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Abstract. More coherent excitatory stimuli are known to have a competitive advantage over

less coherent ones. We show here that this advantage is amplified greatly when the target

includes inhibitory interneurons acting via GABAA-receptor mediated synapses and the co-

herent input oscillates at gamma frequency. We hypothesizethat therein lies, at least in part,

the functional significance of the experimentally observedlink between attentional biasing

of stimulus competition and gamma frequency rhythmicity.

1 Introduction

Biasing of competition in favor of an attended stimulus is known to be correlated with en-

hanced gamma band (30–80 Hz) synchronization (Fries et al.,2002; Gruber et al., 1999; Taylor

et al., 2005). We propose here a possible link between gamma rhythmicity and selectivity: A

coherent input oscillating at gamma frequency can be highlyeffective at preventing less coherent

competing inputs from being noticed when the target networkincludes inhibitory interneurons

acting via GABAA-receptor mediated synapses. Two factors contribute to this effect:

(1) Inhibition in effect raises theleakinessof the target neurons, thereby greatly

amplifying the known (Murthy and Fetz, 1994; Singer, 1999) advantage of a more
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coherent excitatory inputA over a less coherent competitorB. A highly coherent

stimulus can break through the inhibition generated in the target network, while less

coherent competitors cannot.

(2) When a gamma frequency trainA of excitatory input pulses entrains a target

network of excitatory and inhibitory model neurons, thetimingof the inhibitory spike

volleys in the target favorsA over any competing pulse trainB that has a different

frequency or phase.

Our work on this subject was inspired by a recent paper by Fries (2005), who suggested that

phase locking with the target should lend a competitive advantage to a stimulus. This idea is

related to our point (2) above; we will show it to be valid (at least in our model) in the presence

of inhibition in the target, but not in its absence.

In Section 2, we describe our models. In Section 3.1, we present results of numerical sim-

ulations demonstrating the large competitive advantage ofmore coherent excitatory inputs to

networks of excitatory and inhibitory model neurons over less coherent ones. In Section 3.2, we

analyze how synaptic inhibition within the target favors coherent inputs by effectively raising the

leakiness of the target neurons — our point (1) above. In Section 3.3, we discuss how the timing

of inhibitory population spikes within the target neuron favors an entraining input over others

— our point (2). In Section 3.4, we explain why suppression ofa less coherent input trainB

by a more coherent input trainA requires thatA oscillate at least at gamma frequency. We con-

clude Section 3 with a brief discussion of the robustness of our results with respect to parameter

changes, heterogeneity in neuronal and network properties, and noise (Section 3.5). Although in-

coherent input is less effective at eliciting responses, itcan be effective at raising the excitability

of target cells. In particular, an incoherent distractor may enable the inhibitory cells in the target
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network to fire. It is therefore possible for the incoherent distractor itself to enable the mechanism

that prevents it from entraining the target network. This isillustrated by a computational example

in Section 4. We summarize and discuss our results in Section5.

2 Models

The mechanisms studied here require no currents other than those in the classical Hodgkin-

Huxley model (Hodgkin and Huxley, 1952). In general, cortical neurons are capable of producing

many other ionic currents. Some, for instance hyperpolarization-activated inward currents such

as Ih (Lüthi and McCormick, 1998), are probably negligible during the sort of driven gamma

activity considered here, since membrane potentials do notbecome sufficiently low. Others, for

instance depolarization-activated slow outward currentssuch asIM, may well be present and are

in fact thought to be modulated by attention (Hasselmo and McGaughy, 2003; Sarter et al., 2001).

However, we don’t expect the presence of such currents to alter our main points fundamentally

as long as the target neurons fire in response to input pulses,but not — or much less frequently

— otherwise. Those aspects of the physiology that are important to our study should be well-

described by standard Hodgkin-Huxley equations, which in turn can often be well-approximated

by reduced equations such as integrate-and-fire models (Abbott, 1999; Latham et al., 2000) or

the theta model (Ermentrout and Kopell, 1986; Gutkin and Ermentrout, 1998; Hoppensteadt and

Izhikevich, 1997). In this paper, we primarily use theta neurons, since they have more realistic

input response characteristics than integrate-and-fire neurons. However, for simplicity and trans-

parency, some of our analysis will also be presented for linear integrate-and-fire neurons. For

both theta and integrate-and-fire neurons, we model synapses in the standard conductance-based

way.
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2.1 Theta neurons.In the theta model (Ermentrout and Kopell, 1986; Gutkin and Ermentrout,

1998; Hoppensteadt and Izhikevich, 1997), a neuron is represented by a pointP = (cosθ,sinθ)

moving on the unit circle. This is analogous to the Hodgkin-Huxley model, which represents a pe-

riodically spiking space-clamped neuron by a point moving on a limit cycle in a four-dimensional

phase space. In the absence of synaptic coupling, the differential equation describing the motion

of the pointP is

dθ
dt

= 1−cosθ+ I (1+cosθ) . (1)

Heret should be thought of as time measured in milliseconds (Börgers and Kopell, 2005, Section

2.1), andI as the analogue of an external input current.

