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Abstract Medial entorhinal cortex layer II stellate cells
display subthreshold oscillations (STOs). We study a single
compartment biophysical model of such cells which quali-
tatively reproduces these STOs. We argue that in the sub-
threshold interval (STI) the seven-dimensional model can
be reduced to a three-dimensional system of equations with
well differentiated times scales. Using dynamical systems ar-
guments we provide a mechanism for generations of STOs.
This mechanism is based on the “canard structure,” in which
relevant trajectories stay close to repelling manifolds for a
significant interval of time. We also show that the transition
from subthreshold oscillatory activity to spiking (“canard
explosion”) is controlled in the STI by the same structure.
A similar mechanism is invoked to explain why noise in-
creases the robustness of the STO regime. Taking advantage
of the reduction of the dimensionality of the full stellate cell
system, we propose a nonlinear artificially spiking (NAS)
model in which the STI reduced system is supplemented
with a threshold for spiking and a reset voltage. We show
that the synchronization properties in networks made up of
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1. Introduction

The flow of information from the neocortex to the hippocam-
pus is orchestrated by the superficial cell layers (II and III)
of the enthorinal cortex (EC). The spiny stellate cells (SCs)
of Ramon y Cajal constitute the most abundant principal
cell type in layer II of the medial EC (MEC) and these neu-
rons give rise to the perforant path, the main afferent fiber
system to the hippocampus. In vivo electrophysiological in-
vestigations have shown that the MEC generates rhythmic
activity at theta frequencies (8–12 Hz), and that the firing
of MEC layer II (MEC-II) neurons is highly phase locked
to the theta field events (Alonso and Garcı́a, 1987). Many
lines of evidence indicate that the theta rhythm is impli-
cated in learning and memory processes (Winson, 1978;
Buzsáki, 1989; Kahana et al., 1999), one of the main func-
tions of the medial temporal lobe of which the EC is a crucial
component. Importantly, in vitro electrophysiological stud-
ies have also established that the SCs develop low-amplitude
(1–4 mV) rhythmic subthreshold membrane potential oscil-
lations (STOs) at theta frequencies; when the membrane po-
tential is set positive to threshold (about −50 mV), SCs fire
action potentials at the peak of the STO but not necessarily
at every STO’s cycle (Dickson et al., 2000b). Mixed-mode
oscillatory (MMO) activity, the coexistence of spiking and
subthreshold oscillations, is a distinctive property of SCs in
vitro. Notably, the firing of MEC layer II neurons has also
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been shown to skip theta cycles in vivo (Alonso and Garcı́a
Austt, 1987).

Theta STOs in SCs are intrinsic single cell phenomena,
which persist during synaptic transmission block, as origi-
nally demonstrated by Alonso and Llinás (1989). The persis-
tent sodium (INap) and h-(Ih) currents have been implicated
in the pacemaking of single-cell rhythmicity at theta fre-
quencies (Alonso and Llinás, 1989; Alonso and Klink, 1993;
Klink and Alonso, 1993, 1997; Magistretti and Alonso, 1999;
Magistretti and Ragsdale, 1999; Dickson et al., 2000a, b;
Gillies et al., 2002; Fransén et al., 2004; Rotstein et al.,
2005b) (see also references therein). The former constitutes a
depolarization-activated fast inward current that provides the
main drive for the depolarizing phase of the STOs. The lat-
ter, which is a hyperpolarization-activated non-inactivating
current with slow kinetics, provides a delayed feedback ef-
fect that promotes resonance. Theoretical studies, based on
simulations of biophysical models, have shown that the in-
terplay between Ih and INap may be sufficient to account
for the generation of membrane potential oscillations in
MEC-II SCs (Dickson et al., 2000a, b; Fransén et al., 1998,
1999, 2004; White et al., 1995, 1998). However, the dy-
namic mechanism governing this interaction has not yet been
explored.

The goal of this paper is to explain the dynamic mecha-
nism governing the generation of STOs, spikes and MMOs
in a conductance based model of MEC-II SCs that was in-
troduced by Acker et al. (2003) to study the synchronization
properties of SC networks. We describe that model in Sec-
tion 2. It incorporates a INap and a two-component (fast and
slow) Ih in addition to the standard sodium (INa), potassium
(IK) and leak (IL) Hodgkin-Huxley (HH) currents.

We use reduction of dimensions arguments, not all stan-
dard (see Section 3.2), to uncover a three-dimensional regime
(called the STO regime) whose dynamic structure governs
the generation of STOs and MMOs. More specifically, we
argue that, during the largest part of the subthreshold inter-
val (STI), INa and IK are inactive (much smaller than the
other participating currents, and such that taking them away
does not change the dynamic structure of the problem), leav-
ing IL, INap, Ih (with its slow and fast components Ih f and
Ihs ) as the only active currents. In addition, the INap gating
variable p evolves on a much faster time scale than the rest
of the remaining variables, so p is slaved to the voltage.
Even though p is also a small current in the STO regime, we
find that INap cannot be eliminated for the relevant range of
parameters considered. The essential aspects of the dynam-
ics of the SC during the STI can be captured by a reduced
three-dimensional system of differential equations, which
describes the evolution of the voltage and the two Ih , fast
(r f ) and slow (rs), gating variables. The study of the SC
dynamics in the STO regime is further simplified by the fact
that Ih resets during a spike (occurring in a prior regime),

setting the initial conditions for the corresponding Ih gating
variables very close to zero, and allowing one to study only
the trajectories starting in a restricted domain.

In the STO regime one can describe the onset of a spike but
not the spiking dynamics. This can be studied using classical
techniques (Rinzel, 1985; Koch, 1999).

At the heart of the mechanism of generation of STOs and
MMOs is a phenomenon associated with the geometry of
invariant manifolds when there are multiple times scales.
When an invariant manifold is unstable, in general trajec-
tories starting near it quickly move away from it. However,
if the invariant manifold is associated with slower motion,
there are circumstances in which the trajectories starting ad-
equately nearby can stay near the invariant manifold for a
significant amount of time before escaping in the direction of
another (stable) manifold. STOs are produced when the latter
invariant manifold is close enough and causes the trajectory
to move backwards towards it. A prototypical example of
this type of behavior are the oscillations around the knee of a
parabolic manifold with one stable and one unstable branch.
In two-dimensional systems, this is associated with the ca-
nard phenomenon (canard explosion), a sudden increase in
the amplitude of the limit cycle (stable or unstable) created
in a Hopf-bifurcation as some parameter is changed (Benoit
et al., 1980; Eckhaus, 1983; Dumortier and Roussarie, 1996;
Krupa and Szmolyan, 2001). In 2D, the system may dis-
play either STOs or large amplitude relaxation oscillations
(spikes), but never both. The canard phenomenon in three-
dimensional systems is more generic and MMOs are possi-
ble provided an adequate return mechanism that brings these
variables back to their initial conditions in the STO regime
(Szmolyan and Wechselberger, 2001; Wechselberger, 2005;
Brons et al., 2005).

The geometric/dynamic structure generated by the null-
surfaces and time scale separation in the 3D reduced system
is called the “canard structure” and has the potential to pro-
duce canard solutions and the canard explosion (in the form
of STOs and MMOs). The key feature, as mentioned above,
is the existence of trajectories that follow an unstable mani-
fold for a significant amount of time. The canard structure we
have in mind is created by the 3D system of (fast) voltage and
(slow) Ih gating variables (r f and rs). The nonlinearities as-
sociated with the slow manifold are locally “parabolic”: the
nullsurface is an inverted cylindric paraboloid whose folded
line (curve of knees) has positive (V, r f , rs) coordinates. For
the specific model we use, the spike in a prior regime resets
both r f and rs , i.e., it plays the role of a return mechanism to
the STO regime. More specifically, spikes bring the trajec-
tory to its initial point (r f = rs = 0) in the STO regime, on
the left (stable) branch of the slow manifold. This trajectory
then moves fast towards the slow manifold. Initially, r f and rs

evolve with a marked difference in speed, though not an order
of magnitude time scale separation. The slow component of
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Ih is responsible for bringing back the system from its reset to
its STO/MMO values. As this happens the speed separation
between r f and rs decreases. When the trajectory is close to
the curve of knees, the overall time separation breaks down.

The subthreshold oscillatory activity seen in experiments
is much less regular than the one created by the full SC model
(and seen in the reduced three-dimensional model in the STO
regime) for the set of parameters considered here. We make
use of the stochastic nature of the INap channels (White et al.,
1998; Shalinsky et al., 2002) to show voltage traces qualita-
tively similar (in irregularity and frequency) to experimen-
tally found ones (Dickson et al., 2000a). The effect of noise
on the occurrence of STOs can be heuristically explained
using the canard structure as a theoretical framework.

The canard structure describes the SC dynamics during
most of the STI, including the onset of spikes. One important
and useful consequence of our results is that, if one is not
interested in the spike details, the dynamics of the SC can be
approximately described by the reduced three-dimensional
system mentioned above, supplemented with an artificial
spike. This simplified model is called nonlinear artificially
spiking (NAS) SC model.

