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Abstract. More coherent excitatory stimuli are known to have a contigetadvantage over
less coherent ones. We show here that this advantage isfi@agjieatly when the target
includes inhibitory interneurons acting via GARAeceptor mediated synapses and the co-
herent input oscillates at gamma frequency. We hypothels&eherein lies, at least in part,
the functional significance of the experimentally obserliekl between attentional biasing

of stimulus competition and gamma frequency rhythmicity.

1 Introduction

Biasing of competition in favor of an attended stimulus i®kn to be correlated with en-
hanced gamma band (30—80 Hz) synchronization (Fries étG02; Gruber et al., 1999; Taylor
et al., 2005). We propose here a possible link between garhgihmicity and selectivity: A
coherent input oscillating at gamma frequency can be higfiéctive at preventing less coherent
competing inputs from being noticed when the target netvilockudes inhibitory interneurons

acting via GABA, -receptor mediated synapses. Two factors contribute sceffect:

(1) Inhibition in effect raises théeakinessof the target neurons, thereby greatly

amplifying the known (Murthy and Fetz, 1994; Singer, 199@yantage of a more
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coherent excitatory inpul over a less coherent competitBr A highly coherent
stimulus can break through the inhibition generated in &ingett network, while less

coherent competitors cannot.

(2) When a gamma frequency trafof excitatory input pulses entrains a target
network of excitatory and inhibitory model neurons, timeing of the inhibitory spike
volleys in the target favoré over any competing pulse traBithat has a different

frequency or phase.

Our work on this subject was inspired by a recent paper bysk#605), who suggested that
phase locking with the target should lend a competitive athge to a stimulus. This idea is
related to our point (2) above; we will show it to be valid (@h$t in our model) in the presence
of inhibition in the target, but not in its absence.

In Section 2, we describe our models. In Section 3.1, we pteesults of numerical sim-
ulations demonstrating the large competitive advantageafe coherent excitatory inputs to
networks of excitatory and inhibitory model neurons ovesleoherent ones. In Section 3.2, we
analyze how synaptic inhibition within the target favor&iecent inputs by effectively raising the
leakiness of the target neurons — our point (1) above. Ini@e8&t3, we discuss how the timing
of inhibitory population spikes within the target neurondes an entraining input over others
— our point (2). In Section 3.4, we explain why suppressiora déss coherent input traiB
by a more coherent input tratarequires thaf oscillate at least at gamma frequency. We con-
clude Section 3 with a brief discussion of the robustnessiofesults with respect to parameter
changes, heterogeneity in neuronal and network propeatnesnoise (Section 3.5). Although in-
coherent input is less effective at eliciting responsesaiit be effective at raising the excitability

of target cells. In particular, an incoherent distractoyraaable the inhibitory cells in the target



network to fire. It is therefore possible for the incoherastrdctor itself to enable the mechanism
that prevents it from entraining the target network. Thiflustrated by a computational example

in Section 4. We summarize and discuss our results in Sestion

2 Models

The mechanisms studied here require no currents other ltloge tn the classical Hodgkin-
Huxley model (Hodgkin and Huxley, 1952). In general, catireurons are capable of producing
many other ionic currents. Some, for instance hyperpa#dn-activated inward currents such
asly (Luthi and McCormick, 1998), are probably negligible chgrithe sort of driven gamma
activity considered here, since membrane potentials dbexime sufficiently low. Others, for
instance depolarization-activated slow outward curreath ady, may well be present and are
in fact thought to be modulated by attention (Hasselmo an@&ughy, 2003; Sarter et al., 2001).
However, we don’t expect the presence of such currents o alir main points fundamentally
as long as the target neurons fire in response to input pldseapt — or much less frequently
— otherwise. Those aspects of the physiology that are irapoto our study should be well-
described by standard Hodgkin-Huxley equations, whichiin tan often be well-approximated
by reduced equations such as integrate-and-fire modelsofAd®99; Latham et al., 2000) or
the theta model (Ermentrout and Kopell, 1986; Gutkin anddétrimout, 1998; Hoppensteadt and
Izhikevich, 1997). In this paper, we primarily use thetanoas, since they have more realistic
input response characteristics than integrate-and-fireons. However, for simplicity and trans-
parency, some of our analysis will also be presented foalimgtegrate-and-fire neurons. For
both theta and integrate-and-fire neurons, we model syeaps$ie standard conductance-based

way.



2.1 Theta neurons.In the theta model (Ermentrout and Kopell, 1986; Gutkin anch&ntrout,
1998; Hoppensteadt and Izhikevich, 1997), a neuron is septed by a poin® = (cosb, sind)
moving on the unit circle. Thisis analogous to the Hodgkimxleéy model, which represents a pe-
riodically spiking space-clamped neuron by a point movin@gdimit cycle in a four-dimensional
phase space. In the absence of synaptic coupling, theettiat equation describing the motion
of the pointP is

de

a:1_cose+|(1+c056) . (1)

Heret should be thought of as time measured in milliseconds (&8rgnd Kopell, 2005, Section
2.1), and as the analogue of an external input current.

For a negative constahtEq. (1) has the two fixed points
0f = +2 arccos(l/\/l— |) . @)

The fixed pointd; € (—,0) is stable, and®} € (0,) is unstable. Ad increases, the fixed
points approach each other. Agrosses 0 from below, a saddle-node bifurcation occurs: The
fixed points collide aB; = 6; = 0, and there are no fixed points for- 0. For a theta neuron,

to “spike” means, by definition, to rea¢h= 1t (modulo 27). The transition froml <0tol >0

is the analogue of the transition from excitability to spiiin a neuron. In this paper, we will
study effects of input coherence, and will therefore allow be a function of time (see Section
2.3).

The theta neuron is equivalent, up to a change of variable,doadratic integrate-and-fire
neuron with threshold potentig = +c and reset potentidleset = —o0; for a more detailed
discussion of this connection see Section 2.1 of Borgedkapell (2005).