For a negative constantI , Eq. (1) has the two fixed points

θ±0 = ±2arccos
(

1/
√

1− I
)

. (2)

The fixed pointθ−0 ∈ (−π,0) is stable, andθ+
0 ∈ (0,π) is unstable. AsI increases, the fixed

points approach each other. AsI crosses 0 from below, a saddle-node bifurcation occurs: The

fixed points collide atθ−0 = θ+
0 = 0, and there are no fixed points forI > 0. For a theta neuron,

to “spike” means, by definition, to reachθ = π (modulo 2π). The transition fromI < 0 to I > 0

is the analogue of the transition from excitability to spiking in a neuron. In this paper, we will

study effects of input coherence, and will therefore allowI to be a function of time (see Section

2.3).

The theta neuron is equivalent, up to a change of variable, toa quadratic integrate-and-fire

neuron with threshold potentialVT = +∞ and reset potentialVreset = −∞; for a more detailed

discussion of this connection see Section 2.1 of Börgers and Kopell (2005).

We turn now to a description of how we model synapses among theta neurons. To derive

the terms in the differential equations that model synapticinteractions, we use the connection
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between the theta neuron and the quadratic integrate-and-fire neuron mentioned in the previous

paragraph. For the quadratic integrate-and-fire neuron, synapses are modeled in the standard way,

by adding terms of the form

gss(t)(Vrev−V) (3)

to the right-hand side of the equation governingV. The gating variables(t) rises rapidly when

the pre-synaptic neuron spikes, and decays exponentially thereafter; our specific choice ofs(t)

will be stated at the end of this section. Using the change of variable that leads from the quadratic

integrate-and-fire neuron to the theta neuron, one obtains amodel of synapses among theta neu-

rons; for details, we refer again to Börgers and Kopell (2005). The equation of a theta neuron

subject to an excitatory synaptic input becomes

dθ
dt

= 1−cosθ+(I +12gss(t))(1+cosθ)−gss(t)sinθ , (4)

wheres(t) is the gating variable associated with the synapse. Similarly, the equation of a theta

neuron subject to an inhibitory synaptic input is

dθ
dt

= 1−cosθ+

(

I − 3
2

gss(t)

)

(1+cosθ)−gss(t)sinθ . (5)

The constants 12 and 3/2 in Eqs. (4) and (5) depend on the synaptic reversal potentialsVrev (see

(3)) assumed in the derivation, but their precise values do not appear to affect the results of the

present study in a qualitative way. When a theta neuron is subject to multiple synaptic inputs at

the same time, the resulting terms are summed:

dθ
dt

= 1−cosθ+

(

I +12∑
i

gs,E,i sE,i(t)−
3
2∑

j
gs,I , j sI , j(t)

)

(1+cosθ)

−
(

∑
i

gs,E,i sE,i(t)+∑
j

gs,I , j sI , j(t)

)

sinθ .
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Here the subscriptsE and I indicate conductances and gating variables associated with E-cells

(labeled byi) and I-cells (labeled byj), respectively.

In our computational simulations,s(t) is a smooth function governed by the equation

ds
dt

= − s
τD

+e−η(1+cosθ) 1−s
τR

,

whereθ is associated with the presynaptic neuron. We always useη = 5 andτR = 0.1. Thus,s

rises rapidly (but not instantaneously) towards 1 whenθ≈ π modulo 2π, and decays exponentially

with time constantτD otherwise. For E-cells,τD = 2, and for I-cells,τD = 10. Since we think of

t as time measured in milliseconds, these are approximately the decay time constants associated

with AMPA and GABAA receptor mediated synapses, respectively. For analytic purposes (in

particular in Appendices C and D), we simplify by assumings(t) to jump to 1 instantaneously

when the presynaptic neuron spikes, and to decay exponentially thereafter.

2.2 Networks. We denote byNE andNI the numbers of E- and I-cells in the model network,

respectively, and byIE and II the drives to the E- and I-cells.IE and II may be different for

different neurons, and will be time-varying (see Section 2.3). Connectivity is all-to-all, except in

the simulation underlying Figure 10 (see Section 3.5.5 and Appendix A for details). We denote

by gIE the sum of all conductances associated with inhibitory synapses acting on a given E-cell;

thus assuming all-to-all connectivity, an individual I→E synapse has strengthgIE/NI . Parameters

gII , gEI, andgEE are defined similarly. Throughout this paper, we will assumethatgIE = gII (but

see the comment at the beginning of Section 3.5.1); we denotethe common value of these two

parameters bygI .

2.3 External drives. We use oscillatory external drives of the form

I(t) = C+Q

[

∞

∑
k=−∞

T√
2πσ2

exp

(

−(t − (ϕ+k)T)2

2σ2

)

−1

]

. (6)
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HereC is theconstant component(the temporal average) ofI . The term in brackets, multiplied

by the constantQ > 0, is theoscillatory component. The oscillation period isT, the width of the

input pulses isσ, andϕ is a phase shift. The frequency of the input is

f =
1000

T
.

The factor of 1000 is needed because we think ofT as measured in ms, but want to think off

as measured in Hz, not kHz. The temporal average of the oscillatory component, i.e., the term in

brackets on the right-hand side of Eq. 6, can easily shown to be zero. The oscillation amplitude

depends onT/σ and rapidly decreases withT/σ; for small T/σ, one must therefore choose a

large value ofQ if one wants a sizable oscillation. Figure 1 shows two examples, one withσ = 2

(sharp pulses, i.e., high coherence), and the other withσ = 7 (broad pulses, i.e., low coherence).

