ̃−1)(dx̃, du), where Φ̃ = (Φ̃1, Φ̃2) and µ

h̃
(dx, du) =

|h̃(x, u)|αµ(dx)du. Arguing as in Step 1 of the proof of Theorem 4.1, one gets that Φ̃1(x, u) = Φ1(x),
Φ̃2(x, u) = u + Φ2(x) and h̃(x, u) = h(x) a.e. µ(dx)du. Then (µ

h̃
◦ Φ̃−1)(dx̃, du) = (µh ◦ Φ−1

1 )(dx̃)du,
where µh(dx) = |h(x)|αµ(dx), and the relation (5.6) follows from (5.7) as in the proof of Theorem 5.2.
2

The following result shows that the dissipative or conservative character of a flow is an invariant.
It is analogous to Theorem 4.1 of Rosiński (1995) valid for stationary processes.

Theorem 5.3 If the process Xα, α ∈ (0, 2), given by (5.1)–(5.4), is generated by a dissipa-
tive(conservative, resp.) flow, then in any other representation (5.1)–(5.4) of Xα, the multiplicative
flow must be dissipative (conservative, resp.).

Proof: Suppose that the process Xα with the spectral representation {Gt}t∈R is generated by a
multiplicative flow {ψc}c>0 as in Definition 5.1. Let X = D ∪ C be the Hopf decomposition of the
flow {ψc}c>0 (C and D denote the conservative and dissipative parts of the flow, respectively). Set
also Ft(x) =

∫
R |Gt(x, u)|αdu and note that Ft ∈ L1(X, µ). We will show that

D =
{

x ∈ X :
∫ ∞

0

∫
R
|G(ψc(x), 1 + u) − G(ψc(x), u)|αdu λc(x) c−1dc < ∞

}
(5.9)

=
{

x ∈ X :
∫ ∞

0
F1(ψc(x)) λc(x) c−1dc < ∞

}
, (5.10)

and

C =
{

x ∈ X :
∫ ∞

0

∫
R
|G(ψc(x), 1 + u) − G(ψc(x), u)|αdu λc(x) c−1dc = ∞

}
(5.11)

=
{

x ∈ X :
∫ ∞

0
F1(ψc(x)) λc(x) c−1dc = ∞

}
(5.12)
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and a.e. µ(dx), where λc = d(µ◦ψc)/dµ. Let D0 and C0 denote the right-hand side of (5.9) and (5.11),
respectively. We want to show that D = D0 and C = C0 a.e. µ(dx). As in the proof of Theorem 4.1
in Rosiński (1995), by making the change of variables c = ev, one can show that C ∩ supp{F1} ⊂ C0

and D ⊂ D0 a.e. µ(dx). Since, for t > 0, G(ψc(x), t + u) = G(ψc(x), t(1 + t−1u)), we can apply (5.3)
and get ∫ ∞

0
Ft(ψc(x)) λc(x) c−1dc =

∫ ∞

0

∫
R
|G(ψc(x), t + u) − G(ψc(x), u)|αdu λc(x) c−1dc

=
∫ ∞

0

∫
R
|G(ψt(ψc(x)), 1+t−1u+gt(ψc(x)))−G(ψt(ψc(x)), t−1u+gt(ψc(x)))|αdu λt(ψc(x))λc(x) c−1dc

=
∫ ∞

0

∫
R
|G(ψct(x), 1 + u) − G(ψct(x), u)|αdu tλct(x) c−1dc

= t

∫ ∞

0

∫
R
|G(ψc(x), 1 + u) − G(ψc(x), u)|αdu λc(x) c−1dc.

We can therefore replace F1 by Ft, t > 0, in (5.12) and (5.10). This is also true for t < 0, since, by
making the change of variables t + u = v below,∫ ∞

0

∫
R
|G(ψc(x), t + u) − G(ψc(x), u)|αdu λc(x) c−1dc

=
∫ ∞

0

∫
R
|G(ψc(x),−t + v) − G(ψc(x), v)|αdv λc(x) c−1dc.

