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Abstract. Neocortical networks of excitatory and inhibitory neurons can display alpha(α)-frequency rhythms
when an animal is in a resting or unfocused state. Unlike someγ - andβ-frequency rhythms, experimental observa-
tions in cats have shown that theseα-frequency rhythms need not synchronize over long cortical distances. Here,
we develop a network model of synaptically coupled excitatory and inhibitory cells to study this asynchrony. The
cells of the local circuit are modeled on the neurons found in layer V of the neocortex whereα-frequency rhythms
are thought to originate. Cortical distance is represented by a pair of local circuits coupled with a delay in synaptic
propagation. Mathematical analysis of this model reveals that the h and T currents present in layer V pyramidal
(excitatory) cells not only produce and regulate theα-frequency rhythm but also lead to the occurrence of spatial
asynchrony. In particular, these inward currents cause excitation and inhibition to have nonintuitive effects in the
network, with excitation delaying and inhibition advancing the firing time of cells; these reversed effects create
the asynchrony. Moreover, increased excitatory to excitatory connections can lead to further desynchronization.
However, the local rhythms have the property that, in the absence of excitatory to excitatory connections, if the par-
ticipating cells are brought close to synchrony (for example, by common input), they will remain close to synchrony
for a substantial time.
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1. Introduction

Populations of neocortical neurons in animals are
known to exhibit rhythmic activity during certain be-
havior states. Synchrony between rhythms recorded
in distant cortical areas is thought to reflect a func-
tional correlation between the areas (Farmer, 1998;

Fries et al., 1997; K¨onig et al., 1995; Roelfsema et al.,
1997; von Stein et al., 1999). Experiments in the visual
cortex have shown that synchronous activity within and
between visual areas correlates with perception and is
usually associated with oscillatory firing patterns in the
γ -frequency range of 30 to 80 Hz (Fries et al., 1997;
König et al., 1995). A recent study shows that when
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an animal switches from focused to resting behaviors,
rhythms recorded from distant cortical areas (visual
and parietal, and/or parietal and motor) switch from
exhibiting zero-time lag synchrony (atβ frequencies
of 20 to 25 Hz) to being asynchronous (Roelfsema
et al., 1997). During the periods when asynchrony
is recorded, power spectra show strong bands of
α-frequency (8 to 12 Hz) rhythms. In another study,
coherence in theα andθ (6 to 8 Hz) frequency regimes
were associated with significant phase lags (von Stein
et al., 1998).

Analysis has shown that the structures of networks
generatingγ - andβ-frequency rhythms are good for
promoting synchrony (Ermentrout and Kopell, 1998;
Karbowski and Kopell, 2000; Kopell et al., 2000).
In this study, we investigate how the structure of
α-frequency rhythms may facilitate asynchrony over
distances. To understand the inability ofα-frequency
rhythms to synchronize over distances, we propose a
model of a neocortical network that oscillates in the
α-frequency range. Using the model, we show how
intrinsic cellular and network mechanisms result in a
lack of synchrony over distances. In some of the pa-
rameter regimes investigated, the model uses nonlinear
interaction that depends on the inhibitory cell firing two
spikes per cycle, known as doublets (Traub et al., 1996,
1999). These interactions produced synchrony in the
cases ofγ andβ (Ermentrout and Kopell, 1998; Kopell
et al., 2000) but asynchrony in the current case.

Our model (see Section 2, Methods) consists of
synaptically coupled excitatory and inhibitory cells,
and it is based on physiological data from layer V of the
cortex, whereα-frequency rhythms are thought to orig-
inate (Connors and Amitai, 1997; da Silva, 1991; Flint
and Connors, 1996; Kristiansen and Courtois, 1949;
Silva et al., 1991). A central feature of many of the
pyramidal (excitatory) cells in layer V is the presence of
two inward currents, known as h and T currents, whose
time courses are consistent withα-frequency rhythms
(Castro-Alamancos and Connors, 1996a, 1996b). Ex-
periments have shown that pyramidal cells containing
these currents produce augmented EPSPs in response
to inhibitory stimulation that is synaptically generated
at 10 Hz (α-frequency); however, faster stimulation
(20 Hz) does not produce augmented responses. Fur-
thermore,in vivo augmented responses are observed
in layer V cells during periods of rest or immobil-
ity (Castro-Alamancos and Connors, 1996a, 1996b;
Huguenard and McCormick, 1992), precisely when
α-frequency rhythms are also observed.

Representation of a local layer V circuit is made
by reciprocally coupling a fast-spiking excitatory cell,
which contains h and T currents, to a fast-spiking
inhibitory cell. As shown in Section 3.1, the circuit sus-
tainsα-frequency rhythmic activity via postinhibitory
rebound spikes in the excitatory cell. The frequency is
set by the time courses of the h and T currents rather
than by the decay rate of either synaptic type.

To examine synchrony over distance, we incorpo-
rate a synaptic conduction delay between two cou-
pled local circuits. Numerical simulations presented
in Section 3.2 reveal that this global network model
exhibits the same lack of synchrony over distances as
is observed experimentally. Analysis of the network
presented in Section 3.3 leads to the conclusion that
the asynchrony arises from the properties of the h and
T currents in the excitatory cells and the strength of
distant synaptic connections.

The interplay between the dynamics of the h and T
currents and the strengths of synaptic connections cre-
ates nonintuitive network behaviors. The stereotypical
roles of inhibition and excitation are reversed. Inhibi-
tion in the network, which by its nature is thought to
slow rhythmic activity, instead increases the firing rate
of the excitatory cells. Excitation, usually thought to
advance the firing time of cells, instead delays firing
in our model. Each of these effects contributes to the
desynchronization of the global network.

The role of intrinsic and network properties on syn-
chrony is further clarified in Sections 3.4. For instance,
increasing the maximal synaptic conductance of a dis-
tant excitatory to excitatory synapse further diminishes
our model’s ability to sustain synchronous activity.
This contrasts markedly with the behavior observed in
other network models, where increased levels of net-
work excitation enhance synchrony (Crook et al., 1998;
Wong et al., 1986). Also, altering the amount of h cur-
rent activation in our model affects both the frequency
of the network rhythm and the degree of synchrony in
the network. In particular, a decrease in the level of h
current activation (via a shift in the steady-state values
of the h current activation variable) creates a slower
network rhythm that is asynchronous at long conduc-
tion delays, where the unaltered network could slowly
synchronize. Other parameters that shape the domain
of conduction delays over which asynchrony occurs
are the strength of synaptic connections and the level
of depolarizing drive to the inhibitory cells.

Mathematical analysis of the model entails the use
of a one-dimensional map, which we show captures the
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essential dynamics of the coupled local networks. The
geometry of the map (see Section 3.2.1) allows us to
make predictions about the behavior of the network
as parameters are changed. Numerical simulations
in Sections 3.2 and 3.4 confirmed these predictions.
Finally, as we show in Section 3.5, simulations of an
expanded network model exhibit the same lack of syn-
chrony as the smaller network, and this suggests that
the model can be applied to large layer V networks.

2. Methods

In this section we describe the form of the equations
used in the numerical simulations. The methods of
the mathematical analysis are described in Section 3,
Results.

Our local cortical layer V oscillating circuit model
consists of two cells—an excitatory pyramidal cell
(E cell) and an inhibitory cell (I cell). Both cells are
modeled with Hodgkin-Huxley-based current-balance
equations:

C
dVE

dt
= I L + INa+ IK + IT + Ih + IGABAA

C
dVI

dt
= I L + INa+ IK + IAMPA (1)

I ion = gionmphq(Vion− V).

Here,C is the membrane capacitance,Vj is the mem-
brane potential of cell j,I ion is an ionic current,gion

is the maximal conductance,m andh are the dynamic
activation and inactivation variables for that ion,Vion

is the reversal potential for that ion, andp andq are
integers.

The local circuit is established by synaptically cou-
pling the cells using model excitatory AMPA (IAMPA)
and inhibitory GABAA (IGABAA ) synapses.

In addition to sodium (INa), potassium (IK ) and leak
(I L ) currents, the equation for the excitatory cell in-
cludes two essential currents that have been observed in
layer V pyramidal cells: a hyperpolarization-activated,
mixed cation current (Ih) and a low-threshold calcium
current (IT ). Each of these inward currents acts to
depolarize the cell following hyperpolarization, and
they are thought to be important for the generation of
α-frequency rhythms in cortex (Castro-Alamancos and
Connors, 1996a, 1996b).