We turn now to a description of how we model synapses amortg tieurons. To derive

the terms in the differential equations that model synaiptieractions, we use the connection
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between the theta neuron and the quadratic integrate-gndeuron mentioned in the previous
paragraph. For the quadratic integrate-and-fire neurarases are modeled in the standard way,

by adding terms of the form
9sS(t) Viev—V) 3)

to the right-hand side of the equation governihgThe gating variable(t) rises rapidly when
the pre-synaptic neuron spikes, and decays exponentiahgafter; our specific choice eft)

will be stated at the end of this section. Using the changanéble that leads from the quadratic
integrate-and-fire neuron to the theta neuron, one obtaimsde!l of synapses among theta neu-
rons; for details, we refer again to Borgers and Kopell &00rhe equation of a theta neuron

subject to an excitatory synaptic input becomes

% =1-cos9+ (I +12gss(t)) (1+ cosB) —gss(t) sind , 4)

wheres(t) is the gating variable associated with the synapse. Silyildie equation of a theta

neuron subject to an inhibitory synaptic input is

% =1-—cosB+ (I — g gss(t)) (1+cosB) — gss(t)sind . (5)

The constants 12 and'3 in Egs. (4) and (5) depend on the synaptic reversal potelig (see
(3)) assumed in the derivation, but their precise valuesat@ppear to affect the results of the
present study in a qualitative way. When a theta neuron igstuto multiple synaptic inputs at

the same time, the resulting terms are summed:

doé

3
i 1—cosb+ <I +12.ZgS’E’i Sei(t) ~5 ngJ,j su-(t)) (1+ cos9)

- <Z OsEiSEi(t)+) Os1,i S| (t)> sin@ .
[ ]



Here the subscript& and| indicate conductances and gating variables associat&dBatells
(labeled byi) and I-cells (labeled by), respectively.

In our computational simulations(t) is a smooth function governed by the equation

a_ D R ’

ds_ S | on(rcos)1=S

wheref is associated with the presynaptic neuron. We alwaysjusé andtgr = 0.1. Thus,s
rises rapidly (but not instantaneously) towards 1 whenrumodulo 21, and decays exponentially
with time constantp otherwise. For E-cellgp = 2, and for I-cellsgp = 10. Since we think of

t as time measured in milliseconds, these are approximdtelgi¢cay time constants associated
with AMPA and GABAa receptor mediated synapses, respectively. For analytigoges (in
particular in Appendices C and D), we simplify by assum&ig to jump to 1 instantaneously

when the presynaptic neuron spikes, and to decay expoltiiereafter.

2.2 Networks. We denote byNg andN, the numbers of E- and I-cells in the model network,
respectively, and bye andl, the drives to the E- and I-cellsle and |, may be different for
different neurons, and will be time-varying (see Sectid).2Connectivity is all-to-all, except in
the simulation underlying Figure 10 (see Section 3.5.5 apdefdix A for details). We denote
by gie the sum of all conductances associated with inhibitory pgaa acting on a given E-cell;
thus assuming all-to-all connectivity, an individuatE synapse has strengifx /N,. Parameters
O, g1, andgeg are defined similarly. Throughout this paper, we will asstinag e = g (but
see the comment at the beginning of Section 3.5.1); we deéheteommon value of these two

parameters by, .

2.3 External drives. We use oscillatory external drives of the form

0 _ 2
> 2T exp(—<t (q;;zk)T) )—1]. (6)

ko V2102

I(t)=C+Q
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HereC is theconstant componetfthe temporal average) of The term in brackets, multiplied
by the constan® > 0, is theoscillatory componentThe oscillation period i3, the width of the

input pulses i, and¢ is a phase shift. The frequency of the input is

The factor of 1000 is needed because we thinK @fs measured in ms, but want to think fof
as measured in Hz, not kHz. The temporal average of the atssiyl component, i.e., the term in
brackets on the right-hand side of Eq. 6, can easily showe tzebo. The oscillation amplitude
depends o /o and rapidly decreases with/o; for small T /g, one must therefore choose a
large value ofQ if one wants a sizable oscillation. Figure 1 shows two exaspine witho = 2
(sharp pulses, i.e., high coherence), and the otherawvth/ (broad pulses, i.e., low coherence).
Each neuron receives two input streams of the form (6), ofesresl to as the “primary
stimulus” or “inputA”, and the other as the “distractor” or “inp@#’. We use subscripts to
indicate the input stream, the type of the neuron receiviegriput (E or 1), and the index of the

neuron. For instance, the primary stimulus (stimuiso thei-th E-cell is denoted by

2 Tag, t— i +K)Tagi)?
IaEi(t) =Cakgi+QaEi AR exp(—( (Pagi +K)TaE,) )-1 ;

k:z—oo \/ 2O 203k

. _ 1000
AE TAE;

and has frequency

2.4 Linear integrate-and-fire neurons.For analysis purposes, we will also use linear integrate-
and-fire neurons in this paper. Non-dimensionalizing thenbirane potentiad by appropriately
shifting and scaling, we may assume in the linear integaatkfire model that the resting poten-

tial, in the absence of external drive,\\ig = 0, and the spiking threshold ¥4 = 1. The time



evolution of the membrane potentMlbelow threshold is then governed by an equation of the
form
dv

In this equationy is non-dimensional, butis time, gn, is the reciprocal of thenembrane time
constan{or equivalentlymembrane conductandevided by capacitance), amds external input
currenttimes a (dimensional) constant.

We model synaptic input to linear integrate-and-fire nesiiarthe standard way:

dv
gr = 9V 1+ Gss(t) (Vi V) . (®)

HereViey is the reversal potential of the synapge,;> 0 is themaximum synaptic conductance

divided by capacitance, arsft) is the gating variable associated with the synapse.

3 Stimuli oscillating coherently at gamma frequency rendelincoherent competitors ineffec-

tive

3.1 Simulations. We consider a target network consisting of a single E-ceadl asingle I-cell,
with strong E~|, I—E, and I synapses, but no-EE synapses. Figure 2 shows a simulation
in which there is a 40 Hz sequence of tight input pul8geacting on both target cells equally,
without any distractoB. (The precise parameter values used in this and other siongaof this
paper are listed in Appendix A.) The target cells are engéiny A; their spikes occur shortly
after the input pulse arrivals.

We now add a distracting stimul&s somewhat stronger thaon the average but less coher-
ent, oscillating at 25 Hz. Figure 3A shows the result. Thérdctor does not prevent the target

network from followingA at 40 Hz; it merely makes the rhythm of the target networkligess



regular. In Figure 3A, the distract@® oscillates more slowly than the primary stimulysand
the target network has only two cells. However, very simiksults are obtained for distractors
oscillating faster tha\; see Figure 3B for an example, and Section 3.5.4 for furthenerical
experiments concerning the distractor frequency.

One might first think that inpuA dominates in Figure 3A not because it is mooherenthan
input B, but simply because i@mplitudeis greater. Figure 3C demonstrates that this is not the
correct interpretation. The figure shows a case in which ibteadttorB is muchstronger thami\
on the temporal average, and even slightly stronger in daoa@i The target is still entrained by
A. The precise parameter values used in the simulation &eé Jias always, in Appendix A. The
inhibitory synapses are also much stronger here than inrthequs simulation; if they were not
strengthened, then the distractor would indeed be poweniulgh in this example to prevent the
entrainment of the target to inpAt

We note that in the experiments of Figure 3, and in all nunaéegperiments of this paper,
entrainmenbf the target by a stimulus means that the target cells prigmggpond with a spike

to each pulse of the stimulus, but don’t spike otherwise.