The two main differences between these and classical
integrate- and resonate-and-fire models (IF or RF) (Izhike-
vich, 2001) are the mathematical description of the onset of
spikes and the return mechanism to the STO region (curve
of knees), after a spike. In IF or RF models, these are de-
scribed by imposing an artificial voltage threshold for spike
generation and a reset value after a spike. In the NAS model
the onset of spikes is a consequence of the underlying canard
structure (canard phenomenon), and the return mechanism
is a consequence of the h-current reset and the time scale
separation. The NAS SC model approach has a wider ap-
plicability than the description of single cell dynamics. In
Appendix B we compare synchronization properties for net-
works of SCs using both the full and the NAS SC models.

2. Methods

The single compartment biophysical model we study here
was introduced by Acker et al. (2003) and is based on mea-
surements from layer II SCs of the medial entorhinal cortex
(MEC) (White et al., 1995; 1998; Dickson et al., 2000b;
Fransén et al., 2004). It has a persistent sodium (INap) and a
two-component (fast and slow) hyperpolarization-activated
(Ih) currents in addition to the standard Hodgkin-Huxley
sodium (INa), potassium (IK ) and leak (IL ) currents. The
current-balance equation is

C
dV

dt
= Iapp − INa − IK − IL − Ih − INap (1)

where V is the membrane potential (mV), C is the
membrane capacitance (µF/cm2), Iapp is the applied bias
(DC) current (µA/cm2), INa = G Na m3 h (V − ENa), IK =
G K n4 (V − Ek), IL = GL ( V − EL ), INap = G p p ( V −
ENa), Ih = Gh ( 0.65 r f + 0.35 rs ) ( V − Eh ). G X and
EX (X = Na, K , L , p, h) are the maximal conductances
(mS/cm2) and reversal potentials (mV) respectively.
The units of time are msec. All the gating variables
x (x = m, h, n, p, r f , rs) obey a first order differential
equation of the following form:

dx

dt
= x∞(V ) − x

τx (V )
, (2)

where

x∞(V ) = αx (V )

αx (V ) + βx (V )
and

τx (V ) = 1

αx (V ) + βx (V )
. (3)

The definitions of αx and βx for x = m, h, n, p, r f , rs are
given in Appendix A and the corresponding graphs are shown
in Fig. 1. The values of the parameters used by Acker et al.
(2003) are: ENa = 55, EK = −90, EL = −65, Eh = −20,
GNa = 52, GK = 11, GL = 0.5, G p = 0.5, Gh = 1.5 and
C = 1.

Simulations were performed using the modified Euler
method and a Runge-Kutta method of order IV (Burden and
Faires, 1980).

3. Results

3.1. Full model: Coexistence of subthreshold
oscillations and spikes

In Fig. 2 we present simulation results for the full SC model
for various values of Iapp. The voltage traces are shown in
the two top panels (note that the second panel is a blow-up
of the top panel); the Ih and INap traces are given in the two
bottom panels. As the value of Iapp increases, the spiking
frequency also increases, while the number of STOs per STI
decreases and finally vanishes as shown in Fig. 2(d). In all
simulations we have done we found that, for relevant initial
conditions, voltage traces either display STOs and spikes,
or decay to a fixed point in an oscillatory way. In most
cases, STOs increase their amplitude as the SC trajectory
approaches spiking.

Our results demonstrating the coexistence of STOs and
spikes are consistent with experimental findings (Dickson
et al., 2000b). However, the STOs predicted using the deter-
ministic full SC model are less robust than experimentally
found; i.e., the ratio STO/spikes is larger in experiments than
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Fig. 1 Ion channel dynamics for the full SC model (1)–(3). The gating
variables are x = m, n, h, p, r f , rs . The bottom panels are magnifica-
tions of the top ones. Voltage units are mV. (a) Activation and inacti-
vation curves (x∞(V )) for the gating variables. (b) Voltage-dependent

times scales (τx (V )) for the gating variables. The separation of time-
scales is clearly visible. Both τr, f and τr,s evolve on time scales much
slower than the other variables. (c) Voltage dependent time scales in a
larger time interval.

in simulations. In Section 3.4 we explain how noise is able
to correct for this.

Note that, as experimentally found (Dickson et al., 2000a),
INap is at a minimum at the trough of a STO, and Ih reaches
its maximum at the beginning of the depolarizing phase.
As depolarization proceeds, INap rapidly increases, boosting
the depolarization initiated by Ih , which in itself causes the
voltage trajectory to reverse to repolarization. Just after the
peak of the oscillation, Ih reaches its minimum.

3.2. A reduced SC model valid during the STI

Here we argue that, during the STI, INa and IK are almost
inactive, leaving INap, Ih and IL as the main active currents.
We also show that p ∼ p∞(V ), so the dynamics of the SC can
be approximated by a three-dimensional system describing
V , r f and rs . Good approximations for the resulting reduced
system initial conditions are obtained from the spike reset of
the h-current as we explain below.

The reduction of dimensions ideas we use to arrive to
the reduced equations in the STO regime are not wholly

standard. They include (i) identifying a number of reduced
regimes (corresponding to a sequence of subintervals of the
cell spiking period), of which the STO is the central one in
our study; (ii) identifying the corresponding time scales for
each regime; (iii) identifying the “inactive currents” in each
regime; i.e., those currents that can be removed from the full
system without changing its dynamic features (fixed points
and their stability, bifurcation structure, etc.); (iv) identifying
the variables that govern the dynamics of the reduced system
and the variables that evolve slowly (modulatory); (v) check-
ing that the reduced systems obtained are a good (asymptotic)
approximation of the full and giving estimates for the errors
made in the approximation; and (vi) giving estimates for the
length of the time interval of validity of each one of the
reduced regimes. The mathematical formalization of these
ideas will be given elsewhere, along with more mathematical
details about the bifurcation structure associated with the
reduced model using the theory developed by Wechsel-
berger (2005). Here we present our arguments in a heuristic
way. Some of the reduction of dimensions ideas dis-
cussed here have been used in a compututational tool
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designed to reduce the dimensionality of neural systems
(Clewley et al., 2005).

3.2.1. Reduced equations

Looking at the second panels in Fig. 2 we see that during
most of the STI the voltage is bounded between −60 mV
and −50 mV. In Figs. 1(b) and (c) (the bottom panels are
a blow-up of the top ones), we see that for this interval of
values of the voltage, τp, τm and τn are much smaller than
τr f , which we take as a reference time scale. In addition,
from Fig. 1(a), m∞ ∼ 0 and n4

∞ ∼ 0. Then m ∼ 0, INa ∼ 0,
IK ∼ 0 and p ∼ p∞(v). Thus, we get the following sytem of
equations to approximately describe the dynamics of the SC
model during the STI:

C
dV

dt
= Iapp − G p p∞(V ) (V − ENa) − IL − Ih, (4)

dr f

dt
= r f,∞(V ) − r f

τr f (V )
. (5)

drs

dt
= rs,∞(V ) − rs

τrs (V )
. (6)

As in Eq. (1), Ih = Gh (0.65 r f + 0.35 rs) (V − Eh)
and IL = GL (V − EL). For future use we call Ih f =
Gh 0.65 r f (V − Eh) and Ihs = Gh 0.35 rs(V − Eh). Our
simulations with the full SC model (1)–(3) show (data not
presented here) that INa < Ihs during the STO regime.

As part of our study, we checked that removing INa and IK

does not change the dynamic structure (fixed points, stability
and bifurcations) of the reduced system as compared to the
full one (1–2). This is not ensured by the fact that both
currents are very small. Indeed, in a related system studied
by Jalics et al. (2005) involving a slow potassium current
instead of Ih (Acker et al., 2003), removing INa changes the
Hopf bifurcation criticality of the resulting reduced system.

Fig. 2 Full SC model:
Changing Iapp changes the ratio
of spikes to STOs. Voltage (V )
traces, Ih and INap for various
values of the applied current Iapp

and Gh = 1.5. The values of the
other parameters used in the
simulations are given Section 2.
The second row in each panel is
a magnification of the first row.
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Fig. 3 Full SC model: Evolution of the voltage (V ) and h-current
gating variables (r f and rs ) during STOs and spikes for Iapp = −2.5 and
Gh = 1.5. The values of the other parameters used in the simulations
are given in Section 2. The second row is a magnification of the first
row.

One could describe the STO regime as the interval of
time for which INa and IK are inactive in the sense that
they are much smaller than Ih , INap and IL. The voltage
bounds during the STI change with different values of
Iapp and Gh . However, the reduction of dimensions argu-
ment used before remains valid over a large range of these
parameters.

3.2.2. Reset of Ih

The behavior of v, r f and rs are illustrated in Fig. 3. (The
second panel is a blow-up of the first.) During a spike, v

increases above zero to a value ∼50 mV. For these values
of v, r f,∞(v) ∼0 and rs,∞(v) ∼ 0 (see Fig. 1(a)). In addi-
tion, for these high values of v, both τr f (v) and τrs (v) are
very small (see Fig. 1(b) and (c)), and then both r f and rs

quickly decrease to values close to r f ∼ rs ∼ 0. In our ap-
proximation we take r f = rs = 0 as initial conditions for the
h-current gating variables in the STI regime (after a spike has
occurred).