The equations for a local circuit are given by Eq. (1)
with the intrinsic currents in the numerical simulation

modeled as follows:

IL{e,i} = gL{e,i }
(
EL{e,i } − V

)
INa{e,i} = gNa{e,i }m

3h(ENa− V)

αm(V)= .091(V + 38)/(1− exp(− (V + 38)/5))

βm(V)=−.062(V + 38)/(1− exp((V + 38)/5))

αh(V)= .016 exp((−55.− V)/15)

βh(V)= 2.07/(1+ exp((17− V)/21))

IK = gK n4(EK − V)

αn(V)= .01(−45− V)/(exp((−45− V)/5)− 1)

βn(V)= .17 exp((−50− V)/40)

IT= gTm2
T hT (ECa− V)

mT∞(V)= 1/(1+ exp(−(V + 52)/7.4))

τmT (V)= .44+ .15/(exp((V + 27)/10)

+ exp(−(V + 102)/15))

hT∞(V)= 1/(1+ exp((V + 80)/5))

τhT (V)= 22.7+ .27/(exp((V + 48)/4)

+ exp(−(V + 407)/50))

Ih= ghr (Eh − V)

r∞(V)= 1/(1+ exp((V + 75)/5.5))

τr (V)= 1/(exp(−14.59− .086V)

+ exp(−1.87+ .0701V))

We use standard Hodgkin-Huxley notation for for-
ward and backward ratesαy andβy of the activation
and inactivation variables of each of the currents.dy

dt =
αy(1− y) − βyy, or equivalentlydy

dt = (y∞ − y)/τy,
where y∞ = αy/(αy + βy) and τy = 1/(αy + βy).
Time is in milliseconds.

The synapses in the local network are given by

IAMPA = gAMPAAMPA(EAMPA − V)

IGABAA = gGABAA GABAA
(
EGABAA − V

)
dAMPA

dt
= 1.1tr(esp)(1− AMPA)− .19AMPA

dGABAA

dt
= 5tr(i sp)(1−GABAA)− .18GABAA

tr({e, i }sp) = Heaviside(−1.0{e, i }sp),
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where{e, i }sp < 0 for 1 millisecond when the voltage
of the presynaptic cell crosses a threshold,Vthreshold.

To investigate networks coupled over long spatial
distances, we synaptically couple two of the local
two-cell circuits described above. Physical distance
between the local circuits is modeled using a time de-
lay, δ, in synaptic coupling, with larger delays corre-
sponding to a greater distance. The synapses between
distantly coupled circuits are weaker than the synapses
within local circuits. However, since we are consid-
ering individual neurons that make patches of direct
monosynaptic connections with other neurons several
millimeters distant, we use a fixed coupling strength
between distantly coupled cells (regardless of dis-
tance). This is justified in that there seems to be no
difference in the synaptic connections made between
neurons in patches that are close together (such as
1 mm) versus patches that are further apart (such as
7 mm).

We study only long-range connections from exci-
tatory cells (Hirsh and Gilbert, 1991). For our initial
analysis of the global network, the network config-
uration contains only distant excitatory to inhibitory
AMPA synapses (modeled the same as for the local
circuit above). Figure 1 depicts this four-cell global
network configuration. The addition of distant exci-
tatory to excitatory AMPA synapses is investigated in
Section 3.4.2.

The standard values of the parameters, for the four-
cell global network, are given below. The capaci-
tance, C, of each cellular membrane is set at 1µF/cm2

(F=Farad). The maximal conductances in mS/cm2 (S-
Siemens—that is, Mhos.) aregLe= 0.07, gLi = 0.05,
ELe=−75, ELi =−60, gNae= 60, gNai = 100, ENa =

Figure 1. The global network configuration: Two 2-cell local net-
works connected via distantE to I AMPA synapses with a time
delay,δ, in synaptic propagation between networks.

45, gK = 30, EK = −90, gT = 2.2, ECa = 125, gh =
0.08, Eh = −43, gAMPA = 0.2 (E to I within a local
two-cell circuit)= 0.1 (E to I between distant local
circuits)= 0.05 (E to E between distant local circuits),
EAMPA = 0, gGABAA = 0.5 (I to E within a local two-
cell circuit; there are no distant inhibitory connections),
EGABAA = −80,Vthreshold= 0. The various parame-
ter values used in our analysis came from a variety
of sources (Destexhe et al., 1998; Golomb and Amitai,
1997; Mainen et al., 1995; McCormick and Huguenard,
1992; Pinsky and Rinzel, 1994).

All simulations are performed using G.B.
Ermentrout’s package for solving ODEs—XPPAUT.
This package is available from ftp://ftp.math.pitt.edu/-
pub/bardware. The usual method of integration is a
fourth-order Runge-Kutta method.

3. Results

3.1. Generation of Localα-Frequency Rhythms

We begin by describing the intrinsic and network mech-
anisms that generate sustainedα-frequency rhythms
within the local two-cell networks. The initial analysis
considers only local reciprocal coupling (E to I, and I
to E); local recurrent excitatory or inhibitory coupling
is discussed in Section 3.4.3.

The after-hyperpolarization dynamics of the h and T
currents in the excitatory cell make sustained rhythmic
activity possible. Figure 2 shows the progression from

Figure 2. Progression to a rebound spike in an excitatory
cell after an initial 5 ms depolarization.Light dotted curve:
gh= gT = 0; dark dashed curve: gh= 0.07; gT = 1.9; solid curve:
gh= 0.08, gT = 2.2. Increasinggh alone was not sufficient to gener-
ate sustained rhythmic activity. IncreasinggT alone was sufficient,
as long asgT >2.3. For all curvesgGABAA = 0.5, gAMPA = 0.2.
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a single spike to rhythmic activity in a local excitatory
cell via an increase in the maximal h and T current
conductances (gh andgT ). Following an initial spike
in both of the local cells, the inhibitory cell briefly
hyperpolarizes the excitatory cell, activatingIh and
deinactivatingIT . At low maximal conductance levels
the excitatory cell simply returns to rest. As the con-
ductance levels increase, the inward currents cause the
excitatory cell to generate a rebound spike. It is this
rebound spike that drives the inhibitory cell and thus
sustains rhythmic activity. The level of excitation to
the local I cell is chosen to produce a single I-spike
per cycle in the E-I network. Using physiologically
realistic parameter values, the sustained rhythm has a
frequency between 7 to 14 Hz and depends primar-
ily on the dynamics ofIh and IT (Bazhenov et al.,
1998; Destexhe et al., 1993; Golomb and Amitai, 1997;
Mainen et al., 1995; McCormick and Huguenard, 1992;
McCormick and Pape, 1990b).

3.2. Synchronization Properties ofα-Frequency
Rhythms over Spatial Distances in Cortex

To examine properties of synchronization, we con-
sider a pair of two-cell local oscillating circuits coupled
together to form a global four-cell network, as descri-
bed in Section 2, Methods.

We construct a one-dimensional map that captures
the essential dynamics of the global coupled network.
From the map, we make predictions about the ranges
of delays,δ, and initial phase lags of the oscillators,
4, over which the network does or does not synchro-
nize (synchrony is measured betweenE1 and E2 and
is defined to be a zero phase lag steady state between
these two cells), and about rates of synchronization
and desynchronization. We then give numerical simu-
lations verifying these predictions. As we show in this
section, under a wide range of conditions the two lo-
cal networks, connected via long-distance excitatory to
inhibitory AMPA synapses, do not synchronize. Fur-
thermore, as we show in Section 3.4.2 the addition of
long-distance excitatory to excitatory connections in-
creases the regimes under which there is desynchro-
nization.

3.2.1. Construction of the One-Dimensional Map.It
is useful to study the global network dynamics by
developing a one-dimensional mapH that describes the
progression of the network toward or away from a syn-
chronous state. We label the excitatory and inhibitory
cells by E1, I1 and E2, I2, respectively. Following

Ermentrout and Kopell (1998), let

t1 = time whenE1 fires,

t2 = time whenE2 fires,

t̄1 = next time whenE1 fires,

t̄2 = next time whenE2 fires.