Each neuron receives two input streams of the form (6), one referred to as the “primary

stimulus” or “input A”, and the other as the “distractor” or “inputB”. We use subscripts to

indicate the input stream, the type of the neuron receiving the input (E or I), and the index of the

neuron. For instance, the primary stimulus (stimulusA) to thei-th E-cell is denoted by

IA,E,i(t) = CA,E,i +QA,E,i





∞

∑
k=−∞

TA,E,i
√

2πσ2
A,E,i

exp

(

−(t − (ϕA,E,i +k)TA,E,i)
2

2σ2
A,E,i

)

−1



 ,

and has frequency

fA,E,i =
1000
TA,E,i

.

2.4 Linear integrate-and-fire neurons.For analysis purposes, we will also use linear integrate-

and-fire neurons in this paper. Non-dimensionalizing the membrane potentialV by appropriately

shifting and scaling, we may assume in the linear integrate-and-fire model that the resting poten-

tial, in the absence of external drive, isVR = 0, and the spiking threshold isVT = 1. The time
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evolution of the membrane potentialV below threshold is then governed by an equation of the

form

dV
dt

= −gmV + I . (7)

In this equation,V is non-dimensional, butt is time,gm is the reciprocal of themembrane time

constant(or equivalently,membrane conductancedivided by capacitance), andI is external input

current times a (dimensional) constant.

We model synaptic input to linear integrate-and-fire neurons in the standard way:

dV
dt

= −gmV + I +gss(t)(Vrev−V) . (8)

HereVrev is the reversal potential of the synapse,gs > 0 is themaximum synaptic conductance

divided by capacitance, ands(t) is the gating variable associated with the synapse.

3 Stimuli oscillating coherently at gamma frequency renderincoherent competitors ineffec-

tive

3.1 Simulations. We consider a target network consisting of a single E-cell and a single I-cell,

with strong E→I, I→E, and I→I synapses, but no E→E synapses. Figure 2 shows a simulation

in which there is a 40 Hz sequence of tight input pulsesA, acting on both target cells equally,

without any distractorB. (The precise parameter values used in this and other simulations of this

paper are listed in Appendix A.) The target cells are entrained byA; their spikes occur shortly

after the input pulse arrivals.

We now add a distracting stimulusB, somewhat stronger thanA on the average but less coher-

ent, oscillating at 25 Hz. Figure 3A shows the result. The distractor does not prevent the target

network from followingA at 40 Hz; it merely makes the rhythm of the target network slightly less

8



regular. In Figure 3A, the distractorB oscillates more slowly than the primary stimulusA, and

the target network has only two cells. However, very similarresults are obtained for distractors

oscillating faster thanA; see Figure 3B for an example, and Section 3.5.4 for further numerical

experiments concerning the distractor frequency.

One might first think that inputA dominates in Figure 3A not because it is morecoherentthan

input B, but simply because itsamplitudeis greater. Figure 3C demonstrates that this is not the

correct interpretation. The figure shows a case in which the distractorB is muchstronger thanA

on the temporal average, and even slightly stronger in amplitude. The target is still entrained by

A. The precise parameter values used in the simulation are listed, as always, in Appendix A. The

inhibitory synapses are also much stronger here than in the previous simulation; if they were not

strengthened, then the distractor would indeed be powerfulenough in this example to prevent the

entrainment of the target to inputA.

We note that in the experiments of Figure 3, and in all numerical experiments of this paper,

entrainmentof the target by a stimulus means that the target cells promptly respond with a spike

to each pulse of the stimulus, but don’t spike otherwise.

3.2 Inhibition amplifies the advantage of coherent input by raising the effective leakiness of

the target neurons.Coherent (i.e., nearly simultaneous) excitatory input pulses targeting a leaky

neuron are more likely to trigger a spike response than incoherent ones (Murthy and Fetz, 1994;

Singer, 1999). The advantage of coherent input can be amplified by synaptic inhibition, which

can significantly raise the leakiness of the target neuron (Häusser and Clark, 1997; Funabiki et al.,

1998; Pouille and Scanziani, 2001; Grande et al., 2004). Here we present numerical and analytic

results for theta and integrate-and-fire neurons confirmingthat this is an important effect.
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3.2.1 Numerical results for theta neurons

Figure 4A demonstrates that the well-known advantage of more coherent excitatory input

pulses over less coherent ones alone falls far short of explaining the results of Section 3.1. The

figure shows the result of repeating the experiment of Figure3A without the I-cell: The distractor

now has a strong effect. Of course, if the distractor is reduced in strength far enough, it is ignored

by the target even in the absence of inhibition. For instance, keepingCB andQB equal to each

other, one must reduce the common value of those two parameters to about 0.008 for the distractor

to remain ineffective; see Figure 4B.

The timing of inhibitioncan play a role in suppressing the response to the distractorB (see

Section 3.3), but thepresence of inhibitionalone often suffices to give the more coherentA a

decisive advantage over the less coherentB. For example, in the simulation of Figure 3A, the

synaptic gating variablesI (t) associated with the I-cell oscillates, but if one replaces,in the code,

sI (t) by its temporal average, the resulting figure is nearly indistinguishable from Figure 3A.

3.2.2 Analysis for linear integrate-and-fire neurons

We next present an analysis of the role of synaptic inhibition in lending an advantage to the

more coherent input. To make our arguments as simple and transparent as possible, we begin with

analysis for linear integrate-and-fire neurons, normalized as in Eq. (7). However, in subsection

3.2.3 and Appendix B, we also outline the analysis for theta neurons.

Our starting point is a simple calculation demonstrating the intuitive and well-known fact

that coherence makes excitatory input to an isolated targetneuron more effective. The purpose of

presenting this calculation here is to set the stage for a similar calculation with synaptic inhibition

added.