In the remaining sections we study the dynamics of the
SC using the reduced description described here.

3.3. Dynamics of the reduced SC model

In this section we study the mechanism of generation of STOs
and MMOs in the SC model. These are generated from the
dynamics of Eqs. (4)–(6).

The relative speed of r f and rs is given by the ratio of
the right hand sides of Eqs. (5) and (6). The voltage dein-
activation curves satisfy r f,∞(V ) ∼ rs,∞(V ) (see Fig. 1(a))
and, in the range of values of V considered, τr f (V ) � τrs (V )
(see Fig. 1(c)). Initially, r f ∼ rs (∼ 0, due to the reset of Ih);
hence rs is much slower than r f , at least at the beginning

of the evolution process. For this reason we first study the
three-dimensional reduced system (4)–(6) as a modulated
two-dimensional system; i.e., we study two-dimensional sys-
tems of the form (4) and (5) slowly changing as rs increases.
We show that some important qualitative features of the dy-
namics of the reduced systems can be learned from this ap-
proach. However, the entire dynamic picture is not captured
by it, as we show in Section 3.3.2.

3.3.1. Canard structures and a study of the reduced
model with fixed values of rs

The classic canard phenomenon is a sudden explosion of
the small amplitude limit cycle created in a Hopf bifurca-
tion (HB). This small amplitude limit cycle can be stable or
unstable according to whether the HB point is supercritical
or subcritical respectively. Here, we are concerned with the
structure near an unstable limit cycle, and not the canard ex-
plosion itself. In most of this section, we discuss in as much
generality as possible the structure that we use in analyzing
our model. For easy applicability to (4)–(6), we use notation
tailored to the model. For a more thorough introduction, we
refer the reader to Eckhaus (1983), Dumortier and Roussarie
(1996), Krupa and Szmolyan (2001).

The general equations have the form

{
dV/dt = F(V, r f ; rs),
dr f /dt = ε G(V, r f ),

(7)

where 0 < ε � 1 and rs is a fixed parameter. We assume
that F = O(1) and G = O(1), so that the two equations in
(7) have well-separated time scales. We call r f = N (V ; rs)
the nullcline of the V equation (given by F(V, r f , rs) = 0).

The dependence of F on rs is assumed to be such that, as
rs increases, N (V ; rs) moves downward, possibly changing
its shape. This is illustrated in Fig. 4(a) where α > 0 (α
represents an arbitrary value of rs). We call P(rs) the fixed
point of (7) corresponding to the leftmost intersection of
the N (V ; rs) with nullcline of r f . Note that with the shape
of N (V ; rs) as in Fig. 4(a), P(rs) moves to the right as rs

increases.
We call rs,M the value of rs corresponding to the

nullclines intersecting at the maximum of N (V ; rs). In
Fig. 4(a), α is very close to rs,M . We further assume that
Eq. (7) have a subcritical (unstable) Hopf bifurcation point
PH at some value rs,H = rs,M + O(ε) close to the maximum
of N (V ; rs). We also assume that for each rs there is a point
PB(rs) on the left branch of r f = N (V ; rs) (rs < rs,M ),
having the property that it separates those fixed points
that are stable nodes from those that are stable spirals. In
our model, without loss of generality, we are starting with
rs = 0. For rs = 0, we assume PB(0) is to the right of P(0)
and for rs = α, PB(α) is to the left of P(α); our analysis
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Fig. 4 (a) Schematic representation of the nullclines N (V ; rs ) and
r f,∞(v) of system (7) for rs = 0 and rs = α > 0. P(rs ) represent fixed
points, PB (rs ) represent separatrix points dividing stable nodes and foci.
As α increases the nullcline N (V ; rs) moves down while the activation
curve (nullcline) r f,∞(V ) remains unchanged. (b) Schematic bifurca-

tion diagram for a subcritical Hopf bifurcation. An unstable limit cycle
is born at the Hopf bifurcation point rs,H out of a fixed point. This fixed
point is stable to the left of rs,H, and unstable (to the right of rs,H). The
small amplitude limit cycle explodes in an exponentially small interval
of values of rs approximated by the point rs,c.

uses that. Our assumptions reproduce the conditions of the
real model for the parameters of interest. Note that, in the
real model, the reset of Ih due to a spike (see Section 3.2.2)
brings the trajectory to the initial condition rs = 0.

There is an exponentially small (in ε) range of values of
rs (approximated by rs,c(ε) < rs,H (ε)), inside which the ca-
nard explosion occurs (in the limit of ε → 0). Figure 4(b)
schematically shows the bifurcation diagram, including rs,H

and rs,c, for a subcritical Hopf bifurcation. Note that the sep-
aration of scales in system (7) is necessary for the existence
of the canard explosion.

Figure 5 illustrates the three behaviors of the system for
different values of rs in the presence of the above assump-
tions. In all three cases, we consider trajectories that first
approach the V-nullcline and then stay close to it, moving
slowly (Fig. 5(a)). That there are such trajectories is a con-
sequence of the separation of time scales and the existence
of an attracting invariant manifold close to the nullcline. The
trajectory we are interested in (coming from the end of a
spike) has this property.

For values of rs ≥ 0 such that P(rs) is to the left of PB(rs),
such trajectories approach the fixed point without oscillation;
the attraction comes from the stability of the critical point
P(0). This is shown in (Fig. 5(a)).

For a value of rs > 0 such that P(rs) is to the right of
PB(rs) but is still stable, the critical point has trajectories spi-
raling inward. In this situation, as in the previous paragraph,
the separation of time scales shapes the nature of the tra-
jectories approaching the critical point. The trajectories now
traverse across the maximum of r f = N (V ; rs) (Fig. 5(b)).
There is still an invariant manifold close to the V-nullcline,

but its attractiveness changes (in the limit as ε goes to zero)
to unstable to the right of the maximum. Nevertheless, the
trajectory stays close to that invariant manifold in the “top”
part of each spiral. This is what we refer to as the “ca-
nard structure”, and it is related to the mechanism by which
small amplitude limit cycles blow up into large relaxation
ones.

For some value of rs still larger, but very close to the
one corresponding to Fig. 5(b), the relevant trajectories do
not spiral around the maxima of the V-nullcline (Fig. 5(c)).
Instead, the trajectory moves across the maximum, close
to the unstable small amplitude limit cycle created in the
subcritical Hopf bifurcation (see Fig. 4), and leaves its
neighborhood. Note that the canard phenomenon (explo-
sion/implosion) occurs for values of rs in between of those
corresponding to Figs. 5(b) and (c). Note also that, in two
dimensions, the requirement that trajectories do not cross
each other prevents them from spiraling in, as long as an un-
stable small amplitude limit cycle surrounds the stable fixed
point P(rs). For values of rs > rs,H the fixed point P(rs)
changes from stable to unstable and there is no longer an
unstable limit cycle. In principle, trajectories starting close
enough to P(rs) spiral out and finally leave the N (v; rs) knee
neighborhood. However, the trajectories we are interested
in have initial conditions far away from P(rs), and they ap-
proach the knee and leave its neighborhood without spiraling
out.

In the above discussion, the separation of time scales was
assumed, using ε � 1. In (4) and (5), this separation of scales
during the STI studied here is intrinsic to the system. It can
be uncovered by defining ε = C / (GL T ) = 0.025 (T = 80
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Fig. 5 Phase diagram (V, r f ) for the reduced SC model for various
values of rs and Gh = 1.5 and Iapp = −2.5. The values of the other
parameters used in the simulations are given in Section 2. Lower pan-
els are magnifications of the upper ones. r f (V ) denotes a trajectory;
r f,∞(V ) and N (V ; rs ) are nullclines. (a) rs = 0: the trajectory converges

to a fixed point without spiraling. (b) rs = 0.085: the trajectory spirals
down to a fixed point. (c) rs = 0.086: the trajectory moves around
the knee of the nullcline N (V ; rs) and escapes the regime without
spiraling.

msec is an appropriate time scale in the STO regime and |Ek |
is an appropriate voltage scale). We pursue this elsewhere.
From (4) and (5) the V-nullcline is now given by

N (V ; rs )

= Iapp − G p p∞(V ) (V − ENa) − Gh 0.35 rs (V − Eh ) − GL (V − EL )

Gh 0.65 (V − Eh )

= N (V ; 0) − 0.35

0.65
rs . (8)

Equations (4) and (5) satisfy the hypotheses above: As
rs is increased, N (V ; rs) moves downward (with a change
of shape), and the leftmost critical point P(rs) moves to the
right. A standard stability analysis (not given here) shows
that, for the lowest values of rs , P(rs) is a stable node, as in
Fig. 5(a). As rs is increased, P(rs) becomes a stable focus
(Fig 5(b)). For a still larger value, the system undergoes a
subcritical Hopf bifurcation in the neighborhood of N (v; rs).
At still larger values of rs , the trajectory leaves the neighbor-
hood of the nullcline without oscillations. Indeed, Fig. 5(a–c)
were drawn from Eqs. (4) and (5). For the full Eqs. (1)–(3),

leaving the neighborhood of the nullcline, with or without
oscillations, corresponds to leaving the regime of the reduced
equations and going into a regime in which the spiking com-
ponents are important.