After E1 fires, it takes an amount of time equal to
t2 + δ − t1, for E1’s circuit to receive excitatory input
from E2. Thus,

t̄1 = t1+ f (t2+ δ − t1),

where f is a function describing the wait to firing after
receiving excitation; we shall determinef numerically
from the underlying Hodgkin- Huxley equations. Since
the E cells and coupling are identical,t̄2 satisfies

t̄2 = t2+ f (t1+ δ − t2)

for the same functionf .
We are interested in the synchronization properties

of the entire network, and, hence, we define4 := t2−
t1, the difference in spike times of the two units. The
synchronized state corresponds to4 = 0. We now
determine the conditions under which4 = 0 is a stable
state and, hence, under which network synchrony will
be achieved.

Let 4̄ := t̄2 − t̄1. From the above definitions oft̄1
andt̄2, we obtain

4̄ = t2− t1+ f (t1+ δ − t2)− f (t2+ δ − t1)

= 4+ f (−4+ δ)− f (4+ δ)
≡ Hδ(4). (2)

For a fixedδ, the functionHδ is a one-dimensional map
describing the difference,̄4, in spike time at each cycle
in terms of the difference,4, at the last cycle. Since
Hδ(0) = 0, a synchronous solution exists as a fixed
point of this map.

To evaluate the stability of this synchronous state,
we calculate the derivative ofHδ with respect to4 and
evaluate this derivative at4 = 0:

H ′δ(4) = 1− f ′(−4+ δ)− f ′(4+ δ)
H ′δ(0) = 1− 2 f ′(δ).

By standard results about one-dimensional maps
(Devaney, 1992), synchrony is stable when|H ′δ(0)| <
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1 and therefore only when

0< f ′(δ) < 1.

In the remaining cases, when eitherf ′< 0 or f ′> 1,
synchrony is an unstable fixed point ofHδ, and when
f ′ = 0 or f ′ = 1, synchrony is neutrally stable. Thus,
to understand the conditions under which synchrony is
stable or unstable, it suffices to examine the shape of
the function f .

3.2.2. Numerical Computation of f and Predictions.
Figure 3A shows the functionf generated from a sin-
gle oscillating circuit receiving imposed inputs as it
would as part of the network configuration of Fig. 1.
AssumingE1 fires first at timet1= 0, the points on the
graph of f give the next timeE1 fires. Note thatf is
a function of4 + δ. Figure 3A was labeled setting
4=0, the case for the synchronous solution. Thus,
the values along the x-axis, which represent the arrival
times of distant pulses to the local oscillating circuit,
are given solely by the propagation delayδ. The dotted
horizontal line denotes the next timeE1 fires in the ab-
sence of distant inputs (that is, the intrinsic period of
E1). Along the x-axis, f is broken into five regions
according to its slope as described in Table 1.

Referring to f ′, as described in Table 1, we make
the following predictions based on the analysis of
Section 3.2.1. The flat shape off in Region 1 indi-
cates that the firing of an excitatory cell is not affected
by inputs arriving during the first 7 ms of its period.
Thus, for sufficiently small differences in initial con-
ditions,4, synchrony will be neutrally stable. Since
f ′ is less than zero in Region 2a (that is, for delays
7< δ < 10), the network will not exhibit synchronous
behavior in that region. By contrast, in Region 3b the

Table 1. Geometry off in Fig. 3A and predictions on the sta-
bility of the synchronous solution of the global network behavior
assuming4 starts close to zero. The separation of Regions 2b
and 3a represents thenumerical transition from asynchrony to
synchrony, as is described in Section 3.2.3 and further verified in
Section 3.3.2.

Time of Synchronous
Region Arrival (δ) Slope of f Sol.

1 0–7 f ′ = 0 Neutrally stable

2a 7–10 f ′ < 0 Unstable

2b 10–12 f ′ ≈ 0 Almost neutrally stable

3a 12–15 f ′ ≈ 0 Almost neutrally stable

3b 15–25 0< f ′ < 0.25 Stable

global network will be able to synchronize as long as
4 is small. However, the time to synchrony is long
when f ′ is small, and when synchrony does not occur
quickly it may be physiologically irrelevant. Finally,
in the intermediate regimes (Regions 2b and 3a) where
f ′ is almost zero, we would expect very slow desyn-
chronization or synchronization with a transition as we
vary δ. As we show in Section 3.4, changes of param-
eters can change the boundaries of the above regions
or even the slopes but do not change them to produce
fast synchronization in any range ofδ.

3.2.3. Network Simulations. We tested the syn-
chrony of the global network in a series of simulations
varyingδ and4. For4 close to zero the predictions on
the stability of synchrony, as outlined in Table 1, were
confirmed by all of the numerical simulations. In par-
ticular, for each fixedδ, if the values of both (−4+ δ)
and (4+ δ) remained within the same region along the
x-axis then the slope off accurately predicted the net-
work behavior. However, for values of4 such that
the values of (−4+ δ) and (4+ δ) lay in two different
regions along the x-axis, transient dynamics can be
complex and of long duration. However, even in that
situation, the mapHδ correctly predicts numerical val-
ues of4̄ on a cycle by cycle basis.

In Region 1 (δ <7), synchrony was neutrally sta-
ble. For all network simulations in this region, if
4 was chosen such that (−4 + δ) and (4 + δ) re-
mained less than 7 ms, then̄4 = 4, and hence solu-
tions that are initially nonsynchronous remain nonsyn-
chronous, and solutions initially synchronous remain
synchronous. In particular, a common initial input can
create synchronous behavior. Finally, for all larger4,
asynchronous behavior was observed.

In Region 2a (7<δ<10), asynchrony (unstable
synchrony) occurred for all values of4. A representa-
tive case is shown in Fig. 3B.

In Region 2b (10<δ<12), for small4 such that
(−4 + δ) and (4 + δ) remained between 10 ms and
12 ms, a slow approach to an asynchronous state oc-
curred. For larger4, asynchrony was observed.

In Regions 3a and 3b (12<δ<25), synchrony oc-
curred for all4 tested, with the rate of approach to syn-
chrony predicted correctly by the slope off —that is,
a smaller slope implies a slower approach. In Fig. 3C,
we show a network with4=1 ms, which becomes
synchronous in approximately three cycles. However,
for larger4, the synchronization was slower and could
exceed 5 seconds.
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Figure 3. A: Graph of f generated under the network configuration of Fig. 1.x-axis: δ = the arrival time of a distant pulse to an oscillating
local circuit under the condition4 = 0; y-axis: next firing time ofE1 assuming the first firing time,t1, equals 0. The dotted horizontal line at
≈ 126 ms represents the period of the excitatory cell without any external input. Regions 1, 2a/2b, and 3a/3b separate the graph off according
to the numerical occurrence of synchrony in the network, these results are summarized in each region. The separation within Regions 2 and 3
are present for the sake of discussion of changes in slope.B and C: Top frame:Voltage traces ofE1 (solid curve) andE2 (dashed curve) over
600 ms.Bottom frame:Corresponding histograms giving the number of occurrences of specific differences in spike times,4, of E1 andE2 over
50 seconds.B: 4 = 1 andδ = 9. The network does not reach a steady state. Thus, the figure label states that asynchrony occurs.C: 4 = 1
andδ = 20. Synchrony occurs (in approximately three cycles) and persists. For all functionsf generated in this article, when one oscillating
unit is hit with a pulse from another it returns to its limit cycle within two periods.

The results of this section reveal that the
α-frequency rhythms desynchronize over long cortical
distances. However, these results also demonstrate that
α-frequency rhythms can be synchronized over short
distances in the presence of common (that is, simulta-
neous) input.

3.3. Origin of Asynchrony

In this section, we dissect the features of the model
that control the shape off and hence are responsible
for the lack of synchronization over distances reported
in Section 3.2. As we shall see, both inhibition and
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excitation behave in nonintuitive ways; local inhibition
advances the firing time of the local excitatory cells,
whereas distant excitation delays it.

3.3.1. A Closer Look at the Shape of f .In this sec-
tion, we investigate the determinants of the endpoints
of each region and the slope off within each re-
gion. We show that the distant network connections,
their effect of the generation of spikes in the inhibitory
cells, and the intrinsic kinetics in the excitatory cells all
affect the shape off , sometimes in a nonintuitive way.
Each geometrically distinct region described in Table 1
is analyzed separately.