3.2 Inhibition amplifies the advantage of coherent input by mising the effective leakiness of
the target neurons.Coherent (i.e., nearly simultaneous) excitatory inpuspsitargeting a leaky
neuron are more likely to trigger a spike response than iei@tt ones (Murthy and Fetz, 1994;
Singer, 1999). The advantage of coherent input can be aatplify synaptic inhibition, which
can significantly raise the leakiness of the target neur@ugder and Clark, 1997; Funabiki et al.,
1998; Pouille and Scanziani, 2001; Grande et al., 2004)e Merpresent numerical and analytic

results for theta and integrate-and-fire neurons confirrtiiagthis is an important effect.



3.2.1 Numerical results for theta neurons

Figure 4A demonstrates that the well-known advantage ofengcoherent excitatory input
pulses over less coherent ones alone falls far short of iptathe results of Section 3.1. The
figure shows the result of repeating the experiment of Figérevithout the I-cell: The distractor
now has a strong effect. Of course, if the distractor is redun strength far enough, itis ignored
by the target even in the absence of inhibition. For instakeepingCgs andQg equal to each
other, one must reduce the common value of those two paresnet@bout 0.008 for the distractor
to remain ineffective; see Figure 4B.

Thetiming of inhibitioncan play a role in suppressing the response to the distrBdeee
Section 3.3), but theresence of inhibitioralone often suffices to give the more coher@rd
decisive advantage over the less cohei&nfor example, in the simulation of Figure 3A, the
synaptic gating variablg (t) associated with the I-cell oscillates, but if one replagethe code,

s (t) by its temporal average, the resulting figure is nearly tiatislishable from Figure 3A.

3.2.2 Analysis for linear integrate-and-fire neurons

We next present an analysis of the role of synaptic inhibitiolending an advantage to the
more coherent input. To make our arguments as simple anspi@aent as possible, we begin with
analysis for linear integrate-and-fire neurons, normdlag in Eq. (7). However, in subsection
3.2.3 and Appendix B, we also outline the analysis for thetarons.

Our starting point is a simple calculation demonstrating itituitive and well-known fact
that coherence makes excitatory input to an isolated tam@ion more effective. The purpose of
presenting this calculation here is to set the stage for desinalculation with synaptic inhibition
added.

Suppose tha¥ (0) = 0, and that during a brief time intervi, T3], an input currend > 0 is
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added to the right-hand side of Eq. (7):

c(jjl_\'[/:_ng+J foro<t<rty. (9)

We denote by

q="3J (10)

the total amount of charge injected, and ask whether the pyige suffices to elicit a spike. Of
course the answer dependsmrandJ, or equivalently, using Eqg. (10), a3 andg. The solution

of Eq. (9) withV/(0) = 0 is

J
V()= o (1-e o) g:n (1—eont)
so a spike is elicited if and only if
4 q-emu)>q,
Omly
or
gz 0 (11)

To interpret this inequality, we note that theembrane time constanf our model neuron is
Tm=1/gm. (See the discussion of physical dimensions following E}y) (Therefore the quantity
Omly appearing in (11) equaly /1y, the pulse duration measured in membrane time constants.
Sincex/(1— e %) is an increasing function of > 0, (11) shows that the total charge needed
to elicit a spike is an increasing function of the pulse dorgtmeasured in membrane time
constants. The advantage of briefer, higher-amplitudetipplses over broader, lower-amplitude
ones is amplified when the neuron is made leakier, that ispnwhés lowered.

Inequality (11) defines the regidfy,, of pairs(q,ty) for which a spike is elicited. Fogm =

0.2, 8., is depicted in Figure 5A; it is the union of the lightly and klgrshaded regions in the
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figure. (The significance of the two grades of shading will kel&ned shortly.) The fact that
the boundary of the shaded region (indicated boldly in Fedyris slanted to the right means that
more charge is needed to elicit a spike wham is greater; in other words, excitatory input is
less effective when delivered in a broader pulse.

The advantage of more coherent input pulses over less auhames is raised by synaptic
inhibition. To understand this, we now consider an integya@id-fire neuron subject to constant
synaptic inhibition:

dv

ot = —0OmV +0s(Vrev—V)

(compare Eq. (8)) witMey < 1. We neglect the temporal fluctuations of the gating vaeiafil)
here. This allows us to carry out an analytic calculatiord #re result will confirm that the
temporal fluctuations af(t), while helpful (Section 3.3), are not needed for the supgoesof
the response to the less coherent distractor.

The extra term changes the resting potential from zem®\Ry/(gm+ gs). Thus we assume
now thatV(0) = gsVrev/(Om+ 9s). As before, we add an input pulse during the time interval
[0,15]:

dv q

at = —ng—i-gs(Vrev—V)‘f‘E for0<t<Tty. (12)

Again we ask whether the input pulse suffices to elicit a spikie solution of Eq. (12) with

V(0) = gsVrev/ (Om+0s) is

V(t) = OsVrev o (gmiaolt 4/ + GsVrev (1 _ e*(gm+gs)t> :
Om+0s Om+0s

so a spike is elicited if and only if

M e*(gm+gs)TJ + M’ <1_ e*(gm+gs)TJ> > 1 ,
Om+0s Om+0s
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which is equivalent to

Om+0s— 9sViev
> .
=1 1— e (Om+t0s)T

(13)

Inequality (13) defines the region of paifg,1;) for which a spike is elicited by the input
pulse. This region is now dependent@s gs, andViey, and we therefore denote it [, g Viey-
The darkly shaded region in Figure 5A represefafSy, vie, With gm = 0.2,09s = 0.2, Viey = —0.1.
Notice that the boundary of the darkly shaded region is sthrnitore strongly than the boundary
of the union of the two shaded regions. This means that theiatwd chargeg needed to elicit a
spike depends more strongly on(that is, on coherence) in the presence of inhibition thatsin
absence.

If the reversal potentidle, were equal to the resting potential 0, then inequality (18)i\

simply become

(Om—+0s)Ty
4= 1—e (@Omtgs)ty

(14)
Comparing inequalities (11) and (14), we see that in thie cafibition simply has the effect of
raising the effective leak conductances of the neuron gIto gm -+ gs.

Interestingly, the advantage of briefer, stronger pulses tonger, weaker ones is in fact

independent of the reversal potentfal,. To see this, suppose thép > r§2> > 0. The minimum

charge needed to elicit a spike is

q(l_) _ T(l) Om+ 0s — OsVrev
min J 1— e_(gm+gs)T51)

if T5= rﬁ” , and
(2) (2) Om+0s — GsViev

Opnin =T
mn ) 1_e_(gm+gs)T52)

if 1= TSZ). The ratioq%i)n/q%)n can be thought of as the factor by which efficiency of the input
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pulse increases when its duration is decreased ﬁ(ﬁmo TSZ). This ratio equals

Tgl) 1— e*(gm+gs)T52)

T‘(Jz) 1— e_(gm+gs)T51)

regardless of the value ®fey.