Suppose thatV(0) = 0, and that during a brief time interval[0,τJ], an input currentJ > 0 is
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added to the right-hand side of Eq. (7):

dV
dt

= −gmV +J for 0≤ t ≤ τJ . (9)

We denote by

q = τJ J (10)

the total amount of charge injected, and ask whether the input pulse suffices to elicit a spike. Of

course the answer depends onτJ andJ, or equivalently, using Eq. (10), onτJ andq. The solution

of Eq. (9) withV(0) = 0 is

V(t) =
J

gm

(

1−e−gmt)=
q

gmτJ

(

1−e−gmt) ,

so a spike is elicited if and only if

q
gmτJ

(

1−e−gmτJ
)

≥ 1 ,

or

q≥ gmτJ

1−e−gmτJ
. (11)

To interpret this inequality, we note that themembrane time constantof our model neuron is

τm = 1/gm. (See the discussion of physical dimensions following Eq. (7).) Therefore the quantity

gmτJ appearing in (11) equalsτJ/τm, the pulse duration measured in membrane time constants.

Sincex/(1− e−x) is an increasing function ofx > 0, (11) shows that the total charge needed

to elicit a spike is an increasing function of the pulse duration, measured in membrane time

constants. The advantage of briefer, higher-amplitude input pulses over broader, lower-amplitude

ones is amplified when the neuron is made leakier, that is, when τm is lowered.

Inequality (11) defines the regionSgm of pairs(q,τJ) for which a spike is elicited. Forgm =

0.2, Sgm is depicted in Figure 5A; it is the union of the lightly and darkly shaded regions in the
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figure. (The significance of the two grades of shading will be explained shortly.) The fact that

the boundary of the shaded region (indicated boldly in Figure 5) is slanted to the right means that

more chargeq is needed to elicit a spike whenτJ is greater; in other words, excitatory input is

less effective when delivered in a broader pulse.

The advantage of more coherent input pulses over less coherent ones is raised by synaptic

inhibition. To understand this, we now consider an integrate-and-fire neuron subject to constant

synaptic inhibition:

dV
dt

= −gmV +gs(Vrev−V)

(compare Eq. (8)) withVrev < 1. We neglect the temporal fluctuations of the gating variable s(t)

here. This allows us to carry out an analytic calculation, and the result will confirm that the

temporal fluctuations ofs(t), while helpful (Section 3.3), are not needed for the suppression of

the response to the less coherent distractor.

The extra term changes the resting potential from zero togsVrev/(gm+gs). Thus we assume

now thatV(0) = gsVrev/(gm+ gs). As before, we add an input pulse during the time interval

[0,τJ]:

dV
dt

= −gmV +gs(Vrev−V)+
q
τJ

for 0≤ t ≤ τJ . (12)

Again we ask whether the input pulse suffices to elicit a spike. The solution of Eq. (12) with

V(0) = gsVrev/(gm+gs) is

V(t) =
gsVrev

gm+gs
e−(gm+gs)t +

q/τJ +gsVrev

gm+gs

(

1−e−(gm+gs)t
)

,

so a spike is elicited if and only if

gsVrev

gm+gs
e−(gm+gs)τJ +

q/τJ +gsVrev

gm+gs

(

1−e−(gm+gs)τJ

)

≥ 1 ,
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which is equivalent to

q≥ τJ
gm+gs−gsVrev

1−e−(gm+gs)τJ
. (13)

Inequality (13) defines the region of pairs(q,τJ) for which a spike is elicited by the input

pulse. This region is now dependent ongm, gs, andVrev, and we therefore denote it bySgm,gs,Vrev.

The darkly shaded region in Figure 5A representsSgm,gs,Vrev with gm = 0.2,gs = 0.2,Vrev =−0.1.

Notice that the boundary of the darkly shaded region is slanted more strongly than the boundary

of the union of the two shaded regions. This means that the amount of chargeq needed to elicit a

spike depends more strongly onτJ (that is, on coherence) in the presence of inhibition than inits

absence.

If the reversal potentialVrev were equal to the resting potential 0, then inequality (13) would

simply become

q≥ (gm+gs)τJ

1−e−(gm+gs)τJ
. (14)

Comparing inequalities (11) and (14), we see that in this case, inhibition simply has the effect of

raising the effective leak conductances of the neuron fromgm to gm+gs.

Interestingly, the advantage of briefer, stronger pulses over longer, weaker ones is in fact

independent of the reversal potentialVrev. To see this, suppose thatτ(1)
J > τ(2)

J > 0. The minimum

charge needed to elicit a spike is

q(1)
min = τ(1)

J
gm+gs−gsVrev

1−e−(gm+gs)τ
(1)
J

if τJ = τ(1)
J , and

q(2)
min = τ(2)

J
gm+gs−gsVrev

1−e−(gm+gs)τ
(2)
J

if τJ = τ(2)
J . The ratioq(1)

min/q(2)
min can be thought of as the factor by which efficiency of the input
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pulse increases when its duration is decreased fromτ(1)
J to τ(2)

J . This ratio equals

τ(1)
J

τ(2)
J

1−e−(gm+gs)τ
(2)
J

1−e−(gm+gs)τ
(1)
J

regardless of the value ofVrev.