Region 1 In this region the slope off remains equal
to zero and small differences in initial conditions re-
main. The firing time of the excitatory cell (E-cell) is
unaffected by input arriving in the first 7 ms. As shown
in Fig. 4A, the E-cell voltage traces (solid curves)
with δ = 0, 4, and 7 ms lie directly on top of one
another.

The only way distant excitatory to inhibitory pulses
can affect the local E-cell is via the GABAA synapse,
which is activated only when the local I-cell spikes.
When δ is between 0 to 7 ms, however, the local
I-cell is still in a refractory state, and hence there are
no “doublets” in the I-cell (dashed curves in Fig. 4B).
Therefore, the E-cell is unaffected by external input
and f remains flat. As we will see in Section 3.4.2,
this situation changes dramatically with the inclusion
of distant excitatory to excitatory connections.

Region 2a The slope off in this region is negative,
and only asynchronous solutions were observed in the
global network. In Fig. 4B we see that, whenδ= 8 ms,
the distant excitatory to inhibitory input arrives at the
local I-cell late enough in its period to create a sec-
ond postsynaptic inhibitory spike (doublet). This sec-
ond postsynaptic inhibitory spike hyperpolarizes the
E-cell causing it to spike significantly sooner than it
did without the hyperpolarization (see Fig. 4B). Thus,
there is a steep drop off , at δ = 8 ms, in Region
2a. According to the theory above, this negative slope
implies asynchrony. Note that in the context of this
model, the doublet spike now creates asynchrony, not
synchrony as in theγ andβ rhythms (Ermentrout and
Kopell, 1998; Kopell et al., 2000; Traub et al., 1996,
1999).

This nonintuitive decrease in firing time after re-
ceipt of local inhibition is a direct result of the
hyperpolarization-activated inward currents in the

Figure 4. Dynamics in Regions 1 and 2a. Displayed are several
voltage versus time cycles of the local excitatory (solid curves) and
inhibitory (dashed curves) cell, which result from distant excitatory
inputs arriving to the inhibitory cell at preciselyA 0 ms (dashed), 4
ms (dashed-dotted) and 7 ms (dotted) orB 7 ms (dotted) and 8 ms
(dashed) into the local excitatory cell’s period. Note that an input
arriving at 0 ms actually means no input arrived to the local circuit.
The gray arrow along the y-axis in Fig. 4B signifies the decrease in
voltage of the excitatory cell resulting from a spike in the inhibitory
cell.

excitatory cell. The second inhibitory spike hyperpolar-
izes the E-cell from approximately−75 mV to−80 mV,
as indicated by a gray arrow along the y-axis in Fig. 4B,
and we now explain why this causes the excitatory cell
to fire significantly sooner.

Figure 5 illustrates the effect of the hyperpolarization
on the inward currents. Letr represent the activation
variable of the h current andmT andhT the activation
and inactivation variables of the T current. Figures 5A
and 5B present the voltage dependent steady state
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Figure 5. A: Graph of the steady-state values,r∞(V), for the activation variable of the h current.B: Graphs of the steady-state values,hT∞(V)
andmT∞(V), for the inactivation and activation variables of the T current, respectively.C: Graph of the time constant,τr , for the activation
of the h current.D: Graph of the time constant,τhT (V), for the inactivation of the T current.E: Graph of the time constant,τmT (V), for the
activation of the T current.F: Traces of the activation variable,r , of the h current corresponding to distant excitatory inputs arriving to the
inhibitory cell at precisely 7 (light dotted curve) and 8 (dark dashed curve) ms into the local excitatory cell’s period (that is,δ = 7 ms and
δ = 8 ms). G: Corresponding traces of the inactivation variable,hT , of the T current.H: Corresponding traces of the activation variable,mT ,
for the T current. The gray arrows along the axes inA andB signify the decrease in voltage of the excitatory cell, which results from a spike in
the inhibitory cell whenδ = 8 ms, as also depicted in Fig. 4B.

values of h current activation (r∞(V)), T current activa-
tion (mT∞(V)), and T current inactivation (hT∞(V)).
Figures 5C, 5D, and 5E present their voltage-dependent
time constants. In particular, note that at hyperpolar-
ized voltage levels, the h current activates while the
T current both deactivatesand deinactivates. Notice
also that h current activation and T current inactiva-
tion change at rates 1000 and 100 times slower than T
current activation.

Thus, when the E-cell is hyperpolarized by synap-
tic inhibition (δ= 8 ms), r and hT slowly increase,
while mT rapidly decreases (see dark dashed curves
in Figs. 5F, 5G, and 5H). Despite this deactivation of
the T current, the net result of the increase in h current
activation, T current deinactivation, and the decay of
the inhibition is to cause the E-cell to depolarize more
rapidly than when no hyperpolarization (δ= 7 ms; light
dashed curves in Figs. 5F, 5G, and 5H) occurred. As
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the voltage rises,mT rises rapidly, further depolarizing
the cell. Thus, it is thecombineddepolarizing effects of
both Ih andIT , induced by the second inhibitory spike,
that allow the E-cell to spike sooner whenδ = 8 ms
than whenδ = 7 ms.

As the delay,δ, increases from 8 ms to 10 ms,
the distant excitatory inputs arrive at the local I-cell
near the end of its refractory period but early enough
to combine with the excitatory influence of the local
E-cell. This causes the I-cell to fire sooner asδ in-
creases. Correspondingly, the E-cell also fires sooner,
as described above, andf continues to decrease. More
analysis of this region, using maps more detailed than
those in Section 3.2.1, is given in the next section
(Section 3.3.2).

Regions 2b and 3a The slope off in Regions 2b and
3a is approximately zero, and network conditions in
these regions produce slow approaches to asynchrony
or synchrony, respectively. As the delay,δ, increases
from 10 ms to 15 ms, the distant excitatory inputs arrive
at the local I-cell as it is leaving its refractory state and
less of the EPSP from the local E-cell remains. These
two effects approximately cancel each other, and the
second inhibitory spike occurs at roughly the same time
for all delays 10<δ<15 ms, therefore evoking similar
responses in the E-cell for all such delays. Thus,f re-
mains almost flat in Regions 2b and 3a. The distinction
between Regions 2b and 3a will be further analyzed in
Section 3.3.2.

Region 3b The slope of f in Region 3b is positive
and less than one, and network conditions in this region
produce synchronous solutions. In this region, the dis-
tant excitation arrives at the local I-cell when there is
no remaining refractoriness of the I-cell or remaining
synaptic current from the previous local EPSP. Hence,
the I-cell fires at a fixed time after receipt of excitation,
independent ofδ. This causes the E-cell to also fire
later asδ increases, producing a positive slope forf .
However, the presence of the h and T currents, which
advance the firing time, results in the slope off being
less than 1 (actually less than 0.25, as determined nu-
merically).

3.3.2. Region 2: Inhibition Generates Earlier Firing
Times. In this section, we further analyze the roles of
the local E and I cells in producing asynchrony in the
network configuration of Fig. 1 for conductance delays

8< δ < 12. We focus on this region since it is nonin-
tuitive that inhibition leads to earlier firing times in the
local E-cell. In particular, we follow Ermentrout and
Kopell (1998) and split the mapHδ (see Section 3.2.1)
into two components that individually encode critical
information about the spike times of the I and E
cells, respectively.

Near synchrony, an I-cell receives two excitatory
inputs, one from its local E- cell and one from the dis-
tant E-cell. The local excitatory input arrives first and
causes the I-cell to spike. LetTI denote the amount of
time it takes the inhibitory cell to spike again, after it
receives the distant excitatory input—that is,TI =
TI (φ), whereφ = 4+ δ.

Also near synchrony, each E-cell receives two
inhibitory pulses from its local I-cell. ConsideringE1

as the local E-cell, each pulse arrives atE1 via one of
the following synaptic paths:

Path 1: E1⇒ I1⇒ E1.

Path 2: E2⇒ I1⇒ E1.

Let θ denote the difference in the arrival times along
Paths 1 and 2. The mapTE = TE(θ) is defined to be
the amount of time, after the second inhibitory input is
received, forE1 to fire.