3.2.3 Analysis for theta neurons

In this subsection, we sketch how the analysis of Sectior23a8n be repeated for theta
neurons; some additional details are provided in Appendi¥VB consider a theta neuron (see
Eg. (1)) driven below threshold, i.e., with< 0. We then add an input curredit= q/13 during
a time interval of duratiorty, and ask whether this current will elicit a spike. That is, agk

whether the solutiof of the initial value problem

e g
g = Ll-cosB+ <'+E) (1+cosB) (15)
8(0) = 6, (16)

satisfies the inequalit§(ty) > 6. HereﬂaE denote the fixed points of the theta neuron; see Eq.
(2). We recall thaBy is the stable fixed point, ar§jj the unstable one. We denote Kythe set

of pairs(q,ty) for which a spike is elicited. The union of the lightly and klgrshaded regions

in Figure 5B represent§ for | = —0.1.

As in Section 3.2.2, we now add constant synaptic inhibitotie theta neuron described by

Eq. (2):

% =1-—cosh+ (I — ggs) (1+ cosB) — gssin® (7)

(compare Eqg. (5)). It is not hard to show (see Appendix B) tat (17) has a unique stable
fixed point8; , € (—0) and a unique unstable fixed poﬁ?{{gs € (0,m) for all I andgs with

| —(3/2)gs < 0. We then add again the inpdit= g/13 during a time interval of duration af,
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and ask if it suffices to solicit a spike. Specifically, we ddes the initial value problem

de qg 3 .
i 1—cose+<l+a—§gs)(1+cose)—gssme,
8(0) = eags.

We denote by o, the region of pairgg, 1) for which8(t;) > Gags. To computes; g, numerically

is easy. To compute it analytically is straightforward, tadtious; we omit the details. The darkly
shaded portion of Figure 5B represenlg, for | = —0.1 andgs = 0.2. As before, inhibition
causes the boundary ¢f to be much more slanted to the right; this demonstrates abain
inhibition greatly amplifies the advantage of briefer, stger input pulses over broader, weaker

ones.

3.3 The timing of inhibitory pulses lends an advantage to thénput that entrains the target.
As noted earlier, entrainment of the target by a stimulusrmegem all the experiments of this
paper, that the target cells promptly respond with a spileatth pulse of the stimulus, but don'’t
spike otherwise. This implies that inhibition is relatiyeleak when the pulses éfarrive, and
usually stronger when the pulsesB®farrive. (A raises inhibition immediately after it gives an
input pulse to the target. This inhibition then decays, @&y its lowest value just before the
arrival of the next input pulse frorA.) Sometimes this effect alone determines which stimulus
controls the target. Figure 6A shows an example. The pulsBsmthis example are identical
with those ofA, but A is phase delayed. The first pulse, at the beginning of thelatron, is

a pulse ofB, and this gives the input sequenBeghe advantage ovek. As a result, the target
follows B and ignore\. However, as Figure 6B illustrates, this timing effect gigsears as soon
as the distractoB is somewhat less coherent than (but still as strong as) thepr stimulusA.
We have also tried the experiment of Figure 6B with other plsdsfts, and have found similar

results.
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We note that synchronization with the target would give tiraslus A no advantage at all if
there were no inhibition in the target network. In fact, tl@fnfinitesimal phase response curve
of a theta neuron has its peak in the earlier half of the pednd the infinitesimal phase response
curve has its peak in the middle of the period; see AppendirdFRgure 7A. Inhibition shifts
the peaks of the phase response curves to the right, anéseetaime interval at the beginning of
the period during which the target is almost entirely inmsensitive; see Appendix C and Figure
7B. So in the presence of local inhibition, the effectivenekan excitatory input pulse is indeed
greatest for pulses arriving near the end of the period. Wie thatt the effect on the shape of the
phase response curve of the theta neuron of synaptic irdmnls#sembles that of spike frequency
adaptation (Gutkin et al., 2005, Figure 4B).

Of course the discussion in the preceding paragraph depemtise neuronal model. For
instance, for a linear integrate-and-fire neuron, the phesgonse curve peaks near the end of
the period even in the absence of local inhibition; see Adpe and Figure 7C. As for the theta
model, local inhibition shifts the peak of the phase respansve further to the right, and creates
a time interval of input insensitivity near the beginningloé period; see Appendix D and Figure

7D.

3.4 The significance of the gamma frequencyThe period of a gamma oscillation is the time
that it takes for GABA -receptor mediated inhibition to decay by approximatelyoater of
magnitude. The mechanisms described here work only if theuis A oscillates at least at

a frequency in the gamma range. If the frequency is much lowhibition decays too much
between the arrivals of the pulsesAfThis is illustrated by Figure 8, which shows the results of
a simulation in which the coherent pulsesfoérrive at 20 Hz, and the less coherent and weaker

distractorB oscillates at 12 Hz. (As always, the parameter values aesllia Appendix A.) The
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target is significantly affected .

3.5 Parameter dependencel he numerical experiments that we have presented dependioy m
parameters, and it would be impossible to study the effectgnying these parameters simply
by exhaustive search. However, we highlight the qualiéatode played by the most important
parameters here, and demonstrate that stimulus seleets&u lon gamma rhythmicity is a robust

phenomenon.

3.5.1 Strength of inhibition

Throughout this paper, we assume that the E- and I-cellsveeegjually strong inhibition:
e = 01 = g. This assumption is natural because the distraBtigrassumed to target E- and
I-cells indiscriminately. If the distractor did not targee I-cells, therg,; could in fact be taken
to be zero.

The inhibitory conductancg, has to be strong enough to protect the target against the dis-
tractorB, but not too strong to prevent its entrainmentbylo show that there is a broad range of
valuesg, satisfying both constraints, we repeat the experimentgdifei 3A varyingg,, with all
other parameters fixed as in Figure 3A. Figure 9A shows tlguéracies of the E- and I-cells of
the target (indicated as circles and triangles, respdg}ias functions ofy. Forg, € [0.2,0.525,
we see a plateau representing entrainment by stimulus A1 Boget cells spike at 40 Hz. We
will now consider how the location and width of this platedacge as the distractor strength and

coherence are varied.

3.5.2 Distractor strength

Changes in the distractor strength tend to shift the plabé@mtrainment seen in Figure 9A
without very much affecting its width. In Figure 9B, we shdwetsame experiment as in Figure

9A, but with the distractor strength doublets = Qg = 0.12. SinceCa = 0.04, this means that
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stimulusB is now, on the average, three times stronger than stimulidevertheless, the more
coherent gamma frequency stimuldsstill prevails over a wide range of values gf. In the
experiments of this paper, the temporally averaggengthof the stimulusA is not larger (and
sometimes smaller) than that of the distra@®oif A were not just more coherent thBnbut also
of greater average strength, the range of valueg tr which the target is entrained #ywould

broaden.