Hence, we get that C ∩ supp{Ft} ⊂ C0 for all t ∈ R. Since condition (5.4) implies that supp{Ft, t ∈
R} = X a.e. µ(dx), it follows that C ⊂ C0 a.e. µ(dx). Since X is a disjoint union of D and C and
since D0 and C0 are disjoint, we get D = D0 and C = C0 a.e. µ(dx).

We will now show that the dissipative and conservative character of a flow is an invariant. By
Theorem 4.2, the process Xα has also a minimal spectral representation {G̃t}t∈R on the space (X̃ ×
R, µ̃(dx̃)du) and, by Theorem 4.1, it is generated by a multiplicative flow {ψ̃c}c>0 on (X̃, X̃ ) associated
with the kernel G̃. By Corollary 5.1, there are measurable functions Φ1 : X 7→ X̃, h : X 7→ R \ {0}
and Φ2, Φ3 : X 7→ R such that

G(x, u) = h(x)G̃(Φ1(x), u + Φ2(x)) + Φ3(x) (5.13)

a.e. µ(dx)du and
µ̃ = µh ◦ Φ−1

1 , (5.14)

where µh(dx) = |h(x)|αµ(dx). By using (5.3) and the relation −Hα = −κα − 1, we have a.e. µ(dx),∫ ∞

0

∫
R
|G(ψc(x), 1 + u) − G(ψc(x), u)|αdu

d(µ ◦ ψc)
dµ

(x) c−1dc

=
∫ ∞

0

∫
R
|G(x, c(1 + u)) − G(x, cu)|αdu c−Hαdc (5.15)

= |h(x)|α
∫ ∞

0

∫
R
|G̃(Φ1(x), c(1 + u)) − G̃(Φ1(x), cu)|αdu c−Hαdc
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= |h(x)|α
∫ ∞

0

∫
R
|G̃(ψ̃c(Φ1(x)), 1 + u) − G̃(ψ̃c(Φ1(x)), u)|αdu

d(µ̃ ◦ ψ̃c)
dµ̃

(Φ1(x)) c−1dc. (5.16)

(Observe that the last equality in (5.16) holds a.e. µ(dx), since it holds a.e. µ̃(dx̃) with x̃ = Φ1(x) and
since, by (5.14), µ̃(Ñ) = 0 for any Ñ ∈ X̃ implies that µ(Φ−1

1 (Ñ)) = 0.) Relation (5.16) implies that

Φ−1
1 (D̃0) = D0 and Φ−1

1 (C̃0) = C0 (5.17)

a.e. µ(dx), where D0 and C0 are the sets on the right-hand side of (5.9) and (5.11), respectively,
and D̃0 and C̃0 are defined in the same way by replacing X, G, ψc, λc by X̃, G̃, ψ̃c, λ̃c. Hence, by
(5.17), the flow {ψc}c>0 is dissipative (conservative, resp.) if and only if the flow {ψ̃c}c>0 is dissipative
(conservative, resp.). Indeed, for example, if the flow {ψc}c>0 is dissipative, then µ(C) = 0 and hence
µ(C0) = 0, which implies by (5.17) that µ(Φ−1

1 (C̃0)) = 0 and, by (5.14), that µ̃(C̃0) = 0 or µ̃(C̃) = 0.
Now, if the process Xα is generated by yet another flow {ψ̂c}c>0 associated with a kernel Ĝ, then
we conclude as above that the flow {ψ̂c}c>0 is dissipative (conservative, resp.) if and only if the
flow {ψ̃c}c>0 is dissipative (conservative, resp.), and consequently, if and only if the flow {ψc}c>0 is
dissipative (conservative, resp.). This concludes the proof. 2

Remarks

1. To get a feeling for (5.11), note that a conservative flow ψc(x) comes back again and again to
the same values as c grows. Hence, the integral of a positive function of ψc(x) over (0,∞), which
is the range of c, should diverge.