In particular, the times for the inhibitory inputs to
arrive at E1 via the two paths can be determined as
follows. For Path 1, cellE1 first fires at timet1. Then,
in response, it takes an amount of time,tei, for I1 to
fire. Along Path 1, the inhibitory input fromI1 arrives
at E1 at timet1+ tei. Along Path 2, cellE2 fires at time
t2, and there is a delay of timeδ before cellI1 receives
this input. This input toI1 is precisely the second input
to the local I-cell discussed in the previous paragraph.
Therefore,I1 will fire again after a time given byTI (φ)

and hence the time at whichE1 receives inhibitory input
via Path 2 ist2+ δ + TI (φ). To summarize:

Path 1: Arrival time ist1+ tei.

Path 2: Arrival time ist2+ δ + TI (4+ δ).

Thus,

θ = t2+ δ+ TI (4+ δ)− (t1+ tei)

= 4+ δ− tei + TI (4+ δ).

In this new context, we now recalculateHδ(4) =
4̄ = t̄2 − t̄1 as follows. The timēt1 at whichE1 fires
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in the next cycle is given by

t̄1 = time at which the inhibitory input via Path 2

arrives+ TE(θ)

= t2+ δ + TI (4+ δ)+ TE(4+ δ − tei

+ TI (4+ δ)).

A similar formula holds fort̄2, with indices 1 and 2
reversed and4 changed to−4. Therefore,

Hδ(4) = −4+ Fδ(−4)− Fδ(4),

where

Fδ(4) = TI (4+ δ)+ TE(4+ δ − tei + TI (4+ δ)).

The mapF contains the same information as the map
f introduced in Section 3.2.1, and it can be shown that
Fδ(4) = f (4 + δ) − (4 + δ). However, the parsing
of Fδ into TI andTE allows us to look more closely at
the individual effects of excitation and inhibition.

As before, the synchronous solution,4 = 0, is sta-
ble if |H ′δ(0)|< 1. Using methods similar to those
in Section 3.2.1 for the mapf , we find here that
synchrony is stable if−1< F ′δ(0)<0 and unstable if
F ′δ(0) < −1 or F ′δ(0) > 0. When4 = 0, we can
consider bothTI andTE to be functions of the para-
meterδ, and soF ′δ(0) = T ′I (δ) + T̃ ′E(δ)[1 + 2T ′I (δ)],
whereT̃E(δ)= TE(δ− tei+TI (δ)). Figures 6A and 6B
show numerically generated graphs ofTI (δ)andT̃E(δ),
for δ >8 ms. Figure 6C showsF ′δ(0) and its compo-
nentsT ′I (δ) andT̃ ′E(δ), as obtained numerically using
Figures 6A and 6B. According to the graph ofF ′δ,
synchrony is unstable for 8< δ < 12 and stable for
δ > 12.

A critical feature of our model is that the local E-cells
have h and T currents. Hence, the mapT̃E(δ) obtained
here differs qualitatively from the map̃TE(δ) obtained
for cells with only IL, INa, and IK. We may com-
pare, for instance, the work of Ermentrout and Kopell
(1998), where the I and E cells are modeled using only
those three currents. There, when4=0, both T ′I (δ)
and T̃ ′E(δ) are less than or close to zero for all values
of δ in which they exist. OurT ′I (δ) is also negative
for all values ofδ shown (see Fig. 6C), since our I-cell
is also modeled using the standard spiking currents.
However, the additional h and T currents in our local
E-cells create a significant change inT̃ ′E(δ), which is
now positive for 8< δ < 12. It is the positive contribu-
tion of T̃ ′E(δ) that allows the product̃T ′E(δ)[1+2T ′I (δ)]

Figure 6. A andB: Graphs ofTI (δ) andT̃E(δ), for δ > 8 ms. C:
Corresponding graphs ofT ′I (δ), T̃ ′E(δ), along withF ′δ(0) = T ′I (δ)+
T̃ ′E(δ)[1+2T ′I (δ)]. According to the graph ofF ′, synchrony will be
unstable whenδ < 12 ms and stable whenδ > 12 ms. All graphs
were generated with the same parameter values used to generatef
in Fig. 3.

to be negative, which in turn implies thatF ′δ(0) < −1
for 8 < δ < 12. We conclude that it is the additional
intrinsic kinetics of the E-cell, arising from the inclu-
sion of Ih andIT , that generate asynchronous behavior
in the full network.

For completeness, we note that the unstable syn-
chrony region predicted by this graph ends atδ= 12 ms,
which is the boundary between Regions 2b and 3a in
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Fig. 3A. This confirms our previous conclusion that
δ = 12 ms marks the point where the behavior of the
network that starts close to synchrony changes from be-
ing slowly asynchronous to being slowly synchronous
in the numerical simulations (see Section 3.2.3).

3.4. Effects of Changing System Parameters

In Section 3.3, we showed that the shape off , and
hence the occurrence of synchrony in the network, is
dependent on the parameters in our network model.
Here, we investigate the effects of changing some of
the parameters that play a dominant role in definingf ’s
shape.

3.4.1. Effects of Modulating the h Current. The h
current is known to be strongly susceptible to neural
modulation (McCormick and Pape, 1990a). Here we
analyze qualitatively the influence of modulating the
h current on the network synchrony. We find that
decreasing the h current steady-state activation level
results in fewer conditions under which network syn-
chrony occurs. In particular, asynchrony occurs at long
conduction delays at which the unmodulated network
exhibits slow synchronization.

This difference in the network is predicted by the
changes of the mapf resulting from h current modu-
lation (see Fig. 7A). As in the unmodulated network,
delays of at least 8 ms generate a second inhibitory
spike, causingf to decrease forδ between 7 and 8 ms,
as described in Section 3.3.1.

For delays,δ, between 8 to 10 ms, the second
inhibitory spike arrives at earlier times in the pe-
riod of the E-cell as in the unmodulated network (see
Section 3.3.1). Hence, the voltage value of the ex-
citatory cell at the instant the second inhibitory spike
arrives decreases with increasedδ (see Fig. 4B). Thus,
the initial rate of h activation (τr (V)) decreases (see
Fig. 5C). In the unmodulated network, this effect is
negligible and f continues to decrease. However, in
the modulated network, this decrease inrate, in addi-
tion to the fact that the maximum thatr can attain is
decreased, are sufficient to keepr from reaching lev-
els where the excitatory cell is depolarized enough to
spike sooner; instead it spikes later asδ increases from
8 to 10 ms. Hence,f increases (0< f ′< 0.6). In this
region, all simulations verified that the network could
synchronize but only in the very limiting case where4
was chosen small enough so that 8< 4+ δ < 10.

For delays 10<δ<15, the modified and unmodu-
lated networks are similar. The second inhibitory spike
arrives at the excitatory cell at approximately the same
time with delays 10<δ<15. Hence, there is no no-
ticeable change in the firing time of the excitatory cell
and both functionsf remain roughly flat.

Once the conduction delay is as long asδ = 15 ms,
the second inhibitory spike in each network begins
to arrive later in the period of the excitatory cell, as
described in Section 3.3.1. Hence, its voltage value at
the instant the inhibition arrives is larger (see Fig. 4B).
Thus, the initial increase in h current activation occurs
more quickly (sinceτr (V) is smaller). In the unmod-
ulated network, this effect is negligible andf in-
creases with a slope less than one (see Section 3.3.1).
However, in the modulated network, the initialrate
of h activation plays a dominant role in defining the
slope of f for δ >15 ms. Here, although the values
that r attains are reduced, asδ increases past 15 ms
the initial rate of h activation gradually increases en-
abling r to reach levels that are sufficient to change
the spike time of the excitatory cell (that is, cause it
to spike sooner). Hence, asδ increases,f gradually
decreases.

All of the network simulations conducted with
delays ofδ ≥ 10 ms produced asynchrony. To see
results from the modulated network, which contrast
those from the unmodulated network, compare Fig. 3C
to Fig. 7B (δ = 20 ms).

3.4.2. Effects of Adding Distant Excitatory to Exci-
tatory Connections. Until this point, the only dis-
tant connections we have considered are from E to I
cells. The effects of E to E connections on synchro-
nization are subtle. In some simple systems, such con-
nections prevent synchronization (Hansel et al., 1995;
Van Vreeswijk et al., 1994). In other systems, notably if
the cells have adapting currents, the E to E connections
can be synchronizing (Crook et al., 1998); E to E con-
nections have also been shown to facilitate synchrony
in some bursting cells (Wong et al., 1986).