3.5.3 Distractor coherence

Even when the contrast in coherence betw&andB is relatively modest, there is a range of
values ofg, in which stimulusA prevails. Figure 9C demonstrates this. Here the paramaters
again chosen as in Figure 3A, bmg has been lowered to 5 (earlier it was 9). The plateau of 40
Hz entrainment is narrower than before. There is now alsmgeaf values of, for which the

target is entrained tB at 25 Hz.

3.5.4 Distractor frequency

The frequencyfg of the less coherent, distracting stimuBiss largely irrelevant. To demon-
strate this, we begin again with the experiment of Figurel3A raise the value aj, from 0.2 to
0.35. (Figure 9A indicates that®lies near the lower edge of the range of valueg;oh which
A entrains the target;.B5 is much closer to the center of that range.) We vary theadistr
frequency. Figure 9D shows the result, confirming the iu@hee offg over a wide range. To
understand why entrainment fails whéis very low, note that the temporal averagdso$ fixed
here; thus when the pulses Bfare very infrequent, they are also very strong — strong enoug
to distract the target. Not surprisingly, this effect beesnmore pronounced whej is low-
ered (wherg, = 0.2, entrainment occurs only whdg > 25), but disappears when the distractor

strength is lowered (data not shown).
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We remark that the assumptidg < fa, although not needed in our study, would in fact
seem natural here. The abstract networks discussed herlel $feothought of as models of what
happens at higher levels of processing; it seems reasoat@jecture that at those levels, “dis-
tractor” input might arrive not only with less coherencet ioufact with less drive than attended
input. Lower drive typically translates into (at least sevhat) lower oscillation frequency; see

for instance Figure 3C of White et al. (2000) or Figure 2 ofjBis and Kopell (2005).

3.5.5 Heterogeneity and noisédur experience suggests that heterogeneities in neurodal a
network properties or noisy external drives do not prevéimgus selection based on gamma
rhythmicity, and in fact may facilitate it in some cases. Ve@dano analysis explaining the latter
observation, but present a sample simulation in Figure 1l®e dimulation underlying Figure
10 involves a target of 80 E-cells and 20 I-cells. Parametsressentially those of Figure 3A,;
howeverg, has been reduced from20to 0.1 (bringing it clearly below the range of entrainment
according to Figure 9A), and heterogeneity and noise irreat&rives and network connectivity
have been introduced; see Appendix A for the details. FigOrshows that the target is noisily
but unmistakably entrained by the 40 Hz stimufudn the simulation underlying Figure 10, the
average strength of input A varies from cell to cell; thedalirve in the bottom panel of Figure

10 indicates the average of input A over all cells of the nekwo

4 An incoherent distractor can promote its own suppression

Suppose that the primary stimuldspresented alone, activates the E-cell, but is insufficient
to activate the I-cells. In a real network, the I-cells mi@gtinstance be of type Il (Tateno et al.,
2004), and stimulug alone might not suffice to bring them above their spiking shdd. In

our model network of two theta neurons, we make the I-celésponsive by injecting a strong,
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constant, hyperpolarizing current. Figure 11A shows tisalteof such a simulation. Since the
I-cell does not spike, the E-cell is left vulnerable to disting stimuli. Figure 11B shows results
of a simulation illustrating this point; here the distractinput was given to the E-cell only. If the
distractorB also drives the I-cell, it may help activate the I-cell andréby restore entrainment
of the target network byA. This is illustrated by the simulation result shown in FigurlC.
Parameter values for Figure 11 are given in Appendix A. Wearirthat the oscillatory nature of
the distractor is irrelevant here; the essential pointas the distractor activates the I-cell enough
to enable it to participate.

We note that an alternative way of overcoming hyperpol#ionaof the I-cells, enabling them
to fire and thereby invoking the mechanism that shuts outatitirs, would be the selective

enhancement of theoherencef the primary input stream to the I-cells of the target network.

5 Discussion

Several possible functional roles of neuronal coherendkarbrain have been suggested in
the literature: Coherence strengthens the effectiveniessaitatory signals (Murthy and Fetz,
1994; Singer, 1999), weakens the effectiveness of inhipisignals by leaving “windows of
opportunity” (Borgers et al., 2005; Borgers and Kopel03; Lumer, 2000; Tiesinga, 2002;
Tiesinga et al., 2004), may play an important role in the tooeaof cell assemblies (Olufsen
et al., 2003), and may be the key to solving the “binding peoiil (Engel et al., 2001; Singer and
Gray, 1995; von der Malsburg and Schneider, 1986). In thmepave have demonstrated that
gamma rhythms may also facilitate stimulus selection: Wiasitatory input to an E/I network
(not just to a single target cell) comes in the form of a seqaei coherent pulses in the gamma

frequency range, downstream response to less coherentetitonpis suppressed.
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Fries (2005) suggested thi@ning is crucial: The phase dependence of the input sensitivity
of the target lends an advantage to well-timed inputs olinled ones. In our model, timing
does play a role when there is strong inhibition in the targeshown for instance in Figure 6A,
but not otherwise (see Figure 4, and our discussion of plesgm®nse curves). In our numerical
experiments, timing effects can tip the balance when thmutiare close to each other — or
identical, as in Figure 6A. There is, however, a second itgmbeffect: Inhibition in the target
network, by itself and independently of timing, greatly difigs the advantage of coherent inputs
over incoherent ones; see for instance Figure 6B. Once altat®ty input entrains the target,
the phase difference between it and the target is dictatetthdoylynamics; indeed this phase
difference is favorable to the entraining input.

In Borgers et al. (2005), we proposed a different way in Wigamma rhythmicity may play
a role in stimulus selection; there we showed that gammanhigity helps a strongly driven
assembly suppress activity in a less strongly driven onleeifttvo assemblies share a single in-
terneuron network. Thus the competition was betweenassembliesn Borgers et al. (2005),
whereas here it is between twtimuli competing for control over a single assembly. Combina-
tions of the two scenarios are possible and plausible; fetamce, two different stimuli might
drive two different, but overlapping assemblies within @& network.

We have assumed purely excitatory input to a target netwuak includes local recurrent
inhibition. This is in contrast with other recent modelsgdinga, 2005; Mishra et al., 2006)
in which excitatory and inhibitory input streams drive agéenneuron, with possible attentional
modulation of coherence and phase of the two streams indepé.