The time spent in each oscillation (decaying or expanding)
is closely related to the time the trajectory of (4)–(6) spends
moving along the slow manifold N (V ; rs). Thus, the canard
structure, which forces the trajectory to stay close to the
invariant manifold at the “top” portion of the oscillations,
imposes a time scale for the STO.

3.3.2. A three-dimensional approach: Generation of
subthreshold oscillations

Here we study system (4)–(6). As explained at the beginning
of Section 3.3 rs evolves slower than r f at the beginning of
the STO regime. From Fig. 3 (the second panel is a blow up
of the first one) it is apparent that r f and rs do not evolve in
different time scales; our calculations show that rs is at most
four times slower than r f and is approximately the same as
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Fig. 6 Dynamics of the reduced SC model for Gh = 1.5 and
Iapp = −2.5. The values of the other parameter used in the simula-
tions are given in Section 2. (a) Trajectory for r f and V when rs

evolves continuously. N (V ; 0) and N (V ; rs) are the upper and lower
V-nullclines respectively. The latter was calculated for an approxima-

tion of the highest value of rs . (b) Magnification of panel (a). Note
that when the trajectory escapes the regime (corresponding to the SC
firing an action potential), it does so at the same voltage at which
the previous STO reached its maximum. (c) voltage trace showing
STOs.

r f near the end of the STO regime. However, at least in part
of the STI, the separation of scales is still large enough to
allow the heuristic study of the dynamics of Eqs. (4)–(6) by
looking at continuously evolving phase planes (of the type
discussed in Section 3.3.1) for Eqs. (4) and (5), each one
corresponding to a specific value of the evolving variable rs .
Similar problems (Drover et al., 2004) have been shown to
be different from the classical slow passage through the Hopf
bifurcation (e.g. Neishtadt, 1987, 1988; Baer et al., 1989).

Our results are shown in Figs. 6 and 7. (The schematic
Fig. 4(a) is helpful in this explanation too.) As rs evolves, the
V-nullcline N (V ; rs) continuously moves down (see Eq. (8)),
generating a two-dimensional slow manifold. In Fig. 6(a)
we show two of these nullclines, corresponding to rs = 0
(top nullcline) and to a value rs > 0 (bottom nullcline).
Figure. 6(b) and 7 are (two- and three-dimensional) blow-
ups of Fig. 6(a). In Fig. 7 we can see the two-dimensional
slow manifold N (V ; rs) and the nullsurface r f,∞(V ) (which
is independent of rs). P(rs), which is also continuously
evolving, generates a segment of a curve contained in the
graph of r f,∞(V ). (In Fig. 4(b) this curve contains the
points P(0) and P(α).) There are two other relevant curves
parametrized by rs , the fold curve L joining the maxima
of N (v; rs) and the separatrix curve L B joining the points
PB(rs) (not shown in the Figs.). Since initially rs = 0 and
P(0) is a node (placed to the left of PB(0) as shown in
the schematic Fig. 4(b)), as rs increases, r f,∞(V ) intersects
both L and L B . Note that by intersecting the nullsurface
N (V ; rs) with planes rs = k (k > 0 constant) one recovers
the nullclines N (V ; k) corresponding to two-dimensional
systems, as described in Section 3.3.1. Values of P(rs) to
the right of L B and close enough to L B correspond to stable
foci in N (V ; k), and for some values of rs such that P(rs)
is to the right of L , P(rs) are to the left of the HB point.

Fig. 7 Dynamics of the reduced SC model for Gh = 1.5 and
Iapp = −2.5. The values of the other parameter used in the simula-
tions are given in Section 2. The V - and r f - nullsurfaces (N (V ; rs )
and r f,∞(V ) intersect at P(rs ). The line L joins the local maxima of
N (V ; rs) corresponding to fixed values of rs . The trajectory T oscillates
and escapes the STO regime.

We use both two- and three-dimensional approaches in our
explanation.

Due to the separation of time scales (between the fast
variable V and the slow variables r f and rs), the trajectory T
starting at (V0, r f,0) = (−80, 0) stays close to the manifold
N (v; rs) (Fenichel, 1971) and moves towards P(rs). The 2D
points P(rs) are not fixed points (in the three-dimensional
view); they are target points towards which the trajectory
moves. In Fig. 6(a) we see the trajectory moving up and
to the right until it intersects the “curve of fixed points”
(r f,∞(V )). Note that the speeds of rs and r f in Fig. 3 are not
constant, but decrease and become of the same order of
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magnitude as these variables approach the STO regime.
When T gets close enough to the knee of N (V ; rs) and
rs is such that P(rs) corresponds to a focus in a two-
dimensional view, T oscillates, staying close to the slow
manifold N (V ; rs). The amplitude of the oscillations de-
creases as P(rs) approaches the curve L . In Fig. 6(a) these
oscillations are the ones with decreasing amplitude in be-
tween the two nullclines. In the two-dimensional view, this
corresponds to “spiraling down” to a fixed point. As this
happens, the speed of rs decreases, rs

′ ∼ r f
′, and the two-

dimensional approach breaks down. Indeed, one cannot in-
voke it to explain the oscillations with increasing amplitude
around the bottom nullcline in Figs. 6 and 7. Heuristically,
past the HB point, the restriction imposed on 2D systems
by the unstable limit cycle is not relevant (due to the ex-
tra dimension in the 3D system), and there is no longer an
impediment for T to spiraling outward in the locally rele-
vant 2D analogue. Thus, as rs increases further, P(rs) moves
to the right of the HB point and the trajectory escapes this
regime to the spiking one, where INa and IK get activated.
However, the 2D picture is not an accurate one in the vicinity
of the knee. In this region the time scale differences disap-
pear and rs is involved in the oscillations with increasing
amplitude along with the remaining variables. In this region
rs is no longer a modulatory variable and we do not have a
2D structure in which N (V ; rs) moves monotonically with
rs .

The facts just described, together with the shape of the
trajectory in Fig. 6(b) and some preliminary calculations
(not presented here), suggest we are in the presence of a
canard phenomenon in R3 (Szmolyan and Wechselberger,
2001; Wechselberger, 2005); i.e., trajectories are trapped in
a transient rotational “funnel” for a significant amount of
time. Since this behavior is transient, eventually the trajec-
tory exits the funnel and typically jumps along a fast direction
either to the left (producing one last rotation) or to the right
(Wechselberger, 2005; Brons et al., 2005). In Fig. 6(b) we
can see this last rotation (with an amplitude significantly
larger than the previous ones) before the trajectory escapes
the STO regime.

A rigorous explanation of the STO mechanism in terms
of the canard phenomenon in R3 is beyond the scope of this
manuscript, mainly because of the complexity of the tools
needed (Wechselberger, 2005; Drover et al., 2004).

The number and amplitude of the STOs is affected by the
speed of rs : The slower rs , the more STOs are developed,
since T spends more time near the knee. On the other hand,
if rs evolves fast enough, T does not spend enough time near
the knee for even one STO to be generated. In the reduced
SC model, the speed of rs is not uniform but decreases with
time (see Fig. 3). To the first approximation, it is faster for
values of rs < rs,M (P(rs) to the left of the curve L) than
for values of rs > rs,M . Thus, there may be fewer STOs

with decreasing amplitude. As a consequence the STOs with
decreasing amplitude are hard to see.

3.3.3. A stellate cell nonlinear artificially spiking (NAS)
model

The fact that INa and IK are inactive during the STO regime
suggests that if one is not interested in the spike details but
only in the generation of a spike, the dynamics of the SC can
be approximately described by a nonlinear artificially spik-
ing (NAS) model consisting of Eqs. (4)–(6) supplemented
with an artificial spike. The onset of spikes is described by
the dynamics of Eqs. (4)–(6). In our simulations we give an
appropriate threshold value, Vth = −10 mV to indicate that
the trajectory is moving along a fast direction towards the
spiking regime. More negative values may be good as well.
We give also a reset value, Vrst = −80 mV, which is a good
approximation to the reset value in the full SC model. Ac-
cording to Section 3.2.2, a good approximation to the reset
values of the h-current gating variables are r f = rs = 0.

In the full SC model there is a brief intermediate regime
in between the spiking regime and the STO regime studied
here. This regime corresponds to the recovery of the voltage
after a spike. It is different from the STO regime studied
here in that IK is an active current and its gating variable
n evolves on a time scale faster than both r f and rs ; i.e.
n is a dynamic variables interacting with v. In this regime,
both r f and rs evolve slowly from their reset values for a
short amount of time, so these reset values are still a good
approximation.