In our system, E to E connections, in combination
with the inwardIh andIT currents, act to further desyn-
chronize network activity. In particular, with the ad-
dition of long distance E to E coupling (in the net-
work configuration of Fig. 1) of strength greater than
0.025 units, the subsequent mapf (see Fig. 8A) dis-
plays a slope larger than one for 0<δ<7 ms, indi-
cating that synchrony is now unstable for this range of
delays. (When the coupling strength is less than 0.025,
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Figure 7. A: Graph of f generated with less h current activation, by shiftingr∞(V) 10 mV to the left (see Fig. 5A). The dotted horizontal
line at≈ 156 ms represents the period of the excitatory cell without any distant input. Each axis has been cropped; the entire phase of the local
circuit (0 to 156 ms or≈ 6.5 Hz, a slower rhythm) is not shown. The graph is separated into two regions. In the region 0< δ < 7 ms, no
synchronization occurred when4 was such that 0< δ + 4 < 7 (that is, initial difference in initial conditions remained), non-synchronous
states also occurred for larger4. Forδ > 7 ms asynchrony was observed for all4 ≥ 1 ms.B: Histogram giving the number of occurrences of
specific differences,4, in spike times ofE1 andE2 over 20 seconds whenδ = 20. Asynchrony manifest as a slow drift to a steady state phase
lag. If the initial conditions are close (here4 = 1 ms), the phase lag takes a long time to appear, order of seconds.

0< f ′< 1; hence synchrony will be stable. However,
note that a coupling strength of 0.025 is extremely weak
when compared to the other currents used in the model.)

This loss of stable synchrony can be understood by
considering the effect of the additional distant excita-
tory synapse on the dynamics ofIh and IT in a lo-
cal E-cell. Figure 8B presents the voltage responses
of a local excitatory and inhibitory cells as now both
receive distant excitatory inputs with delays,δ, be-
tween 0 and 7 ms. The solid traces now represent

the voltage of the local I-cell, and these traces do not
change from those in Fig. 4A. The various dashed traces
now represent the voltage of the local E-cell when
δ = 0, 4 and 7 ms (δ = 0 ms means no distant in-
put occurred). Immediately after the IPSPs occur in the
E-cell with δ = 4 ms andδ = 7 ms, this cell becomes
slightly more depolarized than it did for these delays
in Fig. 4A. These enhanced depolarizations represent
the EPSPs from the additional excitatory to excitatory
distant inputs. The size of the EPSP increases asδ
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Figure 8. A: Graph of f generated with the addition of distant excitatory to excitatory connections (strength 0.05 units) in the network. The
dotted horizontal line at≈ 126 ms represents the period of the excitatory cell without any distant input. Each axis has been cropped; the entire
phase of the local circuit (0 to 126 ms or≈ 8 Hz) is not shown. The graph is separated into three regions. In the region 0< δ < 12 ms,
asynchrony occurred for all4. For 12< δ < 23 either asynchrony or slow synchronization occurred depending on4 and forδ > 23 slow
synchronization always occurred.B: Voltage versus time cycles of the local excitatory (dashed curves) and local inhibitory (solid curves)
cell, which result from distant excitatory inputs arriving to both the excitatory and inhibitory cell at precisely 0 (dashed), 4 (dotted), and 7 ms
(dash-dotted) into the local excitatory cell’s period.C and D: Top frame:Voltage traces ofE1 (solid curve) andE2 (dashed curve) over 600 ms.
Bottom frame:Corresponding histograms giving the number of occurrences of specific differences,4, in spike times ofE1 and E2 over 20
seconds.C: 4 = 1 andδ = 6, D: 4 = 1 andδ = 10, in both cases asynchrony manifests as a phase locked steady state.

increases, since as time evolves less inhibition remains
to shunt the incoming excitatory current.

As in the network without distant excitatory to exci-
tatory connections,r andhT begin to slowly increase
after the initial hyperpolarization from the inhibitory
spike; however, a subsequent EPSP in the excita-
tory cell decreases the steady state level that each

of these variables approaches (see Figs. 5A and 5B).
Thus, although the excitatory cell spikes before these
variables reach their steady-state values, it takes longer
for r andhT to reach levels that are sufficient to depo-
larize the cell to a spiking level—that is, it takes longer
for sufficient h current activation and T current deinac-
tivation to occur. Hence, the spike time of the excitatory
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cell is delayed. These effects intensify as the size of the
EPSP increases, resulting in an increase in the slope of
f to values bigger than 1 whenδ < 7 ms.

We have ignored discussion ofmT , the activation
variable of the T current, since its effects are negligi-
ble until the T current is sufficiently deinactivated to
allow activation of this inward current to be effective.
Furthermore, we point out that at increased voltage lev-
els in the excitatory cell (but less than 60 mV) the rate
of increase ofmT decreases sinceτmT (V) gets larger
(see Fig. 5E). Thus, asδ increases, the increased EPSPs
in the excitatory cell causesmT to rise slower and this
facilitates the delay to spiking (Fig. 8A).

For reasons similar to those given in Section 3.3.1, a
region with negative slope begins atδ = 7 ms but now
extends toδ = 12 ms. Hence, asynchrony is observed
in the network for allδ < 12 ms. Figures 8C and 8D
show two representative cases (compare to Fig. 3).

Moreover, in the region 7< δ < 12 ms the maps
TE andTI discussed in Section 3.3.2 are defined even
with distant E to E coupling in the network. The map
TI will be exactly the same and the mapTE will be
qualitatively the same.TI is defined to be the amount
of time it takes the local inhibitory cell to spike after
it receives distant excitatory input; this time is defined
in the region 7< δ < 12 and is independent of E to E
coupling.TE is defined to be the amount of time, after
the second inhibitory input is received, for the local E
cell to fire; with the weak E to E coupling used in this
analysis, the second spike of the local I-cell doublet
pair fires before the local E-cell fires again, and hence
the same definition ofTE may be used. As in the case
without E to E coupling,TE will increase asδ increases.
In both cases, this feature comes from the fact that the
second inhibitory spike occursearlier in the period of
the local E cell, asδ increases, causing the time between
receipt of the second inhibitory input and next fire (that
is, TE) to increase. As in Section 3.3.2, since the map
TI is decreasing and the mapTE is increasing, they
will produce a mapFδ that predicts asynchrony in this
region.

Finally, for delaysδ >12 ms, f exhibits two regions,
and in each of these regions, the network dynamics is
qualitatively similar to that observed in the correspond-
ing regions for the originalf seen in Fig. 3A. For ex-
ample, atδ = 20 there is again slow synchronization
(data not shown).

3.4.3. Effects of Modulation of Synaptic Coupling
Strengths. Synaptic coupling strengths are known to

Figure 9. Tracking the endpoint of Region 1 in Fig. 3A as the
maximal conductance of the distant excitatory to inhibitory synapse,
gei (solid curve), or the local inhibitory to inhibitory synapse,gii

(dotted curve), is varied. Note: All other parameters are fixed at the
values used to generatef in Fig. 3A.

be highly dynamic during various behavior states of an
animal (Bressler et al., 1993). In this section we briefly
study the effects of modulating the synaptic coupling
strengths on the shape off and on the synchrony of
the network.

First, as shown by the solid curve in Fig. 9, increas-
ing the maximal conductance level of the distant exci-
tatory to inhibitory synapse,gei (from its default value
0.1), causes the local inhibitory cell to spike sooner and
moves the endpoint of Region 1 in Fig. 3A to the left
of δ = 7 ms. By contrast, adding local reciprocal inhi-
bition causes the local inhibitory cell to spike later and
moves the endpoint of Region 1 to the right ofδ = 7.
Moreover, as the maximal conductance strength of this
local reciprocal inhibitory coupling,gii , is increased,
the endpoint of Region 1 is moved further to the right
(see dotted curve in Fig. 9). Hence, with more lo-
cal inhibition, neutral synchrony can occur over larger
distances.

Finally, adding local reciprocal excitation does not
qualitatively affect the shape off (data not shown).