In our model, the entire target network is entrained by theary inputA, and therefore
frequency and phase of the response are the only degreeedbm available to encode stimulus

identity and intensity. In a larger, more realistic versmnour model, inputsA and B would
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naturally stimulate different ensembles of neurons,aerlapof the two ensembles would then
be the analogue of the target network in the present studthé&munore, the spiking frequency of
individual cells would not necessarily have to be identigih the population frequency in such
a model. Thus additional degrees of freedom — the set of msuesponding, and the mean
frequency of individual cells — become available to encddadus identity and intensity when
the model is made larger and more realistic. How the resfifseopresent study extend to such
more complex situations will be a subject of future work.

We did not allow feedback from target to upstream sourcelsarptesent study. It remains to
be investigated how such feedback, which of course is tilpipaesent in the brain, affects the
mechanisms discussed here.

Codes used to produce the numerical results of this papebeabtained by sending an

e-mail request tohri st oph. borgers@ufts. edu.
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Appendix A: Parameter values used in simulations

Figure 2:
Oee=0 g =005 =02

Ca=0.04 Qa=0.04 fa=40 Op=2 ¢A:O
Ce=0 Q=0 ¢8=0

We have omitted the indicadabeling neurons because there is only one cell of each End,
and I. We have also omitted the indices E and | because thavthedlls receive the same input

stream here.

Figure 3A:
Oe=0 gg =005 ¢ =02
Ca=0.04 QA:0.04 fA:40 op=2 ¢A:0
Cg =0.06 QBZO.OG fB =25 og=9 ¢B:O
Figure 3B:

Oee=0 Qgg =005 =02
CA =0.04 QA =0.04 fA =40 Oop = 2 (I)A =0
Cg =0.06 QBZZO fB:65 og=9 ¢B:O

The ratioTg/og = 1000/ ( fgog) is smaller here than elsewhere in this paper. This is thereas
why Qg is taken to be so large here; see the paragraph following@&g.Tthe choiceQg = 20

yields a sizable, but not overwhelming oscillatory compuanas shown in Figure 3B.
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Figure 3C:
=0 gg =005 g =05

CA: 0.04 QA:0.04 fA:40 Oop = 2 (I)A: 0

Csg=0.11 Qs =0.15 fg =25 og=29 ¢g=0

Figure 6A:
gee=0 gg =005 g =02

Ca=004 Qa=004 fao=40 o0a=2 ¢$o=04

CB:0.04 QB:0.04 fB:40 OB = 2 (I)B:O

Figure 6B: Parameters are as in Figure 6A, but withi= 4 in place ofog = 2.

Figure 8:
Oee=0 gg =005 g =02

CA =0.04 QA =0.04 fA =20 Oop = 2 (I)A =0

Cg =0.02 QBZO.OZ fB: 12 og=9 ¢B:O
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Figure 10:
gee=0 gg =005 g¢g =01

Cakg,i=0.04+0.04Z¢ Cal,i=0.04+0.04Z ; Qa=0.04 fa=40 op=2

Zei (1<i<Ng)andZ; (1 <i<N))areindependent standard Gaussians.
CB =0.06 QB =0.06 fB =25 OB = 9

In addition, every synaptic connection is removed with @iaility 1/2, and doubled in strength
if not removed, and in every time step, the random ter2a/@t Z is added t® for each neuron,

whereZ is a standard Gaussian.

Figure 11A:
gee=0 gg =005 g =02

Ca=0.04 Qa=0.04 fa=40 o0p=2
Ce=Qs=0

In addition, the I-cell receives a constant hyperpolagaarrent equal te-0.3.

Figure 11B: Parameters are as in Figure 11A, but the E-cell receives ditiauhl distracting
input:

CB,E —=0.08 QB,E =0.04 fB =25 og=9

Cg) =0Qgi=0

Figure 11C: Parameters are as in Figure 11B, but the I-cell receivesitine slistracting input as

the E-cell.
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Appendix B: Details of the analysis for theta neurons

The regions,

The regiony is the set of pairgq, 1) for which the solutior® of Egs. (15), (16) satisfies the
inequality8(ty) > 8§. The fixed pointf; and®] are given by Eq. (2). Itis clear th&(t;)
cannot be greater thzﬂj unlessd + /13 > 0. The time that it takes fd to increase fron, to

683 then equals

/eo+ dtd _/90 1 40 —
o, d6  Jo; 1—cosB+(1+0/15)(1+cosh)

8

1 [arctanM -2 arctantan(eg/ 2) _
VI+a/t VI+a/t 6 VI+a/1 V1+0a/1
tanarcco$l/v/1—1)

2 2 v/ =l
———— arcta = arctan——— .
VI+9/13 VI+a/t; VI+a/t; VI+a/t

The regions; is therefore given by the inequality

el

ctan———— < 13,

2
VI+a/1 o VI+a/1

and its boundary, the bold line in Figure 5B, is characterizg the equation

V]

arctan———— =1y . (18)

2
VI+a/t VI+a/t

Eq. (18) is not an explicit description of the boundary

q=q(13)

of the shaded reason (the bold line) in Figure 5B. Howevas, ¢tear that for any fixed; > 0

andl < 0, the equation has a unique solutgpwith | +q/13 > 0, since the left-hand side, viewed
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as a function ofy, decreases monotonically fromto 0 asq increases from-1;l to . We note
that Eq. (18) implies|(ty) /1y —  asty — 0, a fact that will be used shortly.
Numerically, it is easy to solve Eq. (18) fgrin terms oft;. Furthermore, we can derive the

behavior of the boundary for smalj explicitly from Eq. (18). Using the Taylor expansion

3
arctanx = x— % +0(xX°) asx—0,

Eq. (18) can be written as follows in the limit ag— O:

2 V-l (—1)3/2 52\ |
N RN 3(|+-q/TJ>3/2‘%C)<TJ )] =1, (19)

and therefore

2/ —1 21/—1
+
g+t 3(g+T1l)

(The “O(+)” in Eq. (19) turned into 6(-)” in Eq. (20) becausg/1; — « ast; — 0, a fact noted

ZU:1+0@?ﬂ. (20)

earlier.)

Eq. (20) is a quadratic equation fgQr- 131, with solutions

- 2
Expanding the right-hand side aroung= 0, we find
1
a: =V (VAT + ) o (7).

The solutiong_ is spurious — it violates the conditiayyt; — o asty — 0, which was used in

our expansion. Thug. is the relevant solution, and the boundaryspfs given by
2
qN2\/—|+§TJ||| (22)

asty — 0. Eq. (21) describes the tangent line to the boundasy atq = 2\/—1, 1 = 0. However,
the segment of the boundary §f shown as a bold line in Figure 5B is nearly straight, and Eq.