2. Theorem 5.3 implies that, if the process Xα is generated by a dissipative flow and the process Yα is
generated by a conservative flow, then the processes Xα and Yα have different finite-dimensional
distributions.

3. By changing the variable c = et, t ∈ R, in the sets D0 and C0 on the right-hand sides of (5.9) and
(5.11), respectively, and also by denoting φt = ψet , t ∈ R, the representations (5.9) and (5.11)
look like (3.22) and (3.23), respectively, where g = F1. (These changes of variable transform the
multiplicative flow ψc into the additive flow φt.) The function F1, however, need not have full
support in X and this is why it does not, in general, correspond to the g in (3.22) and (3.23).
We were nevertheless able to conclude that D = D0 and C = C0 a.e. by using special properties
of G. Hence, in particular, (3.22) and (3.23) may hold with a g which does not have full support
in X.

The next result provides a criterion for determining whether a flow is dissipative or conservative.

Theorem 5.4 Let α ∈ (1, 2) and Xα be a SαS H-ss process with stationary increments given by
(5.1)–(5.2). Suppose that supp{Gt, t ∈ R} = X ×R. Then the process Xα is generated by a dissipative
(conservative, resp.) flow in the sense of Definition 5.1 (with possibly a new kernel G̃) if and only if
the integral

I(x) =
∫ ∞

0
c−Hα

∫
R
|G(x, c(1 + u)) − G(x, cu)|α du dc (5.18)

is finite (infinite, resp.) a.e. µ(dx).
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Proof: By Theorem 4.2, the process Xα has a minimal spectral representation with the kernel
function G̃ and, by Theorem 4.1, there is a flow {ψ̃c}c>0 associated with G̃ which generates Xα in the
sense of Definition 5.1. By Theorem 5.3, Xα is generated by a dissipative (conservative, resp.) flow if
and only if the flow {ψ̃c}c>0 is dissipative (conservative, resp.) and, by Corollary 5.1, the a.e finiteness
of the integral (5.18) is equivalent to the a.e. finiteness of a similar integral where G is replaced by G̃.
By applying (5.3) with G̃, we see as in (5.15) that the integral (5.18) with G̃ equals to the integral

∫ ∞

0

∫
R
|G̃(ψ̃c(x̃), 1 + u) − G̃(ψ̃c(x̃), u)|αdu

d(µ̃ ◦ ψ̃c)
dµ̃

(x̃) c−1dc.

The conclusion then follows from (5.9) ((5.11), resp.) with G, ψc and D (C, resp.) replaced by G̃, ψ̃c

and D̃ (C̃, resp.). 2

Theorem 5.5 Let α ∈ (1, 2) and suppose that a process Xα is generated by a nonsingular multiplica-
tive flow {ψc}c>0 as in Definition 5.1. Let also X = D ∪ C be the Hopf decomposition of the flow
{ψc}c>0. Then, we have

Xα
d= XD

α + XC
α , (5.19)

where
XD

α (t) =
∫

D

∫
R

Gt(x, u)Mα(dx, du), (5.20)

XC
α (t) =

∫
C

∫
R

Gt(x, u)Mα(dx, du). (5.21)

The processes XD
α and XC

α are independent, and are both H-ss and have stationary increments. The
process XD

α is generated by a dissipative flow and the process XC
α is generated by a conservative flow

in the sense of Definition 5.1. The decomposition (5.19), moreover, is unique in distribution, that is,
it does not depend on the representation {Gt}t∈R in Definition 5.1.

Proof: The processes XD
α and XC

α are independent because their kernels have disjoint support
(Theorem 3.5.3 in Samorodnitsky and Taqqu (1994)). The process XD

α is generated by a dissipative
flow and the process XC

α is generated by a conservative flow in the sense of Definition 5.1 because D
and C are invariant under the flow.