NAS type models include the generalized integrate- and
resonate-and fire (GIF and GRF) models (Izhikevich, 2001;
Richardson et al., 2003). In the generalized integrate-and-fire
models used by Richardson et al. (2003) to study resonance
effects, there is either a two-component Ih or a INap and IK s

(slow K + current). To our knowledge no NAS model has
been proposed having both Ih and INap. Our NAS model
describes the STI with asymptotic accuracy and is a good
approximation of the full SC model (1)–(3).

3.4. Robust subthreshold oscillations in a noisy NAS
SC model

In Section 3.3 we explained the mechanism of generation
of STOs for the reduced SC model, which is deterministic.
One of the features of deterministic SC models is that, for
physiologically plausible parameters (and consequent speeds
of rs), STOs and mixed mode patterns are unlike those seen in
experiments. If the STOs generated by the SC model do not
decay to resting potential, they increase their amplitude until
an action potential is fired (see Fig. 6(c)). In the latter case, the
temporal patterns are regular. In Fig. 8(a) we show the voltage
trace for a value of Iapp just above this corresponding to the
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Fig. 8 STOs for noiseless and
noisy systems for Gh = 1.5.
The values of the parameter
used in the simulations are given
in Section 2. (a) D = 0 and
Iapp = −2.55. In the absence of
noise the amplitude of the STOs
increase uniformly with time
and eventually the SC fires an
action potential. In the figure we
show the STOs occuring in the
basic time interval (up until the
first spike). For Iapp = −2.58
and D = 0 the SC is silent (data
not shown). (b) D = 10−6 and
Iapp = −2.58. STOs are
produced in the presence of
noise, but the amplitude does
not increase uniformly with
time. For comparison we show
the STOs not exceeding the
basic time interval (for the same
amount of time as in Fig. (a)).
(c) D = 10−6 and Iapp = −2.58.
Comparison of the STOs
produced in the noiseless case
with a sinusoidal function
(10 Hz). (d) D = 2.5−5 and
Iapp = −2.7. Comparison of the
STOs produced in the noiseless
case with a sinusoidal function
(10 Hz). The value of D is
larger as compared to the one in
(c) and the STOs are more
influenced by noise.

cell decaying to resting potential. We ended the simulation at
a time right before the first spike occurred. (We will call this
maximal time interval TSTO,max.) In experiments, however,
when the membrane potential is depolarized from resting
potential to a value below spiking threshold, STOs at a theta
frequency are generated with no apparent amplitude pattern.
See Section 1 for references.

Various modeling studies have introduced channel noise
in order to obtain robust STOs. White et al. (1998) showed
that the number of persistent Na+ channels underlying STOs
is relatively small, and argued that the stochastic behavior
of these channels may contribute crucially to the cellular-
level responses. In their study they used a biophysical
stochastic-deterministic model having INap and IK s in ad-
dition to the standard HH currents. The INap they used
was represented by a population of stochastic ion chan-
nels. Using this model they found regimes in which STOs
and spikes coexist. More recently, Fransén et al. (2004)
used a noisy model having INap and a two-component
Ih . They concluded that, although noise is not required
for the SC to display STOs, its presence increases their
robustness.

Here we first show that, consistent with the findings men-
tioned in the previous paragraph, our SC model is able to
produce robust STOs. Secondly, we discuss the conditions
under which STOs are more regularly seen. Finally, by study-
ing the effect of deterministic perturbations to fixed points,
we show how the effects of noise can be explained using the
canard structure framework discussed in previous sections.

3.4.1. Noise generated STOs: Simulations

Following White et al. (1998) we introduce channel white
noise in INap. We do that in a way that is simple enough
to give an explanation of the mechanism of generation of
robust STOs due to noise effects. (We do not claim that
our approach is the most appropriate biophysically plausible
one.) More specifically, we add a stochastic term

√
2 D η(t)

to the dynamic equation for p. This term is delta corre-
lated with zero mean; i.e., 〈η(t), η(t ′)〉 = δ(t − t ′). D > 0 is
the standard deviation. Since p is slaved to p, we substitute
p∞(v) + τp(v)

√
2 D η(t) for p∞(v) in Eq. (4).

In order to get results qualitatively similar to the findings
of other authors (e.g., see Fransén et al. (2004)) the value

Springer



282 J Comput Neurosci (2006) 21:271–292

of the tonic drive needs to be set to Iapp = I 0
app = −2.58, so

that in the absence of noise the SC is silent (the trajectory
evolves towards a stable fixed point) but, for a slightly higher
value of Iapp, the cell displays MMOs (STOs and spikes).
For example, the voltage traces for a noiseless system (D =
0) shown in Fig. 8(a) correspond to Iapp = −2.55 > I 0

app.
The ones shown in Fig. 8(b) correspond to a noisy system
(D = DM = 10−6) and Iapp = I 0

app. In the noisy system, the
STOs have no monotonically increasing amplitude. These
persistent STOs are possible due to stochastic fluctuations,
since I 0

app corresponds to a deterministic silent cell. The value
DM is approximately the largest value of D for which the
SC displays only STOs in the time interval TSTO,max.

In Fig. 8(c) we compare the voltage trace of the SC pre-
sented in Fig. 8(b) with a 10 Hz sinusoidal function, to show
that the noisy SC oscillates at approximately this frequency.
The power spectrum of the STOs in Fig. 8(b) and 8(c) have
a well defined peak at 10 Hz (data not shown).

If one chooses a value of Iapp < I 0
app (making the cell

silent and further away from the STO regime), one can still
get STOs with a theta frequency component, provided the
value of D is considerably increased (by a factor of 25).
As an illustration, Fig. 8(d) shows the voltage traces for
Iapp = −2.7 and D = 2.5 × 10−5. There the agreement with
a 10 Hz sinusoidal function is not as good as in the previous
case discussed and the voltage trace appears noisier than in
Fig. 8(c) (where Iapp = I 0

app).
Our simulations all show that, as D decreases, the fre-

quency preference is kept, but the amplitude of the STOs de-
creases (data not shown). Qualitatively similar results have
been obtained for other similar parameters regimes. In all
parameter regimes considered, robust STOs similar to the
ones shown in Fig. 8(b) were found, provided Iapp was such
that the SC is silent but close to the STO regime.

3.4.2. Noise generated STOs: The role of the canard
structure

A heuristic explanation of the effect of noise can be achieved
by using the canard structure framework described in for-
mer sections. As before, we view the dynamics of the
three-dimensional system as a two-dimensional system with
rs moving the V-nullcline N (V ; rs) and generating a two-
dimensional slow manifold. In Fig. 9 we show phase space
diagrams analogous to those in Fig. 6 corresponding (from
9(a) to 9(c)) to the STO-noiseless cell (Iapp = −2.55 and
D = 0), silent-noiseless cell (Iapp = −2.58 and D = 0) and
STO-noisy cell (Iapp = −2.58 and D = 10−6). Note that
Figs. 9(a) and (c) are the phase diagrams of Figs. 8(a) and
(b) respectively. The bottom panels represent blow-ups of
the upper ones.

In all three cases the trajectory moves fast towards the slow
manifold N (V ; rs) and approaches the region of “knees”. In

the STO-noiseless case (Fig. 9(a)), as in Fig. 6, the trajectory
rotates and escapes the STO regime. In Fig. 9(b) (silent-
noiseless case), the trajectory reaches a fixed point and stays
silent (the value of Iapp is lower than the one in Fig. 9(a)). In
Fig. 9(c) the values of the parameters are as in 9(b) but the
system is noisy (D = DM = 10−6), so the trajectory oscil-
lates around the knee. (As in Fig. 8 spikes are not produced
in the maximal time interval TSTO,max.) These oscillations
(and their amplitude) are the result of the trajectory being
attracted to the unstable manifold of the V-nullsurface for a
certain (and large enough) interval of time in successive cy-
cles instead of decaying rapidly to a fixed point or escaping
the STO regime.

To investigate further the role of the canard structure
in the generation of STOs via noise, we study the evolu-
tion of (deterministic) perturbations to the silent cell steady
state Pss = (Vss, r f,ss, rs,ss) for the two set of parameters
(Iapp = Iapp,0 = −2.58 and Iapp = −2.70) corresponding to
Figs. 8(c) (whose phase diagram is given in Fig. 9(c)) and
8(d) respectively. Increasing values of Iapp place the system
closer to the canard regime; i.e., Pss is closer to the bifurca-
tion where it loses stability for Iapp = −2.58 (Fig. 8(c)) than
for Iapp = −2.7 (Fig. 8(d)). We will show that in both cases
there is a neighborhood (in 3D space) of the fixed point Pss

such that trajectories starting inside this neighborhood spi-
ral down towards Pss following the V-nullsurface unstable
manifold for a significant interval of time before crossing to
the stable one. This spiraling down is slower the higher the
value of Iapp, and it is particularly slow for Iapp = −2.58,
so the amplitude of the oscillations resulting from perturba-
tions is mantained for many cycles. We start by looking at
this regime (Fig. 10(a)) and we contrast our findings with
the Iapp = −2.70-regime (Fig. 10(b)) where the amplitude
of the oscillations decreases much faster and a larger value
of D is required to get a theta frequency component in the
voltage traces.