3.4.4. Effects of Increasing Drive to the Inhibitory
Cells. The initial flat portion of the functionf (δ <
7 ms in Fig. 3A) generated from the network configura-
tion in Fig. 1 is significant because it implies that local
α-frequency rhythms can be synchronized by common
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external input. In particular, the initial phase lag be-
tween the E cells is zero when they receive common
external input, and since the functionf is flat, the phase
lag between the E cells remains constant over succes-
sive cycles. Moreover, the subsequent negative slope
of f implies that networks coupled with delays just
beyond the endpoint of this flat region will desynchro-
nize even in the presence of common input. Recall
that the initial flat portion off ends at the first delay
in which a second postsynaptic inhibitory spike in the
local I-cell (that is, doublet) is produced (see Section
3.3.1); and this delay depends on the excitability of the
local inhibitory cell.

In this subsection, we investigate the influence of
one factor that controls the excitability of the inhibitory
cell—namely, the level of inhibitory-cell drive. We find
that when the level of drive to the inhibitory cells is in-
creased the distance over which the network can syn-
chronize via synchronized input is decreased. Note that
this was also the case for increased levels of distant
excitatory to inhibitory synaptic connection strength,
shown above in Section 3.4.3.

The f in Fig. 3A is generated without any constant
external drive to the local inhibitory cell. Figure 10
presentsf generated with and without the local in-

Figure 10. Graph of f generated with a constant depolarizing cur-
rent applied to the local inhibitory cell, dotted curveIapp= 0.0, solid
curve Iapp= 0.06, dashed curveIapp= 0.12. The dotted horizontal
line at≈ 126 ms represents the period of the excitatory cell without
any distant input.

hibitory cell receiving a constant level of depolariz-
ing current,Iapp (dotted curveIapp = 0.0, solid curve
Iapp= 0.06, dashed curveIapp= 0.12). The dotted hor-
izontal line again represents the intrinsic period of the
local excitatory cell without any external drive. No-
tice that with a small amount of depolarizing current
(Iapp= 0.06) the endpoint of the flat region moves to
the left (as compared to the graph withIapp= 0.0) and
continues to move left asIapp increases.

Beyond the flat portion off , there is a steep rise
in the graph that represents a long delay in the spike
time of the excitatory cell. This long delay arises from
the fact that at the firstδ in which a second inhibitory
spike is generated (data points forδ were chosen at
0.1 ms intervals), the inhibitory cell slowly rises to its
spiking threshold and thus spikes late in the period of
the excitatory cell. The resulting hyperpolarization of
the excitatory cell happens late enough in the excitatory
cell’s period to significantly delay its firing time; and
hence, there is a steep rise inf . Although theδ at
which a second inhibitory spike occurs decreases as
Iapp increases, the inhibitory cell actually takes longer
to spike at thisδ asIappincreases. Hence, the excitatory
cell is delayed longer and there is ahigher rise in the
functions f generated here.

We note that the steep rise in the graphIapp= 0.0 is
not present in Fig. 3A. For the purposes of Section 3.3,
Fig. 3A was generated using intervals of 1 ms between
data points forδ as compared to 0.1 ms here.

For both graphs off in Fig. 10 with Iapp positive,
beyond the region with negative slope, there are two
regions qualitatively similar to those off with Iapp= 0,
a nearly flat region followed by a region with small
positive slope. These regions arise from network be-
haviors analogous to those described in Section 3.3.1.

In conclusion, we have shown that if there is a in-
crease in the level of drive to the inhibitory cells then
there is a decrease in the local distance over which
α-frequency rhythms can be synchronized. However,
the qualitative behavior of long-distance coupled net-
works will not change.

3.5. A Larger Network

For mathematical simplicity, the analysis in Sec-
tions 3.2, 3.3, and 3.4 was based on a minimal network
of neurons. In this section, we expand the network
model to a larger layer V model that still oscillates
in the α-frequency range. The larger model allows
us to include potential effects of possible decoupling
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within local populations of excitatory and inhibitory
cells. We give numerical results verifying that, as pre-
dicted, under most conditions asynchrony is observed
in the expanded global network.

3.5.1. Expanded Local Model. We expand the lo-
cal two-cell oscillating unit described in the methods
section to a local four-cell unit. This unit consists of
two excitatory and two inhibitory cells of the types de-
scribed in the methods section. Within the local unit,
the cells are coupled with all to all synaptic coupling.

The connection strengths of the local synapses are
normalized to adjust for the increased number of
synapses from and to a cell. Since the number of cells
has doubled, the connection strengths of each of the
excitatory to inhibitory and the inhibitory to excita-
tory synapses are half of the strength of those in the
local two-cell model. There are excitatory to excitatory
AMPA synapses in this four-cell local unit, and we set
their connection strengths to be half of the strength of an
excitatory to inhibitory synapse. This is done under the
assumption that excitatory to excitatory synapses are
weaker than excitatory to inhibitory synapses within a
localized network (White, 1989). Similarly, inhibitory
to inhibitory GABAA synapses of half the strength of
the inhibitory to excitatory synapses are present.

Regardless of initial phase lags, each cell in this four-
cell unit oscillates synchronously (with a small delay
between the excitatory and inhibitory cells) via rebound
spikes as was described in Section 3.1. Using the same
parameters for all the intrinsic cellular mechanisms as
in the local two-cell model, this local four-cell model
sustains rhythmic activity at approximately the sameα

frequency as the two-cell model.

3.5.2. Global Network Results.To form a larger
global network, we connect two of the above described
four-cell local network models using both distant exci-
tatory to excitatory and distant excitatory to inhibitory
AMPA synapses. We again incorporate a time delay
in all synapses between the two local four-cell units to
represent spatial distance. We also set all the synap-
tic connection strengths between units to half of the
respective connection strengths within a local four-cell
unit. A picture depicting this expanded global network
structure can be seen in Fig. 11.

Considering each synchronous local four-cell cir-
cuit as a single oscillating unit, the analysis of
Section 3.2 holds for this expanded global network.
Indeed, numerical simulations of the expanded global

Figure 11. Representation of the expanded global network: two
local circuits, each consisting of two excitatory cells with all to all
coupling to two inhibitory cells, are connected via long distant exci-
tatory to inhibitory and excitatory to excitatory synapses.

network exhibited the same qualitative results as seen
for the smaller network and described in Fig. 8A.
Figure 12A shows a representative case comparable to
Fig. 8D (δ= 10); a minor difference from the smaller
network in the manifestation of asynchrony is noted in
the figure caption. Atδ = 20, as in the smaller network,
there is very slow synchronization (after 4 seconds, data
not shown). These results are again consistent with the
claim that rhythms in theα-frequency range tend not to
synchronize over spatially distant areas of the cortex.

We conjecture that if we continued to increase the
number of cells in a network, scaling all the synaptic
connection strengths appropriately, the results of this
article would hold for arbitrarily large network models.

3.6. Discussion

Motivated by the results of experimental studies, we
have constructed a cellular and network-based model
for the generation of corticalα-frequency rhythms.
The model (without distant excitatory to excitatory
synapses) shows that, for locally coupled networks,
synchronousα-frequency rhythms induced by initial
common initial input can be maintained. The size of
the conduction delays over which this holds is influ-
enced by the strength of the distant excitatory to in-
hibitory synapse as well as the level of constant drive
to the inhibitory cell. However, for coupling over most
spatial distances,α-frequency rhythms are observed
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Figure 12. Numerical results of the expanded global network
shown in Fig. 11.A: Voltage traces of cellsE1 (solid curve—
synchronous toE2) andE3 (dashed curve—synchronous toE4) over
600 ms;4 = 3 andδ = 10. (Note that4 = 3 represents the initial
difference in spike times betweenE1 andE2, E3 andE4, andE1 and
E3.) B: Corresponding histograms giving the number of occurrences
of specific differences,4, in the spike times ofE1 and E3 over 4
seconds. The network does not reach a steady state. Thus, the figure
label states that asynchrony occurs (see also Fig. 8D).

to be asynchronous, and these findings are consistent
with recent experimental observations (Roelfsema et
al., 1997). We have seen that the same mechanism—
namely, the kinetics ofIT and Ih—is responsible
for both the generation of the rhythm and its prop-
erty of asynchrony. Moreover, becauseIT and Ih

are hyperpolarization-activated inward currents, they
essentially invert the roles of excitatory and inhibitory
inputs. Hence, our intuitions about the synchroniza-
tion properties of excitatory to excitatory connections
and the role of inhibition in spike timing are reversed.
Furthermore, asynchrony is facilitated by the addition
of recurrent excitation to the network model and by
local inhibition, which decreases the spiking time in
excitatory cells. Finally, numerical simulations indicate

that the results proven for a minimal representation of
a cortical network are robust and also applicable to sys-
tems in which the cells of a given type (E or I ) are not
all lumped together.