To prove the uniqueness in distribution, let {G̃t}t∈R ⊂ Lα(X̃×R, µ̃(dx)du) be the minimal spectral
representation of the process Xα obtained in Theorem 4.2. Suppose that this representation is gener-
ated by a multiplicative flow {ψ̃c}c>0 on (X̃, µ̃) as in Theorem 4.1. Let D̃ and C̃ be the dissipative
part and the conservative parts of the flow {ψ̃c}c>0, respectively. The kernels G and G̃ can be related
as in (5.13) and (5.14). Moreover, by (5.17), Φ−1

1 (D̃0) = D0 and Φ−1
1 (C̃0) = C0, where the sets D0,

C0, D̃0 and C̃0 are defined in the proof of Theorem 5.3. Then, since C = C0 µ-a.e. and C̃ = C̃0 µ̃-a.e.,
we have for every a1, · · · , an ∈ R and t1, · · · , tn ∈ R, n ≥ 1,∫

C

∫
R

∣∣∣∣∣
n∑

k=1

akGtk(x, u)

∣∣∣∣∣
α

µ(dx)du =
∫

C0

∫
R

∣∣∣∣∣
n∑

k=1

akGtk(x, u)

∣∣∣∣∣
α

µ(dx)du

=
∫

C0

∫
R

∣∣∣∣∣
n∑

k=1

akG̃tk(Φ1(x), u + Φ2(x))

∣∣∣∣∣
α

|h(x)|αµ(dx)du
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=
∫
Φ−1

1 (C̃0)

∫
R

∣∣∣∣∣
n∑

k=1

akG̃tk(Φ1(x), u)

∣∣∣∣∣
α

|h(x)|αµ(dx)du

=
∫

C̃0

∫
R

∣∣∣∣∣
n∑

k=1

akG̃tk(x̃, u)

∣∣∣∣∣
α

µ̃(dx̃)du

=
∫

C̃

∫
R

∣∣∣∣∣
n∑

k=1

akG̃tk(x̃, u)

∣∣∣∣∣
α

µ̃(dx̃)du. (5.22)

This implies that XC
α

d= XC̃
α , where XC̃

α is defined analogously to XC
α . Similarly, XD

α
d= XD̃

α . It follows
that the decomposition (5.19) does not depend on the representation {Gt}t∈R. 2

Corollary 5.2 When α ∈ (1, 2), every H-ss process Xα having the representation (5.1)–(5.2) can be
uniquely decomposed into two independent processes: one generated by a dissipative flow and the other
generated by a conservative flow.

Proof: By Theorem 5.1, when α ∈ (1, 2), every H-ss process Xα having the representation (5.1)–
(5.2) is generated by a multiplicative flow in the sense of Definition 5.1 (with possibly a new kernel
G̃). Then apply Theorem 5.5. 2

We shall call the two processes obtained in Corollary 5.2 the dissipative and conservative compo-
nents of the process Xα. Observe that they are defined in distribution. An alternative way to obtain
the decomposition of the process Xα into its dissipative and conservative components is as follows.

Corollary 5.3 Let α ∈ (1, 2) and suppose that the H-ss process Xα has the representation (5.1)–(5.2)
with supp{Gt, t ∈ R} = X × R. Define the sets

D = {x ∈ X : I(x) < ∞} and C = {x ∈ X : I(x) = ∞}, (5.23)

where I is the integral defined in (5.18), and define the process XD
α and XC

α as in (5.20) and (5.21)
but using the sets in (5.23). Then the processes XD

α and XC
α are (in distribution) the dissipative and

conservative components of the process Xα.