In Fig. 10, Pss is the intersection of the curves N (V ; rs,ss)
and r f,∞(V ). All panels correspond to perturbations to
Pss such that V -component of the new initial conditions
(V0, r f,0, rs,0) is to the right of Vss (V0 > Vss). The left and
right panels correspond to very close initial conditions lead-
ing to trajectories spiraling down towards Pss or escaping
the STO regime (the trajectories cross the plane V = −50
and continues to grow).

For Iapp = −2.58 (Fig. 10(a)), Pss is such that Vss =
−53.213757, r f,ss = 0.065552 and rs,ss = 0.091690 and
the initial conditions (V0, r f,0, rs,0) have been set equal to
(−52.451, r f,ss, rs,ss) (left panel) and (−52.450, r f,ss, rs,ss)
(right panel). For other perturbations to the right of Vss

such that V0 < −52.451 or V0 > −52.450 trajectories spi-
ral inward or outward respectively. These trajectories do not
evolve in a plane; the rs component oscillates with an ampli-
tude whose order of magnitude is that of r f (not shown). The
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Fig. 9 Dynamics of the reduced SC in the noiseless and noisy cases.
Trajectories (r f (V )) when rs varies continuously. N (V ; 0) and N (V ; rs)
are the upper and lower V-nullclines respectively. The latter was cal-
culated for an approximation of the highest value of rs . The bottom

panels are magnifications of the top ones. (a) D = 0 and Iapp = −2.55
(noiseless STOs). (b) D = 0 and Iapp = −2.58 (noiseless silent cell).
(c) D = 10−6 and Iapp = −2.58 (noisy STOs).

amplitude of the spiraling inward trajectories decreases very
slowly; i.e., these trajectories are tightly packed. So consecu-
tive cycles have almost the same amplitude and the frequency
of the oscillations, determined by the canard structure, is
almost constant. Another feature of trajectories spiraling
inward (Fig. 10(a), left panel) is that amplitude perturba-
tions of the same magnitude in different directions have
differentiated effects. For example, let us consider pertur-
bations up and down from Pss (in the r f direction). We can
see in Fig. 10(a), (left panel) that the magnitude of the per-
turbation up needed to bring the trajectory to the boundary
of the basis of attraction of Pss is lower than the magnitude
of the perturbation down needed to bring the trajectory to
the same situation. We obtained qualitatively similar results
for perturbations including changes in the rs direction (not
shown).

The effects of noise can be heuristically explained as per-
turbations (stochastic rather than deterministic) to the under-
lying dynamic structure (given by the nullsurfaces) of the
type described in the previous paragraph. In the mean, this
structure is as in Fig. 9(b); i.e., as in the deterministic version
where the SC is silent. As a consequence of the stochastic

perturbations, Pss will no longer be fixed, and the nearby
dynamics determines how trajectories will move. If the tra-
jectory is initially at Pss and D is small enough, the trajec-
tory will be left in the basin of attraction of Pss(t) and it will
evolve (approximately) according to the dynamics described
in Fig. 10(a), which is deterministic; i.e., it will oscillate
with a slowly changing amplitude. This amplitude will be
larger the further away from Pss(t) the trajectory is left; and,
for the same magnitude of the noisy perturbation, it will be
larger if the trajectory is left above the V -nullsurface than
below it. The continuing effect of noise mantains the trajec-
tory moving around the knee with almost uniform frequency
and amplitude. As in the deterministic case, both are dictated
by the canard structure; i.e., by the time the trajectory spends
moving along the V-nullsurface unstable manifold.

Let us look now at the regime where Iapp = −2.70
(Fig. 10(b)) corresponding to Fig. 8(d) (higher noise as com-
pared to the case discussed previously). Pss is such that
Vss = −53.482613, r f,ss = 0.067261 and rs,ss = 0.095361;
and it is further away from the knee than in the regime
discussed in the previous paragraphs. The initial conditions
(V0, r f,0, rs,0) have been set equal to (−52.09, r f,ss, rs,ss)
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Fig. 10 Phase diagrams for
deterministic perturbations to
the stable fixed points
Pss = (Vss , r f,ss , rs,ss ). In all
cases r f,init = r f,ss and
rs,init = rs,ss . (a) Iapp = −2.58,
Pss = (−53.213757,

0.065552, 0.091690),
Vinit = −52.451 (left) and
Vinit = −52.45 (right). The
trajectory displays STOs with
slowly changing amplitude (left)
or escapes the STO regime after
performing STOs (right). (b)
Iapp = −2.70,
Pss = (−53.482613,

0.067261, 0.095361),
Vinit = −52.09 (left) and
Vinit = −52.08 (right). The
trajectory displays STOs with
rapidly changing amplitude
(left) or escapes the STO regime
without performing STOs
(right).

(left panel) and (−52.08, r f,ss, rs,ss) (right panel). In both
cases V0 is in the vicinity of the V-nullsurface unstable
manifold, but in the latter case the trajectory is not close
enough to that manifold, so it escapes the STO regime
(it crosses the plane V = −50 and V continues to grow).
Fig. 10(b) (left panel) shows that, in contrast to Fig. 10(a), the
oscillations are less packed and their amplitude is much less
uniform (decays faster) compared to the ones in Fig. 10(a).
Qualitatively similar results were obtained for perturbations
including changes in the rs direction (not shown).

In contrast to the regime where Iapp = −2.58, here noisy
perturbations in different directions have different dynamic
effects. We show this schematically in Fig. 11. The square
around the fixed point is a representation of the region
where the trajectory is assumed to be left after any per-
turbation if it was previously at the fixed point. We call R̄ j

( j = I, II, III, IV) the intersection between the square and
each of the regions R j , not including the fixed point. Each
pulse moves the fixed point and leaves the trajectory in one
of the regions R̄ j . Trajectories in R̄I, R̄III or R̄IV converge
to the stable fixed point performing very small amplitude
oscillations. Region R̄II is a distinguished case. Trajectories
starting there are unable to come back to the stable fixed
point without going around the knee and so performing a

STO. Unless continuing noise is strong enough to push a
trajectory in RII, and close enough to Pss , back to any of the
other regions, this trajectory stays in RII and a STO is forced.
Since, after the first STO, the amplitude of trajectories in RII

rapidly decreases, the noise magnitude needed to maintain
STOs with an amplitude similar to that in the Iapp = −2.58
case, has to be stronger than in the Iapp = −2.58 regime, and
the voltage traces become noisier (see Fig. 8(d)). However,
the frequency of these STOs is still dictated by the canard
structure.

4. Discussion

Subthreshold membrane potential oscillations have been ob-
served at various locations in the brain (Llinás and Yarom,
1981, 1986; Alonso and Llinás, 1989; Hutcheon et al., 1996;
Dickson et al., 2000b; Erchova et al., 2004). In the last years,
the study of STOs in the MEC has received special attention
from both the experimental and theoretical point of view
(see references in Section 1). The results presented in this
manuscript contribute to the understanding of the biophysical
mechanism of this phenomenon. While previous theoretical
studies were based on simulations, we focus here on the

Springer



J Comput Neurosci (2006) 21:271–292 285

Fig. 11 Schematic diagram of the nullclines N (V ; rs ) and r f,∞(V ).
The square encloses possible perturbations from the fixed point. The
arrows show the direction of motion of trajectories.

dynamic framework (canard structure) underlying the nu-
merical results.

The structure we have uncovered is intrinsically three-
dimensional. We note that STOs and MMOs can be produced
by other mathematical mechanisms in two-dimensional mod-
els with noise, both linear and nonlinear, (e.g., Izhikevich,
2001; Makarov et al., 2001). We are interested here in the
particular dynamical mechanism uncovered from a detailed
biophysical model of the SCs, a mechanism which is wholly
different from that of the linear or nonlinear two-dimensional
models with noise. The two-dimensional (Makarov et al.
(2001) model, while reproducing some aspects of biophys-
ical models, is a description of inferior olive STOs (and
MMOs) and does not contain the specific biophysical details
thought to be important for MEC SCs.

One may ask whether the two-dimensional models with
noise can reproduce the phenomenon observed in SCs in
a way that is faithful to known experimental facts. Our
model, built on known detailed biophysics, makes the pre-
diction that the slow component of the h-current (third di-
mension) plays a critical role in the generation of STOs
and MMOs. This prediction can differentiate between the
dynamical mechanism presented here and two-dimensional
models, which do not have any extra slow variable. Further
theoretical and experimental work may help to illuminate
the circumstances under which the different mechanisms
operate.