(21) therefore in fact describes it with good accuracy thraut.
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Eqg. (21) shows that the amount of charge needed to elicitke sfges like(2/3)14|l| asty
increases. Thus the advantage of a briefer, stronger putseaobroader, weaker one rises as
|I| rises: The more strongly hyperpolarized the target neuttos greater is the advantage of

coherent inputs over incoherent ones.

Fixed points of Eq. (17)

We will prove that forl — (3/2)gs < O, there are exactly two fixed points of Eq. (17) 7T, 11,
a stable one if—1,0) and an unstable one ii®, ). Fixed points of Eq. (17) are solutions of
F(0) = 0 with
F(8) =1—cosB+ (I - ggs) (14 cosB) — gssind .

First we note that
F(-m=2>0, F(O):2<I—ggs)<0, and F(m=2>0. (22)

So in particular, ifd € [—11, 17 is a solution ofF (8) = 0, then sir® ## 0. This implies that no two

solutionsB € [—1t, 17 of F(B8) = 0 can be negatives of each other, since
F(0)=0 = F(—8)=F(0)+2gsSind=2gssin@#0.

The inequalities (22) imply that there are at least one stéikéd point in(—1t,0), and one
unstable fixed point iri0, T1). We will now show that there can be no more than two fixed points
in [—Tt, 7. Suppose there were three different fixed pobits |-, 11, i = 1,2,3. Since no two

of these can be negatives of each others, their cosines

Xi=cosh, 1=123
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would have to be different from each other. But

F(6)=0 = 1—cosei+(l—ggs) (1+cosh;) = gssing;, =

(1—005& + (I — ggs> (1+cosei))2: 02 (1-cos6) =

3 2
(1—>q+(l—§gs) (1+m~>) =g (1-%) - (23)
This is a contradiction, sincg, Xz, andxs would now be three different solutions of the quadratic

equation (23).
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Appendix C: Phase response curve of a theta neuron with decayg inhibition

In this appendix, we briefly review the standard phase respémction for the theta neuron
(Ermentrout, 1996). We then define and compute a phase responction for a theta neuron
under the influence of exponentially decaying inhibition.

Consider the theta neuron given by Eq. (1), and asdum®. The “phase’p € [0, 1] corre-
sponding to® € [—Tt, 17 is the time that it takes to advance froattto 6, divided by the period
T =m/V/1. If adelta pulse of strength> 0 is added td when the neuron is at phaggits phase

advances by an amount denotedspy@). A standard and elementary calculation yields

p(@) = :—SL E Jr;lttanl [tan (n (cp— %)) + %} —cp] :

We refer top as thephase response functiarf the theta neuron. Its graph is called fitease re-

sponse curvePassing to the limit as— 0, one obtains thmfinitesimal phase response function

po(®) = Flﬂcosz (Tr (cp— %)) .

Its graph is called thénfinitesimal phase response curvEigure 7A shows the graph qf for
| =0.02,e = 0.1 (solid), and the graph g for | = 0.02 (dashes).

Next we consider a theta neuron subject to an exponentiattgying pulse of synaptic inhi-
bition arriving at timet = 0 (see Eg. (5)):

% — 1 cosd+ (I - g’ge”“) (1+cos9) —ge ™"/ sind , (24)

with I > 0, g > 0, andt; = 10. The lettefT now denotes the time that it takes for a solutébn
of Eq. (24) to advance fromtto 1. The phasep € [0, 1] corresponding t® € [—Tt, 17 is again

the time that it takes for a solution of Eq. (24) to advancenfrertto 6, divided byT. If a delta
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pulse of strengtls > 0 is added td at time@T, the time that it takes fd to reachrtis shortened

to T < T. The phase response curve is the graph of

1T-T

p((P>:ET-

As before, the infinitesimal phase response fungbigis obtained by passing to the lingt— O.
We have no analytic expression fprand po, but it is straightforward to calculate these curves
numerically for given parameter values. Figure 7B showgthehs ofp for | = 0.02,g = 0.25,

€ = 0.1 (solid), andpg for | =0.02,g = 0.25 (dashes).
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Appendix D: Phase response curve of an integrate-and-fire meon with

decaying inhibition

Since some of the analysis of this paper is based on integratdire neurons, we repeat the
calculations of Appendix C for this model. We consider Eq, @¥ith the threshold potential
Vr =1 and the reset potentigk = 0. We assume that the drive is above the spiking threshold,
i.e.,| > gm. The “phase”@ € [0,1] corresponding t& € [0,1] is the time that it takes for the

membrane potential to advance from Otodivided by the period

T:iln | .
On | —Om

When an integrate-and-fire neuron receives a delta pulsarcérd input of strengtlg > 0, its
membrane potential is assumed to rise instantaneouslyifsoralueV just prior to the arrival of

the pulse to
V+e ifV+e<1l,
V+ =
1 otherwise

This raises the phase frogto a new valuep,. Thephase response functignis defined by the
equation

ep(9) = @ — 0.
A straightforward calculation yields

_min(z1)—¢ IN((1— gm/1)®— €gm/!)

M TR g

P(®)

The limit of p ase — 0 is theinfinitesimal phase response functjalenoted bypo; it is not hard

to show that
Om/! ‘
(1—gm/1)N(1/(1—gm/1))
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Figure 7C shows the graph pffor g, = 0.1,1 = 0.11, ande = 0.1 (solid), and the graph qip
for gn = 0.1 andl = 0.11 (dashes).
Next we consider an integrate-and-fire neuron, driven ableepiking threshold, subject to

an exponentially decaying pulse of synaptic inhibitionang at timet = O:

Ocli—\t/ = —gnV +1—get/iv (25)

with | > gm, g > 0, andt; = 10. The lettefT now denotes the time that it takes for a solutibn
of of Eq. (25) to advance from 0 to 1. The phase [0, 1] corresponding t& € [—1,1] is again
the time that it takes for a solution of Eq. (25) to advancenfi@toV, divided byT. If a delta
pulse of strengtla > 0 is added td at time@T, the time that it takes fov to reach 1 is shortened

toT < T. The phase response curve is the graph of

1T-T

p(¢)zg?~

As before, the infinitesimal phase response cyyés obtained by passing to the lingt— 0.
We have no analytic expression fprandpg, but it is straightforward to calculate these curves
numerically for given parameter values. Figure 7D showsgthehs op for g, = 0.1,1 = 0.11,

g=0.25,e = 0.1 (solid), andpp for gn=0.1,1 = 0.11,g = 0.25 (dashes).
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Legends of figures

Figure 1: Examples of oscillatory inputs of the form (6).

Figure 2: Periodic input pulses to both the E-cell and thell-entraining both cells. Spikes of

the E-cell are indicated by open circles, and spikes of tellby filled circles.