Proof: It is enough to show that

XD
α =d XD̃

α and XC
α =d XC̃

α , (5.24)

where the processes XD̃
α and XC̃

α are the dissipative and conservative components of Xα defined in
the proof of the uniqueness in Theorem 5.5. That proof also shows that (5.24) holds as long as

D = Φ−1
1 (D̃0) and C = Φ−1

1 (C̃0) (5.25)

µ-a.e. (compare with (5.17)). These last relations hold, since by applying (5.13) and (5.3) with G̃, we
get as in (5.15)–(5.16) that a.e. µ(dx),

I(x) =
∫ ∞

0
c−Hα

∫
R
|G(x, c(1 + u)) − G(x, cu)|α du dc

= |h(x)|α
∫ ∞

0
c−Hα

∫
R

∣∣∣G̃(Φ1(x), c(1 + u)) − G̃(Φ1(x), cu)
∣∣∣α du dc

= |h(x)|α
∫ ∞

0

∫
R
|G̃(ψ̃c(Φ1(x)), 1 + u) − G̃(ψ̃c(Φ1(x)), u)|αdu

d(µ̃ ◦ ψ̃c)
dµ̃

(Φ1(x)) c−1dc.
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2

Remark. The sets D and C in (5.23) are not related to a flow. But as indicated in the proof of
the corollary, the processes XD

α and XC
α have the same distributions as XD̃

α and XC̃
α , where D̃ and C̃

are the dissipative and conservative parts of a flow. This flow, which can be (but is not necessarily)
associated with the minimal spectral representation of the process Xα, may live on a space which is
different from X.

Depending on the practical situation, one can either apply Theorem 5.5 or Corollary 5.3. Corollary
5.3 is handy because it requires only that the process Xα is self-similar and has a mixed moving
average representation (5.1)–(5.2). If the representation satisfies the conditions (5.1)–(5.4), then one
can apply Theorem 5.5 and determine not only the character of the process but also the nature of the
flow associated with the representation. Both approaches are illustrated in the following section.

6 Examples

In this section we provide some examples.

Example 6.1 For α ∈ (1, 2) and H ∈ (1/α, 1), consider the process

Xα(t) =
∫ ∞

0

∫
R
(((t + u) ∧ 0 + x)+ − (u ∧ 0 + x)+) xH− 2

α
−1Mα(dx, du), (6.1)

where Mα is a SαS random measure on (0,∞)×R with the Lebesgue control measure. The process Xα

appears in the so-called renewal-reward problem as the limit of a properly normalized superposition of
renewal reward processes (see Levy and Taqqu (2000) and Pipiras and Taqqu (2000)). It is an H-ss,
SαS process with stationary increments which has the representation (1.7) with X = (0,∞), µ = L
(the Lebesgue measure) and

G(x, u) = (u ∧ 0 + x)+ xH− 2
α
−1

for x > 0, u ∈ R. Let us show that the process Xα is generated by a dissipative flow in the sense of
Definition 5.1. For c > 0 and κ = H − 1/α, we have that

c−κG(x, cu) = c−H+ 1
α (cu ∧ 0 + x)+xH− 2

α
−1 = c−H+ 1

α ccH− 2
α
−1(u ∧ 0 + c−1x)+(c−1x)H− 2

α
−1

= c−
1
α G(c−1x, u) =

{
d(L ◦ ψc)

dL
(x)

}1/α

G(ψc(x), u),

where
ψc(x) = c−1x, c > 0, x > 0.

Hence the condition (5.3) is satisfied (see also (5.5)) with

bc(x) ≡ 1 and gc(x) ≡ 0.

It is clear that {ψc}c>0 is a nonsingular measurable multiplicative flow on (0,∞) and that {bc}c>0 is
a cocycle and {gc}c>0 is a semi-additive functional for the flow {ψc}c>0. Set Gt(x, u) = G(x, t + u) −
G(x, u). Since supp{Gt} = {(x, u) : x > 0,−t − x < u < −t} for t < 0 and supp{Gt} = {(x, u) :
x > 0,−t − x < u < 0} for t > 0, one has supp{Gt, t ∈ R} = (0,∞) × R. Therefore, the process
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Xα is generated by the flow {ψc}c>0 in the sense of Definition 5.1. Moreover, this flow {ψc}c>0 is
dissipative, since, if V (x) = ψc(x) = c−1x for x > 0, c 6= 1, then (0,∞) = ∪∞

k=−∞V kB for a wandering
set B = (1, c] (see Section 3).