It was already known that the interaction between INap

and Ih is enough to account for the generation of STOs in
layer II of the MEC. However, the specific role of each one
of these currents, in particular the fast and slow compo-
nents of Ih and the dynamics of their interaction, was not yet
understood. To answer these questions we looked at a bio-

physical single-cell model that has been used in the past to
study synchronization properties of SCs. We demonstrated
that this seven-dimensional model can be approximated by
a reduced three-dimensional model in the STI, where STOs
are observed. This approximation is based on the fact that
the spiking generation currents (INa and IK) are not active
in the STI regime (this is not always true for spiking mod-
els, as explained in Section 3.2.1). Furthermore, there is a
clear separation of scales between the voltage (V ) and the
two Ih gating variables (r f and rs). This, together with the ar-
rangement of the nullsurfaces in the three-dimensional phase
space, creates what we call the canard structure. This struc-
ture serves as the basic framework to understand the dynamic
aspects of the generation of STOs and MMOs (coexistence
of STOs and spikes). In the absence of rs as a dynamic vari-
able, the V and r f nullclines intersect at a fixed point that
is a stable node, stable focus or unstable focus. Thus, in
the noiseless case, trajectories can either converge to a fixed
point (in an oscillatory fashion or not) or spike. No MMOs
are possible. The role of rs is, roughly speaking, to serve
as a bridge between both dynamic behaviors, allowing for
coexistence of STOs and spikes. More specifically, after the
reset of Ih (due to a spike), rs first evolves much slower than
r f and V . Even though r f and rs differ by less than an or-
der of magnitude, rs is responsible for bringing the trajectory
back to the “knee area” of the V-nullsurface (slow manifold).
When this region is reached, r f and rs evolve roughly on the
same time scale and trajectories rotate around the knee until
they are allowed to leave the rotation area and escape the
regime. The value of V at which the escape happens, if at
all, is the one corresponding the peak of a STO. Thus the
canard structure approach explains why spikes occurs at the
peak of the STOs, as experimentally found (Dickson et al.,
2000b).

The dynamics of (4)–(6), described by the canard struc-
ture, cannot be simplified to a noisy two-dimensional linear
model. As we show in Fig. 12, the time scale separation is
lost in neighborhoods of stable foci, around which system
(4)–(6) has to be linearized in order to see STOs. However,
since foci are far away from the reset values, trajectories
of the linearized system around a focus will evolve with a
very large starting amplitude (almost equal to the distance
between the chosen focus and the reset values); i.e., not in
the STO range, reaching threshold before getting to the STO
region. As a consequence of that, no STOs and MMOs will
be seen. However, a noisy two-dimensional model with a
canard structure can be used to produced MMOs similar to
the ones shown in this paper. To achieve that, Ihs has to be
replaced by an increase in the value of Iapp (constant), so the
trajectory returns to the STO region.

The patterns of activity seen in experiments are very ir-
regular, in contrast to the regular patterns (a constant number
of STOs per spike) obtained in our deterministic SC model.
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Fig. 12 Real part of the eigenvalues for the reduced system (4)–(6)
as a function of the V -coordinate of the fixed point. Gh = 1.5 and the
values of the other parameters are given in Section 2. The right panel is
a blow up of the left one. For lower values of V the three eigenvalues
have zero complex part. For the highest values of V in the figure, two of

the eigenvalues have nonzero complex part (conjugate). These values of
V correspond to fixed points close to the “knee” of the slow manifold.
The time scale separation decreases as the fixed point gets closer to the
knee. For fixed points in the oscillatory regime, there is no time scale
separation.

In terms of the canard mechanism proposed in this paper, the
occurrence of a spike can be thought of as a loss of stability
of the STO regime (a spiking instability). In related theoret-
ical work, stochastic models with persistent sodium channel
noise, have been succesfully used to enhance the robustness
of STOs (White et al., 1998). In Section 3.4 we obtained the
same result for our NAS SC model and we identified con-
ditions under which the STOs are very close to a sinusoidal
function.

One explanation for the effect of noise in enhancing the ro-
bustness of STOs might be that noise suppresses spikes; i.e.,
noise prevents spiking by moving the V-nullcline in a way
that forces the trajectory to stay away from the spiking insta-
bility. However, our theoretical approach (using the canard
structure) suggests that this is not necessarily the case. For
the parameters considered in our simulations, the most robust
STOs are obtained when, in the absence of noise, the SC is
silent but close to STO activity. The effect of noise is to force
the system to move around the knee of the voltage nullcline,
thus creating a STO. In this sense, noise creates an “interme-
diate STO state” in between silence and STO/spiking. While
the trajectory is moving close to the V-nullsurface unstable
branch, the effect of noise is not very important. If the noise
amplitude (D) is too big, a spike can be produced when the
trajectory gets close to the knee. Otherwise, the trajectory
continues to oscillate.

The structural dynamic ideas presented here are consistent
with previous theoretical observations (based on simulation
results) by Fransén et al. (2004). Using a noisy model, they
concluded that Ih f , rather than Ihs , is the major factor in the
oscillation generation. Our theory predicts that rs is neces-
sary to bring the trajectory back to the neighborhood of the
“knee” of N (V ; rs) after a spike has occurred. However, once

the trajectory is there, in the noisy model, robust STOs can
occur in the absence of rs . Fransén et al. (2004) also found
that, consistent with experimental results, full or partial block
of Ih abolishes oscillations. Blockade of Ih is modeled by de-
creasing the value of Gh , which has the effect of moving the
nullsurface N (V ; rs) up, while keeping r f,∞(V ) unchanged
(see Fig. 13 for the effect of changes in parameters on the
canard structure). The stable fixed point P(0) is then farther
away from the knee and one can find regimes in which STOs
are not possible (unless rs has a quicker time scale and lowers
N (V ; rs) in a timely manner).

As in Fransén et al. (2004), the Ih gating variable time
scales (τr f and τrs ) are voltage dependent. Models with time-
independent time scales have been proposed (Spain et al.,
1987; Richardson et al., 2003; Schreiber et al., 2004). Their
values and the ones we use here in the STO regime have ap-
proximately the same order of magnitude. From the dynamic
point of view, voltage-independent time scale models differ
from voltage dependent ones in that Ih does not reset during
a spike. Consequently, the initial conditions for r f and rs in
the STO regime are not necessarily zero. If they are high
enough, the trajectories may escape the spiking regime with-
out performing STOs, as we show in Fig. 14. (In the Figure
r f (0) �= 0 and rs = 0, but the same type of picture can be
obtained for r f (0) = 0 if rs(0) �= 0 is high enough). In this
case, even though STOs are not observed, the system has the
potential of producing them. They might be uncovered by
different types of external inputs (synaptic or sinusoidal) in
network and resonance studies.

Clustering, MMOs in which two or more consecutive
spikes come in a row with no STOs in between, is a pat-
tern seen is SCs. Fransén et al. (2004) found clustering pat-
terns by performing simulations in a model with additional
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Fig. 13 Changes in the parameters of the model are reflected in the
properties of the canard structure. Here, the V-nullsurfaces are repre-
sented by the nullclines N (V ; 0) (the projections of the V-nullsurfaces
onto the plane rs = 0). Increasing the value of Gh or G p and keeping all

other parameters constant moves the V-nullsurfaces down and makes it
easier for the cell to fire. The values of the parameters, except G p and
Gh , are given in Section 2. (a) G p = 0.5. (b) Gh = 1.45.

Fig. 14 STOs may not be observed if Ih does not reset. The values
of the parameters are as in Fig. 6 (Gh = 1.5 and Iapp = −2.5 and
the value of the other parameters used in the simulations are given in
Section 2). The initial conditions for r f is r f (0) = 0.115) (different
from the reset value r f (0) = 0). The initial conditions for V and rs

are as in Fig. 6. N (V ; 0) and N (V ; rs ) are the upper and lower V-
nullclines respectively. The latter was calculated for an approximation
of the highest value of rs . When the trajectory (for r f and V when
rs evolves continuously) reaches the “knee” area, N (V ; rs) has moved
down enough (to an intermediate curve between the two shown in
the figure) so the trajectory escapes the regime without displaying
STOs.

currents. They found that Ih (specially its slow component)
plays an important role in clustering. The reset of Ih in the
current paper prevents clustering from occuring in the model

studied in this paper since, after each spike, the initial con-
ditions in the STO regime force the trajectory to perform
at least one STO before being able to escape to the spiking
regime. However, the underlying canard structure gives some
hints on possible and biologically plausible clustering mech-
anisms. Assuming a reduced regime like the STO regime
presented in this manuscript, one hypothetical mechanism
would include an extra current that could be a modulatory
current in the STO regime or an active current in the inter-
mediate regime (in between the spiking and the STO one
that governs the recovery of the SC after a spike). The role
of this current would be to make r f and rs evolve from their
reset values to values that are high enough to escape the STO
regime without performing any STOs. A second hypotheti-
cal mechanism involves the nullsurface geometry instead of
initial (reset) conditions; it would include an extra current
whose role is to transiently moves the nullsurface N (V ; rs)
downwards, thus allowing the trajectory to escape the regime
without performing STOs. This current may or may not be
modulatory. In the latter case, the dimensionality of the STO
regime would be increased.