3.2.3 Analysis for theta neurons

In this subsection, we sketch how the analysis of Section 3.2.2 can be repeated for theta

neurons; some additional details are provided in Appendix B. We consider a theta neuron (see

Eq. (1)) driven below threshold, i.e., withI < 0. We then add an input currentJ = q/τJ during

a time interval of durationτJ, and ask whether this current will elicit a spike. That is, weask

whether the solutionθ of the initial value problem

dθ
dt

= 1−cosθ+

(

I +
q
τJ

)

(1+cosθ) (15)

θ(0) = θ−0 (16)

satisfies the inequalityθ(τJ) > θ+
0 . Hereθ±0 denote the fixed points of the theta neuron; see Eq.

(2). We recall thatθ−0 is the stable fixed point, andθ+
0 the unstable one. We denote bySI the set

of pairs(q,τJ) for which a spike is elicited. The union of the lightly and darkly shaded regions

in Figure 5B representsSI for I = −0.1.

As in Section 3.2.2, we now add constant synaptic inhibitionto the theta neuron described by

Eq. (1):

dθ
dt

= 1−cosθ+

(

I − 3
2

gs

)

(1+cosθ)−gssinθ (17)

(compare Eq. (5)). It is not hard to show (see Appendix B) thatEq. (17) has a unique stable

fixed pointθ−0,gs
∈ (−π,0) and a unique unstable fixed pointθ+

0,gs
∈ (0,π) for all I andgs with

I − (3/2)gs < 0. We then add again the inputJ = q/τJ during a time interval of duration ofτJ,
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and ask if it suffices to solicit a spike. Specifically, we consider the initial value problem

dθ
dt

= 1−cosθ+

(

I +
q
τJ

− 3
2

gs

)

(1+cosθ)−gssinθ,

θ(0) = θ−0,gs
.

We denote bySI ,gs the region of pairs(q,τJ) for whichθ(τJ)> θ+
0,gs

. To computeSI ,gs numerically

is easy. To compute it analytically is straightforward, buttedious; we omit the details. The darkly

shaded portion of Figure 5B representsSI ,gs for I = −0.1 andgs = 0.2. As before, inhibition

causes the boundary ofS to be much more slanted to the right; this demonstrates againthat

inhibition greatly amplifies the advantage of briefer, stronger input pulses over broader, weaker

ones.

3.3 The timing of inhibitory pulses lends an advantage to theinput that entrains the target.

As noted earlier, entrainment of the target by a stimulus means, in all the experiments of this

paper, that the target cells promptly respond with a spike toeach pulse of the stimulus, but don’t

spike otherwise. This implies that inhibition is relatively weak when the pulses ofA arrive, and

usually stronger when the pulses ofB arrive. (A raises inhibition immediately after it gives an

input pulse to the target. This inhibition then decays, reaching its lowest value just before the

arrival of the next input pulse fromA.) Sometimes this effect alone determines which stimulus

controls the target. Figure 6A shows an example. The pulses of B in this example are identical

with those ofA, but A is phase delayed. The first pulse, at the beginning of the simulation, is

a pulse ofB, and this gives the input sequenceB the advantage overA. As a result, the target

follows B and ignoresA. However, as Figure 6B illustrates, this timing effect disappears as soon

as the distractorB is somewhat less coherent than (but still as strong as) the primary stimulusA.

We have also tried the experiment of Figure 6B with other phase shifts, and have found similar

results.
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We note that synchronization with the target would give the stimulusA no advantage at all if

there were no inhibition in the target network. In fact, the non-infinitesimal phase response curve

of a theta neuron has its peak in the earlier half of the period, and the infinitesimal phase response

curve has its peak in the middle of the period; see Appendix C and Figure 7A. Inhibition shifts

the peaks of the phase response curves to the right, and creates a time interval at the beginning of

the period during which the target is almost entirely input insensitive; see Appendix C and Figure

7B. So in the presence of local inhibition, the effectiveness of an excitatory input pulse is indeed

greatest for pulses arriving near the end of the period. We note that the effect on the shape of the

phase response curve of the theta neuron of synaptic inhibition resembles that of spike frequency

adaptation (Gutkin et al., 2005, Figure 4B).

Of course the discussion in the preceding paragraph dependson the neuronal model. For

instance, for a linear integrate-and-fire neuron, the phaseresponse curve peaks near the end of

the period even in the absence of local inhibition; see Appendix D and Figure 7C. As for the theta

model, local inhibition shifts the peak of the phase response curve further to the right, and creates

a time interval of input insensitivity near the beginning ofthe period; see Appendix D and Figure

7D.

3.4 The significance of the gamma frequency.The period of a gamma oscillation is the time

that it takes for GABAA-receptor mediated inhibition to decay by approximately anorder of

magnitude. The mechanisms described here work only if the stimulus A oscillates at least at

a frequency in the gamma range. If the frequency is much lower, inhibition decays too much

between the arrivals of the pulses ofA. This is illustrated by Figure 8, which shows the results of

a simulation in which the coherent pulses ofA arrive at 20 Hz, and the less coherent and weaker

distractorB oscillates at 12 Hz. (As always, the parameter values are listed in Appendix A.) The
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target is significantly affected byB.

3.5 Parameter dependence.The numerical experiments that we have presented depend on many

parameters, and it would be impossible to study the effects of varying these parameters simply

by exhaustive search. However, we highlight the qualitative role played by the most important

parameters here, and demonstrate that stimulus selection based on gamma rhythmicity is a robust

phenomenon.