Figure 3: Two-cell target networks, consisting of an E-aelll an I-cell (spike times indicated by
open and filled circles, respectively), driven by a cohdyemgcillating primary stimulus (solid)
competing with a less coherently oscillating distractasfoed). The distractor often has little
effect even though its temporal average is greater thanothitie primary stimulus (panel A).
The distractor frequency may be lower than that of the pynsimulus (panel A) or higher
(panel B). With strong local inhibition, this effect can aevbe seen when the distractor is so

strong that itamplitudeexceeds that of the primary stimulus (panel C).

Figure 4: Panel A: The fact that coherent stimuli are moregrfw than incoherent ones does
not, by itself, explain Figure 3A. When inhibition is remalyehe distractor has a strong effect.
Panel B: For a weakly coherent distractor to remain ineffegh the absence of local inhibition,

it must have very low strength.

Figure 5: Injection of a square input pulse of total chaggad duratiort; into a neuron at rest
elicits a spike if and only ifg,T3) lies in the (lightly or darkly) shaded region. With constant
synaptic inhibition §s = 0.2) added{q, 13) must lie in the darkly shaded region for a spike to be
elicited. Panel A: Linear integrate-and-fire neuron vggh= 0.2, ey = —0.1. Panel B: Theta
neuron withl = —0.1. The boundaries are slanted to the right, so it requiresdearge to elicit

a spike with a brief pulse than with a broad one. This effegtéatly amplified by inhibition.

Figure 6: Panel A: A timing effect: Once inpBtsynchronizes with the target, inpAtcannot
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break through even though its characteristics are iddmtitiathose ofB except for phase. Panel
B: The timing effect of Panel A disappears when inBus made significantly less coherent than

inputA.

Figure 7: Phase response curves: A delta pulse of inputerigtine, finding its target at phasg
advances the phase of the targetpyp). Panel A: Theta neuron, no inhibitions=0.02;e = 0.1
(solid), ande — 0O (dashed). Panel B: Same as Panel A, but with a decayingitotyilpulse
added ¢ = 0.25, 1, = 10). Panel C: Integrate-and-fire neuron, no inhibitigg= 0.1,1 = 0.11;
€ = 0.1 (solid), ande — 0 (dashed). Panel D: Same as Panel C, but with a decayingtuonyib

pulse addedg = 0.25,1) = 10).

Figure 8: IfA oscillates far below gamma frequency, the distraBteasily disrupts the rhythm
in the target. Notice that this figure shows a 400 ms time windehereas others in this paper

show a 200 ms time window.

Figure 9: Parameter dependence of stimulus selection loasgamma rhythmicity: Frequencies
of target E- and I-cells (circles and triangles) as funaiohinhibitory conductance (A—-C) and
distractor frequency (D). Panel B shows an example in whietdistractor is far stronger on the
average than the primary stimulus. Panel C shows a case ainwie coherence contrast between

primary stimulus and distractor is weak; see text for moteaitssl discussion.
Figure 10: A noisy version of Figure 3A with reduced inhilpjt@onductance.

Figure 11: When the primary stimulus does not suffice to activate the I-cell (panel A), the
E-cell is left vulnerable to distractors (panel B). Howewedistracting stimulu8 to the I-cell

may activate that cell, and thereby enable entrainmenteofaiget to stimulué (panel C).
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Figure 1: Examples of oscillatory inputs of the form (6).
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Figure 2: Periodic input pulses to both the E-cell and thellentraining both cells.
Spikes of the E-cell are indicated by open circles, and spitehe I-cell by filled

circles.
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Figure 3: Two-cell target networks, consisting of an E-eeldl an I-cell (spike times
indicated by open and filled circles, respectively), drivyna coherently oscillat-
ing primary stimulus (solid) competing with a less cohelsenscillating distractor

(dashed). The distractor often has little effect even tlhoitg) temporal average is
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greater than that of the primary stimulus (panel A). Therditbr frequency may be
lower than that of the primary stimulus (panel A) or highear{pl B). With strong
local inhibition, this effect can even be seen when the atstrr is so strong that its

amplitudeexceeds that of the primary stimulus (panel C).
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Figure 4: Panel A: The fact that coherent stimuli are moreqréwl than incoherent
ones does not, by itself, explain Figure 3A. When inhibii®removed, the distractor

has a strong effect. Panel B: For a weakly coherent distréacteemain ineffective

in the absence of local inhibition, it must have very low sg#h.
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Figure 5: Injection of a square input pulse of total chaggend duratiorty into a
neuron at rest elicits a spike if and only(d, t;) lies in the (lightly or darkly) shaded
region. With constant synaptic inhibitiogg= 0.2) added,(q,13) must lie in the
darkly shaded region for a spike to be elicited. Panel A: &inategrate-and-fire
neuron withgm = 0.2, Viey = —0.1. Panel B: Theta neuron with= —0.1. The
boundaries are slanted to the right, so it requires lesgyeharelicit a spike with a

brief pulse than with a broad one. This effect is greatly afiepl by inhibition.
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Figure 6: Panel A: A timing effect: Once inpBtsynchronizes with the target, input

A cannot break through even though its characteristics ariwhl with those oB

except for phase. Panel B: The timing effect of Panel A disappwhen inpuB is

made significantly less coherent than input
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Figure 7: Phase response curves: A delta pulse of input efgtine, finding its
target at phase, advances the phase of the targegpyyp). Panel A: Theta neuron,
no inhibition, I = 0.02; € = 0.1 (solid), ande — 0 (dashed). Panel B: Same as
Panel A, but with a decaying inhibitory pulse addgd=0.25, 1, = 10). Panel C:
Integrate-and-fire neuron, no inhibitiogy, = 0.1, | = 0.11; € = 0.1 (solid), and

€ — 0 (dashed). Panel D: Same as Panel C, but with a decayingtoyilpulse

added ¢ = 0.25,1) = 10).
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Figure 8: IfA oscillates far below gamma frequency, the distraBteasily disrupts
the rhythm in the target. Notice that this figure shows a 40@mmswindow, whereas

others in this paper show a 200 ms time window.
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Figure 9: Parameter dependence of stimulus selection lmesgdmma rhythmicity:
Frequencies of target E- and I-cells (circles and triangsgunctions of inhibitory
conductance (A—C) and distractor frequency (D). Panel Brstam example in which
the distractor is far stronger on the average than the pyistanulus. Panel C shows
a case in which the coherence contrast between primary lsnamd distractor is

weak; see text for more detailed discussion.
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Figure 10: A noisy version of Figure 3A with reduced inhilpjt@onductance.
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Figure 11: When the primary stimuldésdoes not suffice to activate the I-cell (panel
A), the E-cell is left vulnerable to distractors (panel Bawever, a distracting stimu-
lus B to the I-cell may activate that cell, and thereby enableagmtnent of the target

to stimulusA (panel C).
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