The function of STOs is not clear yet, but they are believed
by some to play a role in synchronization and other coher-
ent dynamic behavior (Hutcheon and Yarom, 2000; Dickson
et al., 2000a; Buzsáki and Draguhn, 2004). The synchroniza-
tion of SCs and networks including SCs have been studied by
various authors (Acker et al., 2003; Netoff et al., 2004; Rot-
stein et al., 2005b; Pervouchine et al., 2005). We compared
the synchronization properties of SCs and networks includ-
ing SC using the reduced NAS and the full SC models (see
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Appendix B and Fig. 15). We found a qualitative agreement
between the results in the two cases. This suggests that the
relevant currents governing the synchronization properties
in SCs are not the spiking currents but the ones active during
the STO regime. The mechanism uncovered in this paper

is not the only possible one for STOs involving INap and
Ih . In fact, in a model for STOs in relay thalamic neurons
(Izhikevich, 2005), the V-nullcline is cubic-like and inter-
sects the h-current “gating variable nullcline” in the midle of
the unstable branch (creating an unstable fixed point). STOs

Fig. 15 Results of simulations for two uncoupled SCs receiving
GABAergic input from an interneuron at various frequencies. The
synaptic function is given by (A.2) with with τ1 = 5, τ2 = 1.68
(τdec 6.96) and Gs = 0.1. The natural frequency of the SCs is 10 Hz. The
natural frequency of the I-cells (νI) is varied and displayed above each
plot. As this natural frequency increases different temporal patterns are
obtained. (a) νI ∼ 10 Hz : The SCs fire in phase and the I-cell inposes
its frequency to the SCs. The results are similar for νI in the theta range
(8–12 Hz). (b) νI ∼ 13 Hz: The patterns are not coherent. The I-cell
input is fast enough to suppress some of the SC spikes. The timing of
the SCs firing is such that an input from the I-cell may advance the

spiking of one of the SCs and delay the other. (c) and (d) νI ∼ 22.5 Hz:
Depending on initial conditions the SCs fire in phase or in antiphase.
The I-cell fires fast enough to suppress some of the spikes. (e) and (f)
νI ∼ 27.5 Hz: Depending on initial conditions the SCs fire in phase or
with a phase lag of one third. The I-cell fires fast enough to suppress
some of the spikes, but an increase of the h-current from cycle to cycle
causes the SCs to fire. (g) νI ∼ 39 Hz: It takes an increasing number of
cycles for the h-current to build up enough to overcome inhibition. (h)
νI ∼ 42 Hz: The SC firing is completely suppressed. The h-current is
not able to increase to high enough values as to allow the SC voltage to
reach threshold (Continued on next page).
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Fig. 15 (Continued).

in that model are the result of trajectories moving around the
two stable branches of the V-nullcline (Izhikevich, 2005).
We hypothesize that the canard structure (as opposed to the
STOs themselves) plays an important role in synchronization
properties.

Problems with similar mathematical structure as the one
given by Eqs. (4)–(6) have been studied by Wechselberger
(2005) and Drover et al. (2004) in order to explain the
spike-frequency reduction of a Hodgkin-Huxley neuron due
to excitatory synaptic self-coupling. In both cases, a two-
dimensional system with fast (V) and slow (h) variables was
used to model the dynamics of the neuron, and an extra slow
variable was used for an autapse on the neuron. In both cases,
the reduction of spiking frequency is the result of the trajec-
tory beings trapped in a neighborhood of a fold line (L in our
notation). As in our model, STOs (or MMOs) are observed
in a neighborhood of L . However, in the SC model, the STOs
are intrinsically generated by the single cell with no need of
a synaptic self-coupling.

In this work we give heuristic arguments to explain the
generation of STOs in the SC model. Work in progress,
including the development of reduction of dimension tech-
niques (Rotstein et al., 2005a) and the application of the
theory developed by Wechselberger (2005), aims to make
the justifications of the reductions to the NAS model and the
generation of STOs more precise.

Appendix A

Here we give the definitions of the functions defining
x∞(V ) and τx (V ) :

αm(V ) = −0.1 (V + 23)/(e−0.1 (V +23) − 1),

βm(V ) = 4 e−(V +48)/18,

αh(V ) = 0.07 e−(V +37) / 20,

βh(V ) = 1/(e−0.1 (V +7) + 1),

αn(V ) = −0.01 (V + 27)/(e−0.1 (V +27) − 1),

βn(V ) = 0.125 e−(V +37)/80,

αp(V ) = 1/(0.15 (1 + e−(V +38)/6.5)),

βp(V ) = e−(V +38)/6.5/(0.15 (1 + e−(V +38)/6.5)),

r f,∞(V ) = 1/(1 + e(V +79.2)/9.78),

τr f (V ) = 0.51/(e(V −1.7)/10 + e−(V +340)/52) + 1,

rs,∞(V ) = 1/(1 + e(V +2.83)/15.9)58,

τrs (V ) = 5.6/(e(V −1.7)/14 + e−(V +260)/43) + 1.

Note that τp(V ) = 0.15 and p∞(V ) = 1/(1 + e−(V +38)/6.5).
The function rs,∞(V ) used here differs from the one pub-
lished in Acker et al. (2003): rs,∞ = 1/(1 + e(V +71.3)/7.9).
The former corresponds to an earlier version of that paper.
Both forms are almost equal, specially in the STI.

Appendix B: Synchronization properties of networks
of NAS SC models

The full SC model (1)–(3) has been used to explain the role
of Ih in the synchronization properties of networks includ-
ing SCs and other cells having similar electric properties
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(Acker et al., 2003; Netoff et al., 2004; Jalics et al., 2004;
Rotstein et al., 2005b). Among the latter we mention the
oriens lacunosum-moleculare (O-LM) cells in the hippocam-
pus (Gillies et al., 2002). In previous sections we showed that
the effects of Ih are captured by the NAS SC model (4)–(6).
As a way of further checking its validity, here we study the
synchronization properties of networks models, including
the NAS SC model. We compare our results with previous
ones using the full SC model.

To consider the effect of synaptic currents to each SC we
add a synaptic term −IS to the current-balance Eq. (4)

C
dV

dt
= Iapp − G p p∞(V ) (V − ENa) − IL − Ih − IS

(A.1)

where IS = GS S (v − Erev) and Erev = Eex = 0 mV or
Erev = Ein = −80 mV (corresponding to GABAA, for ex-
citatory or inhibitory synaptic connections respectively. The
synaptic variable S we used is given by Dayan and Abbott
(2001)

S = SN (e−t/τ1 − e−t/τ2 ), with

SN =
[ (

τ2

τ1

)τrise/τ1

−
(

τ2

τ1

)τrise/τ2
]−1

. (A.2)

We define the decay time τdec as the time it takes S to decay
from its maximum value to 0.37 % (1/e) of its maximum
value. Below, the units of τ1, τ2 and τdec are msec, and
the units of GS are mS/cm2. We performed simulations for
different natural frequencies of the SCs in the theta range (8–
12 Hz). The natural frequency of a cell is its firing frequency
when uncoupled.

We consider different types of networks in which exci-
tatory and/or inhibitory connections are present. SCs are
excitatory and they are connected via AMPA. The full SC
model has been used for O-LM cells in the hippocampus
(Rotstein et al., 2005b). In contrast to the SCs, O-LM cells
are inhibitory, mediated by GABAA. We used various kinet-
ics for both AMPA and GABAA, summarized in Table 1.
The AMPA1 and AMPA2 kinetics have been considered by
Acker et al. (2003) and Netoff et al. (2004) respectively.
The GABA1

A kinetics has been considered by Netoff et al.
(2004). The GABA2

A kinetics is standard (Destexhe et al.,
1994; Dayan and Abbott, 2001) but has not been used in
networks including SCs. The GABA3

A and GABA4
A kinet-

ics correspond to values used by Rotstein et al. (2005b) for
O-LM cells.

For two SCs connected via AMPA1 and AMPA2 our re-
sults are consistent with the findings by Acker et al. (2003)
using the full SC model. For two SCs connected via GABAA

Table 1 Parameters and decay times (τdec) for synaptic connections
of various kinetic types (AMPA and GABAA). The units of τ1, τ2 and
τdec are msec.

Synapse type τdec τ1 τ2

AMPA1 6.15 5.30 0.78
AMPA2 8.13 6.21 1.68
GABA1

A 6.96 5.00 1.68
GABA2

A 5.92 5.60 0.28
GABA3

A 10.00 9.70 0.30
GABA4

A 20.00 19.70 0.30

kinetics (the four cases shown in Table 1) the results are
consistent with the findings by Netoff et al. (2003), Rotstein
et al. (2005b) using the full SC model. In both cases the
natural frequencies was in the theta range (8–12 Hz).

To study the effect of common inhibition on two uncou-
pled SCs we connect an interneuron (I-cell), using a stan-
dard Hodgkin-Huxley model, to the two SCs using GABA1

A

synaptic connections (see Table 1) as in the experiments us-
ing hibrid networks (in vitro and in silico) by Netoff et al.
(2004). The I-cell is set to fire rhythmically over a large range
of frequencies (from 8 up to ∼ 60 Hz). The natural frequency
of the SC is 10 Hz and Gs = 0.1.

Our results are summarized in Fig. 15. They are quali-
tatively similar to the results performed using the full SC
model where, in contrast to our current case, the two SCs
were coupled via inhibition (Rotstein et al., 2005b).
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