3.5.1 Strength of inhibition

Throughout this paper, we assume that the E- and I-cells receive equally strong inhibition:

gIE = gII = gI . This assumption is natural because the distractorB is assumed to target E- and

I-cells indiscriminately. If the distractor did not targetthe I-cells, thengII could in fact be taken

to be zero.

The inhibitory conductancegI has to be strong enough to protect the target against the dis-

tractorB, but not too strong to prevent its entrainment byA. To show that there is a broad range of

valuesgI satisfying both constraints, we repeat the experiment of Figure 3A varyinggI , with all

other parameters fixed as in Figure 3A. Figure 9A shows the frequencies of the E- and I-cells of

the target (indicated as circles and triangles, respectively) as functions ofgI . ForgI ∈ [0.2,0.525],

we see a plateau representing entrainment by stimulus A: Both target cells spike at 40 Hz. We

will now consider how the location and width of this plateau change as the distractor strength and

coherence are varied.

3.5.2 Distractor strength

Changes in the distractor strength tend to shift the plateauof entrainment seen in Figure 9A

without very much affecting its width. In Figure 9B, we show the same experiment as in Figure

9A, but with the distractor strength doubled:CB = QB = 0.12. SinceCA = 0.04, this means that
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stimulusB is now, on the average, three times stronger than stimulusA. Nevertheless, the more

coherent gamma frequency stimulusA still prevails over a wide range of values ofgI . In the

experiments of this paper, the temporally averagedstrengthof the stimulusA is not larger (and

sometimes smaller) than that of the distractorB. If A were not just more coherent thanB, but also

of greater average strength, the range of values ofgI for which the target is entrained byA would

broaden.

3.5.3 Distractor coherence

Even when the contrast in coherence betweenA andB is relatively modest, there is a range of

values ofgI in which stimulusA prevails. Figure 9C demonstrates this. Here the parametersare

again chosen as in Figure 3A, butσB has been lowered to 5 (earlier it was 9). The plateau of 40

Hz entrainment is narrower than before. There is now also a range of values ofgI for which the

target is entrained toB at 25 Hz.

3.5.4 Distractor frequency

The frequencyfB of the less coherent, distracting stimulusB is largely irrelevant. To demon-

strate this, we begin again with the experiment of Figure 3A,but raise the value ofgI from 0.2 to

0.35. (Figure 9A indicates that 0.2 lies near the lower edge of the range of values ofgI in which

A entrains the target; 0.35 is much closer to the center of that range.) We vary the distractor

frequency. Figure 9D shows the result, confirming the irrelevance of fB over a wide range. To

understand why entrainment fails whenfB is very low, note that the temporal average ofB is fixed

here; thus when the pulses ofB are very infrequent, they are also very strong — strong enough

to distract the target. Not surprisingly, this effect becomes more pronounced whengI is low-

ered (whengI = 0.2, entrainment occurs only whenfB ≥ 25), but disappears when the distractor

strength is lowered (data not shown).
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We remark that the assumptionfB < fA, although not needed in our study, would in fact

seem natural here. The abstract networks discussed here should be thought of as models of what

happens at higher levels of processing; it seems reasonableto conjecture that at those levels, “dis-

tractor” input might arrive not only with less coherence, but in fact with less drive than attended

input. Lower drive typically translates into (at least somewhat) lower oscillation frequency; see

for instance Figure 3C of White et al. (2000) or Figure 2 of Bögers and Kopell (2005).

3.5.5 Heterogeneity and noise.Our experience suggests that heterogeneities in neuronal and

network properties or noisy external drives do not prevent stimulus selection based on gamma

rhythmicity, and in fact may facilitate it in some cases. We have no analysis explaining the latter

observation, but present a sample simulation in Figure 10. The simulation underlying Figure

10 involves a target of 80 E-cells and 20 I-cells. Parametersare essentially those of Figure 3A;

however,gI has been reduced from 0.2 to 0.1 (bringing it clearly below the range of entrainment

according to Figure 9A), and heterogeneity and noise in external drives and network connectivity

have been introduced; see Appendix A for the details. Figure10 shows that the target is noisily

but unmistakably entrained by the 40 Hz stimulusA. In the simulation underlying Figure 10, the

average strength of input A varies from cell to cell; the solid curve in the bottom panel of Figure

10 indicates the average of input A over all cells of the network.

4 An incoherent distractor can promote its own suppression

Suppose that the primary stimulusA, presented alone, activates the E-cell, but is insufficient

to activate the I-cells. In a real network, the I-cells mightfor instance be of type II (Tateno et al.,

2004), and stimulusA alone might not suffice to bring them above their spiking threshold. In

our model network of two theta neurons, we make the I-cell unresponsive by injecting a strong,
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constant, hyperpolarizing current. Figure 11A shows the result of such a simulation. Since the

I-cell does not spike, the E-cell is left vulnerable to distracting stimuli. Figure 11B shows results

of a simulation illustrating this point; here the distracting input was given to the E-cell only. If the

distractorB also drives the I-cell, it may help activate the I-cell and thereby restore entrainment

of the target network byA. This is illustrated by the simulation result shown in Figure 11C.

Parameter values for Figure 11 are given in Appendix A. We remark that the oscillatory nature of

the distractor is irrelevant here; the essential point is that the distractor activates the I-cell enough

to enable it to participate.

We note that an alternative way of overcoming hyperpolarization of the I-cells, enabling them

to fire and thereby invoking the mechanism that shuts out distractors, would be the selective

enhancement of thecoherenceof the primary input streamA to the I-cells of the target network.