The fact that the process Xα is generated by a dissipative flow follows also from Corollary 5.3
since, by making the change of variables c = x/v below (for fixed x),∫ ∞

0
c−αH

∫
R
|G(x, c(1 + u)) − G(x, cu)|αdu dc

= xαH−2−α
∫ ∞

0
c−αH

∫
R
|(c(1 + u) ∧ 0 + x)+ − (cu ∧ 0 + x)+|αdu dc

= x−1
∫ ∞

0

∫
R
|((1 + u) ∧ 0 + v)+ − (u ∧ 0 + v)+|αvαH−2−αdu dv = x−1 ln(−EeiXα(1)) < ∞,

for all x > 0.

Example 6.2 Let a, b ∈ R, H ∈ (0, 1), α ∈ (0, 2) and suppose that κ = H − 1/α 6= 0. Define

Xα(t) =
∫

R

(
a

(
(t + u)κ

+ − uκ
+

)
+ b

(
(t + u)κ

− − uκ
−

))
Mα(du), t ∈ R, (6.2)

where Mα is a SαS random measure with the control measure mα(du) = du. The processes Xα are
called linear fractional stable motions (see Chapter 7 in Samorodnitsky and Taqqu (1994)). They are
H = κ + 1/α–ss, SαS processes with stationary increments and have the representation (1.7) with

X = {1}, µ = δ{1} and G(1, u) = auκ
+ + buκ

−.

Since c−κG(1, cu) = G(1, u) and supp{Gt, t ∈ R} = R, linear fractional stable motions are processes
generated by the following flow, related cocycle and semi-additive functional, respectively: for all
c > 0,

ψc(1) = 1, bc(1) = 1, gc(1) = 0.

The flow {ψc}c>0 is clearly conservative. These results also follow from Corollary 5.3, since∫ ∞

0
c−αH

∫
R
|G(1, c(1 + u)) − G(1, cu)|αdu dc =

∫ ∞

0
c−1dc

∫
R
|G(1, 1 + u) − G(1, u)|αdu = ∞.

Example 6.3 For α ∈ (0, 2), consider the SαS Lévy motion

Xα(t) =
∫

R
1[0,t)(u)Mα(du) d=

∫
R

1[0,t)(−u)Mα(du) =
∫

R

(
1(0,∞)(t + u) − 1(0,∞)(u)

)
Mα(du), t ∈ R,

where Mα is again a SαS random measure with the control measure mα(du) = du (see, for example,
Samorodnitsky and Taqqu (1994)). The process Xα has stationary independent increments and is
self-similar with exponent H = 1/α. It has representation (1.7) with

X = {1}, µ = δ{1} and G(1, u) = 1(0,∞)(u)

and, since G(1, cu) = G(1, u) for c > 0, it is generated by the conservative flow ψc(1) = 1 and a related
cocycle bc(1) = 1 and a semi-additive functional gc(1) = 0. This conclusion also follows from Corollary
5.3.
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Example 6.4 Let α ∈ (1, 2) and define

Xα(t) =
∫

R
(ln |t + u| − ln |u|)Mα(du), t ∈ R,

where Mα is a SαS random measure with the control measure mα(du) = du. The process Xα is called
log-fractional stable motion (see Chapter 7 in Samorodnitsky and Taqqu (1994)). Like the stable Lévy
motion, it has stationary increments and is also self-similar with exponent H = 1/α. However, since
its increments are dependent, it has different finite-dimensional distributions than the stable Lévy
motion. The log-fractional stable motion has representation (1.7) with

X = {1}, µ = δ{1} and G(1, u) = ln |u|.