3.6.1. Why Does the Reduction to One-Dimensional
Maps Work? In order for the one-dimensional maps
to work, the general hypotheses of PRC (phase
response curve) theory should be at least approximately
satisfied. That is, the local oscillators, when perturbed,
should return (approximately) to their periodic wave
forms within one cycle; also, the effect of the stereo-
typic perturbation (signal from the other local circuit)
should depend only on the time in the cycle of the
recipient oscillator that the perturbation is received.
The first is true because of the reset properties of the
currents, using the fact that the time scale of the oscil-
lation is set by slow activation or deinactivation of the
h-and T-currents. Those gating variables are strongly
voltage dependent and quickly reset to almost fixed val-
ues when the E-cell spikes (see Fig. 5). Though other
gating variables, such as activation of the fast spiking
K current, do not reset with a spike, their effects are
gone by the end of a cycle. This implies that, for these
E-I oscillations, the timing of the E-cell spike paces all
of the other variables, and there is no history depen-
dence in any of the other variables. If the reset of the
“slow” gates is not fast, the behavior of the network
can be radically different (LoFaro and Kopell, 1999).
Once one has the quick return to the limit cycle, a short
(relative to the oscillator period) and stereotypic signal
will always lead to a phase shift that is dependent only
on the phase at which input is received. In our case,
the input signalis stereotypic, because it consists of a
fixed EPSC delivered to the distant I-cell.

To understand how the above hypotheses constrain
the use of this method, we first contrast our current
situation with inhibitory coupling in a network of two
thalamic interneurons in burst mode (Terman et al.,
1996). In that case, the signal between coupled neu-
rons is not short. Instead, the slowly decaying inhibi-
tion that forms the coupling signal is on the same time
scale as that of the uncoupled oscillator, and the ef-
fect of the coupling signal lasts well beyond one cycle.
In our case, there is also decaying inhibition, but it is
within the E-I local circuit itself, while the distant E
to I coupling signal between the two local circuits is
a fast signal. In Terman et al. (1996), the signal also
does not have a stereotypic effect on the postsynaptic
cell; there is an interaction between the changing state
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of the postsynaptic oscillator and the changing state of
the synaptic conductance that varies from cycle to cy-
cle. Hence, PRC methods are not useful. Similarly,
in Bose et al. (2000), dealing with two excitatory neu-
rons, there is no reset when the E-cell fires, keeping the
history dependence in the gating variable.

Similar reductions have been used for analysis of
synchronization of distant pairs of local circuits dis-
playing the gamma and beta rhythms (Ermentrout and
Kopell, 1998; Kopell et al., 2000). As in the current
article, the signal carrying the information about tim-
ing between the circuits is very fast compared to the
processes controlling the oscillation (decay of locally
produced inhibition for gamma, the latter plus an after-
hyperpolarization current for beta). This separation is
fundamental to the use of the methods of this article.
Other differences in time constants, such as the those
of the h-current activation and the T-current activation,
are not important in the reduction to a one-dimensional
map. However, those separations play an important
role in allowing us to understand how the biophysics
shapes the one-dimensional map.

3.6.2. Weakly Heterogeneous Global Network.The
analysis presented in this article has been for homoge-
neous global networks. One cannot expect predictions
made by the slopes off to be exact for a network with
heterogeneity. However, the results of this analysis
can be extended to global networks that have a small
amount of heterogeneity.

In particular,α-frequency rhythms will still be asyn-
chronous in regimes where the slope of the graph off
is negative, since small inhomogeneities in the system
cannot overcome the desynchronizing effects intrinsic
to the model. Similarly, in regimes where the slope
is strictly positive, a small amount of heterogeneity in
the network would still produce almost synchronous
rhythms. However, small amounts of heterogeneity
may cause a neutrally stable synchronous solution to
become weakly stable or unstable, and in either case
there would be long transients.

We tested the above theory by adding a small amount
of heterogeneity to the four-cell network depicted in
Fig. 1. The heterogeneity was added by simulating
injection of a constant depolarizing current into the
excitatory and inhibitory cells on one of the two local
oscillating units. This resulted in a small increase in
frequency (up to 10%) of the depolarized unit. When
the local networks were then connected with various
conduction delays,δ, and using various differences,4,

in initial conditions we found that the same qualitative
results on the occurrence of synchrony held for all val-
ues ofδ and4 tested as in the case of a homogeneous
network. Hence, in the context of the results of this
paper, a slightly heterogeneousα-frequency network
will tend not to synchronize.

3.6.3. Comparison to Spindle Rhythms.The
α-frequency rhythmic activity we have analyzed here,
which is thought to be generated in layer V of the cortex
during periods of rest or reward, differs in several fun-
damental respects from the spindling 7 to 12 Hz rhyth-
mic activity observed experimentally in the thalamus
and the cortex during the early stages of sleep (Steriade
and Deschenes, 1984; Contreras et al., 1998). In this
section, we will make a comparison between our model
and models generating 7 to 12 Hz spindle oscillations.
We first note that thalamic networks do not contain E
to E connections; therefore, in this discussion we are
making a comparison between thalamic models and
our model without E to E connections.

Our model contains several of the same intrinsic and
synaptic properties as thalamic network models (Wang
et al., 1995; Destexhe and Sejnowski, 1997), but the
network behavior is different. In the thalamic models,
the I cells (known as RE cells) can generate bursts of ac-
tivity atα-frequencies via intrinsic T and AHP currents,
either as separate cells or as RE networks (Destexhe and
Sejnowski, 1997). In our case, the I-cells are nonadapt-
ing. The individual E cells in the thalamus, known as
TC cells, display bursts of oscillations via the interplay
of intrinsic h and T currents; however, these bursts
are at lower frequencies between 0.5 and 4 Hz. The
RE-TC network generates sustainedα-frequency os-
cillations known as spindles. The individual TC cells
do not fire at that frequency but separate into clusters;
it is only the population of TC cells that fire at the
α-frequency. This differs from our situation in which
the E-cells fire on every cycle of theα rhythm.

There are also differences in mechanisms of syn-
chronization or desynchronization. Since there are
several kinds of thalamic rhythms, we contrast our
mechanisms with synchronization in each of several
cases. We start with the network of TC and RE cells
in which GABAA connections are blocked; this re-
moves all RE-RE connections but leaves RE-TC con-
nections via GABAB. Wang et al. (1995) have shown
that full synchrony can be obtained due to long bursts
of the I cells that come about from lack of intra-RE
connections. This synchrony, which is at the much
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lower frequency of≈ 4 Hz, is the effect of a com-
mon rebound from large simultaneous hyperpolariza-
tions as described by Rubin and Terman (2000). This
increase in I-cell drive to the E-cell does not, in our
case, produce synchronization. The essential reason is
that whether the cells synchronize or not in our case
depends on the latency of the I-cell spike from the dis-
tant E-cell excitation; changing the strength of the I-cell
drive to its local E-cell (the only I-cell drive) does not
change the boundaries of the regions of the response
function f , or the sign of the slope off within regions.
Therefore, increasing the strength of inhibition to the
E-cell cannot change the network from asynchronous to
synchronous.

If GABA A is not blocked, the TC cells do not
synchronize, but form clusters (Wang et al., 1995;
Destexhe and Sejnowski, 1997). The coherence within
the population depends strongly on the divergence of
the I to E connections, so that the E-cells within the net-
work get relatively uniform inhibitory inputs. In our
case, the E-cells receive inhibition only from their own
local I cells, and hence common inhibition plays no
role in synchronizing the two separated circuits. Thus,
differences in functional connectivity plays a role in
differences in synchronization mechanisms.

Finally, the thalamic models above deal with local
networks without spatial distribution of the cells; when
such spatial distribution is added (in the absence of
cortical input (Contreras et al., 1996)), one gets waves,
not synchrony (Kim et at., 1995; Destexhe et al., 1996).
It remains to be seen if the mechanisms in the cur-
rent article that produce desynchronization of discrete
separated circuits would produce waves in a more con-
tinuous medium.
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