5 Discussion

Several possible functional roles of neuronal coherence inthe brain have been suggested in

the literature: Coherence strengthens the effectiveness of excitatory signals (Murthy and Fetz,

1994; Singer, 1999), weakens the effectiveness of inhibitory signals by leaving “windows of

opportunity” (Börgers et al., 2005; Börgers and Kopell, 2005; Lumer, 2000; Tiesinga, 2002;

Tiesinga et al., 2004), may play an important role in the creation of cell assemblies (Olufsen

et al., 2003), and may be the key to solving the “binding problem” (Engel et al., 2001; Singer and

Gray, 1995; von der Malsburg and Schneider, 1986). In this paper, we have demonstrated that

gamma rhythms may also facilitate stimulus selection: Whenexcitatory input to an E/I network

(not just to a single target cell) comes in the form of a sequence of coherent pulses in the gamma

frequency range, downstream response to less coherent competitors is suppressed.
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Fries (2005) suggested thattiming is crucial: The phase dependence of the input sensitivity

of the target lends an advantage to well-timed inputs over ill-timed ones. In our model, timing

does play a role when there is strong inhibition in the target, as shown for instance in Figure 6A,

but not otherwise (see Figure 4, and our discussion of phase response curves). In our numerical

experiments, timing effects can tip the balance when the stimuli are close to each other — or

identical, as in Figure 6A. There is, however, a second important effect: Inhibition in the target

network, by itself and independently of timing, greatly amplifies the advantage of coherent inputs

over incoherent ones; see for instance Figure 6B. Once an oscillatory input entrains the target,

the phase difference between it and the target is dictated bythe dynamics; indeed this phase

difference is favorable to the entraining input.

In Börgers et al. (2005), we proposed a different way in which gamma rhythmicity may play

a role in stimulus selection; there we showed that gamma rhythmicity helps a strongly driven

assembly suppress activity in a less strongly driven one if the two assemblies share a single in-

terneuron network. Thus the competition was between twoassembliesin Börgers et al. (2005),

whereas here it is between twostimuli competing for control over a single assembly. Combina-

tions of the two scenarios are possible and plausible; for instance, two different stimuli might

drive two different, but overlapping assemblies within a larger network.

We have assumed purely excitatory input to a target network that includes local recurrent

inhibition. This is in contrast with other recent models (Tiesinga, 2005; Mishra et al., 2006)

in which excitatory and inhibitory input streams drive a single neuron, with possible attentional

modulation of coherence and phase of the two streams independently.

In our model, the entire target network is entrained by the primary inputA, and therefore

frequency and phase of the response are the only degrees of freedom available to encode stimulus

identity and intensity. In a larger, more realistic versionof our model, inputsA andB would
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naturally stimulate different ensembles of neurons; theoverlapof the two ensembles would then

be the analogue of the target network in the present study. Furthermore, the spiking frequency of

individual cells would not necessarily have to be identicalwith the population frequency in such

a model. Thus additional degrees of freedom — the set of neurons responding, and the mean

frequency of individual cells — become available to encode stimulus identity and intensity when

the model is made larger and more realistic. How the results of the present study extend to such

more complex situations will be a subject of future work.

We did not allow feedback from target to upstream sources in the present study. It remains to

be investigated how such feedback, which of course is typically present in the brain, affects the

mechanisms discussed here.

Codes used to produce the numerical results of this paper canbe obtained by sending an

e-mail request tochristoph.borgers@tufts.edu.
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nization as a mechanism for attentional gain modulation.Neurocomputing, 58-60:641–646.

von der Malsburg, C. and Schneider, W. (1986). A neural cocktail-party processor.Biol. Cybern.,

54(1):29–40.

White, J. A., Banks, M. I., Pearce, R. A., and Kopell, N. J. (2000). Networks of inteneurons with

fast and slowγ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed

gamma-theta rhythm.Proc. Natl. Acad. Sci. USA, 97(14):8128–8133.

26



Appendix A: Parameter values used in simulations

Figure 2:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 40 σA = 2 ϕA = 0

CB = 0 QB = 0 ϕB = 0

We have omitted the indicesi labeling neurons because there is only one cell of each kind,E

and I. We have also omitted the indices E and I because the the two cells receive the same input

stream here.

Figure 3A:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 40 σA = 2 ϕA = 0

CB = 0.06 QB = 0.06 fB = 25 σB = 9 ϕB = 0

Figure 3B:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 40 σA = 2 ϕA = 0

CB = 0.06 QB = 20 fB = 65 σB = 9 ϕB = 0

The ratioTB/σB = 1000/( fBσB) is smaller here than elsewhere in this paper. This is the reason

why QB is taken to be so large here; see the paragraph following Eq. (6). The choiceQB = 20

yields a sizable, but not overwhelming oscillatory component, as shown in Figure 3B.
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Figure 3C:

gEE = 0 gEI = 0.05 gI = 0.5

CA = 0.04 QA = 0.04 fA = 40 σA = 2 ϕA = 0

CB = 0.11 QB = 0.15 fB = 25 σB = 9 ϕB = 0

Figure 6A:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 40 σA = 2 ϕA = 0.4

CB = 0.04 QB = 0.04 fB = 40 σB = 2 ϕB = 0

Figure 6B: Parameters are as in Figure 6A, but withσB = 4 in place ofσB = 2.