In this case κ = H − 1/α = 0 and, for any c > 0, G(1, cu) = G(1, u)+ ln c. Then (5.5) is satisfied with

ψc(1) = 1, bc(1) = 1, gc(1) = 0 and J(1, c) = ln c.

Therefore, the process Xα is generated by the conservative flow ψc(1) = 1. Alternatively, this con-
clusion also follows from Corollary 5.3 since

∫ ∞
0 c−αHdc = ∞. Observe that the log-fractional stable

motion has the same triplet as the stable Lévy motion.

7 Conclusions

We focused, in this paper, on self-similar SαS (non-Gaussian) processes with stationary increments
which have the mixed moving average representation (1.7), ss mma processes, in short. Examples of
such processes include the well-known linear fractional stable, stable Lévy and log-fractional stable
motions, as well as the limit of the so-called renewal reward processes. Since there are many different
SαS ss mma processes, one would like to find characteristics that can be used to classify them and, in
particular, to say when two such processes have different finite-dimensional distributions. We provided
examples of such characteristics.

A SαS self-similar process can have many different mma representations. For example, the “mix-
ing” space X in the representation (1.7) can always be mapped into some other space Y . The so-called
minimal representations are of particular interest. By Theorem 4.1, a minimal representation can be
associated with a triplet (ψ, b, g), where ψ = {ψc}c>0 is a nonsingular multiplicative measurable flow,
b = {bc}c>0 is a cocycle and g = {gc}c>0 is a semi-additive functional for the flow ψ. Moreover,
by Theorem 4.3, triplets corresponding to different minimal representations of the same process are
equivalent in the sense of Definition 4.2. In particular, the condition (iii) of that definition states that
the flows are a.e. isomorphic. Since a dissipative (conservative, resp.) flow can be a.e. isomorphic only
to a dissipative (conservative, resp.) flow, one can classify SαS, self-similar mixed moving averages
into two classes: those whose minimal representations are associated with dissipative flows and those
whose minimal representation are associated with conservative flows.

Since it is not typically easy to say when a given representation is minimal, one cannot readily
determine whether a process is associated with a dissipative or a conservative flow in the above sense.
On the other hand, many well-known ss mma kernels (not necessarily minimal) may be associated
with triplets (ψ, b, g) as it is the case for minimal kernels. The question then is whether these flows ψ
share some properties with the class of a.e. isomorphic flows corresponding to minimal representations
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of the process. In particular, is the conservative or the dissipative character of the flow preserved? The
answer is positive (Theorem 5.3). Thus, one may classify SαS, self-similar mixed moving averages
according to the nature of their flows, whether the representation of the process is minimal or not.
When α ∈ (1, 2), any such process can be decomposed uniquely into two independent processes one of
which is associated with a dissipative flow and the other one is associated with a conservative flow.

Let us emphasize that a triplet (ψ, b, g) associated with a ss mma process as in Definition 5.1 does
not determine the process itself. In fact, the same triplet may correspond to different representa-
tions and even to different processes. For example, the stable Lévy motion in Example 6.3 and the
log-fractional stable motion in Example 6.4 are both associated with an identity flow (and the corre-
sponding cocycle and the semi-additive functional). Therefore, a triplet only captures a characteristic
shared by a class of ss mma processes. A given process can also have many different representations
each with its own triplet. Nevertheless, as noted above, the conservative or the dissipative character
of the flow does not change from one representation to another. This is why one can classify ss mma
processes into two different subclasses, namely, those associated with dissipative flows and those as-
sociated with conservative flows. A finer decomposition can be found in Pipiras and Taqqu (2001),
which provides further insights into the structure of SαS self-similar mixed moving average processes.

References

Arveson, W. (1976), An Invitation to C∗-Algebras, Springer-Verlag, New York.
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