Figure 8:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 20 σA = 2 ϕA = 0

CB = 0.02 QB = 0.02 fB = 12 σB = 9 ϕB = 0

28



Figure 10:

gEE = 0 gEI = 0.05 gI = 0.1

CA,E,i = 0.04+0.04ZE,i CA,I ,i = 0.04+0.04ZI ,i QA = 0.04 fA = 40 σA = 2

ZE,i (1≤ i ≤ NE) andZI ,i (1≤ i ≤ NI ) are independent standard Gaussians.

CB = 0.06 QB = 0.06 fB = 25 σB = 9

In addition, every synaptic connection is removed with probability 1/2, and doubled in strength

if not removed, and in every time step, the random term 0.2
√

∆t Z is added toθ for each neuron,

whereZ is a standard Gaussian.

Figure 11A:

gEE = 0 gEI = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 fA = 40 σA = 2

CB = QB = 0

In addition, the I-cell receives a constant hyperpolarizing current equal to−0.3.

Figure 11B: Parameters are as in Figure 11A, but the E-cell receives an additional distracting

input:

CB,E = 0.08 QB,E = 0.04 fB = 25 σB = 9

CB,I = QB,I = 0

Figure 11C: Parameters are as in Figure 11B, but the I-cell receives the same distracting input as

the E-cell.

29



Appendix B: Details of the analysis for theta neurons

The regionSI

The regionSI is the set of pairs(q,τJ) for which the solutionθ of Eqs. (15), (16) satisfies the

inequalityθ(τJ) > θ+
0 . The fixed pointsθ−0 andθ+

0 are given by Eq. (2). It is clear thatθ(τJ)

cannot be greater thanθ+
0 unlessI +q/τJ > 0. The time that it takes forθ to increase fromθ−0 to

θ+
0 then equals

Z θ+
0

θ−0

dt
dθ

dθ =

Z θ+
0

θ−0

1
1−cosθ+(I +q/τJ)(1+cosθ)

dθ =

1
√

I +q/τJ

[

arctan
tan(θ/2)
√

I +q/τJ

]θ+
0

θ−0

=
2

√

I +q/τJ
arctan

tan(θ+
0 /2)

√

I +q/τJ
=

2
√

I +q/τJ
arctan

tanarccos
(

1/
√

1− I
)

√

I +q/τJ
=

2
√

I +q/τJ
arctan

√
−I

√

I +q/τJ
.

The regionSI is therefore given by the inequality

2
√

I +q/τJ
arctan

√
−I

√

I +q/τJ
< τJ ,

and its boundary, the bold line in Figure 5B, is characterized by the equation

2
√

I +q/τJ
arctan

√
−I

√

I +q/τJ
= τJ . (18)

Eq. (18) is not an explicit description of the boundary

q = q(τJ)

of the shaded reason (the bold line) in Figure 5B. However, itis clear that for any fixedτJ > 0

andI < 0, the equation has a unique solutionq with I +q/τJ > 0, since the left-hand side, viewed
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as a function ofq, decreases monotonically from∞ to 0 asq increases from−τJI to ∞. We note

that Eq. (18) impliesq(τJ)/τJ → ∞ asτJ → 0, a fact that will be used shortly.

Numerically, it is easy to solve Eq. (18) forq in terms ofτJ. Furthermore, we can derive the

behavior of the boundary for smallτJ explicitly from Eq. (18). Using the Taylor expansion

arctanx = x− x3

3
+O(x5) asx→ 0,

Eq. (18) can be written as follows in the limit asτJ → 0:

2
√

I +q/τJ

[ √
−I

√

I +q/τJ
− (−I)3/2

3(I +q/τJ)3/2
+O

(

τ5/2
J

)

]

= τJ , (19)

and therefore

2
√
−I

q+ τJI
+

2I
√
−I

3(q+ τJI)2 τJ = 1+o
(

τ3/2
J

)

. (20)

(The “O(·)” in Eq. (19) turned into “o(·)” in Eq. (20) becauseq/τJ → ∞ asτJ → 0, a fact noted

earlier.)

Eq. (20) is a quadratic equation forq+ τJI , with solutions

q± + τJI =
√
−I ±

√

−I +
2
3

I
√
−IτJ +o

(

τ3/2
J

)

.

Expanding the right-hand side aroundτJ = 0, we find

q± =
√
−I ±

(√
−I +

1
3

τJI

)

− τJI +o
(

τ3/2
J

)

.

The solutionq− is spurious — it violates the conditionq/τJ → ∞ asτJ → 0, which was used in

our expansion. Thusq+ is the relevant solution, and the boundary ofSI is given by

q∼ 2
√
−I +

2
3

τJ|I | (21)

asτJ →0. Eq. (21) describes the tangent line to the boundary ofSI atq= 2
√
−I , τJ = 0. However,

the segment of the boundary ofSI shown as a bold line in Figure 5B is nearly straight, and Eq.

(21) therefore in fact describes it with good accuracy throughout.
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Eq. (21) shows that the amount of charge needed to elicit a spike rises like(2/3)τJ|I | asτJ

increases. Thus the advantage of a briefer, stronger pulse over a broader, weaker one rises as

|I | rises: The more strongly hyperpolarized the target neuron,the greater is the advantage of

coherent inputs over incoherent ones.

Fixed points of Eq. (17)

We will prove that forI−(3/2)gs < 0, there are exactly two fixed points of Eq. (17) in[−π,π],

a stable one in(−π,0) and an unstable one in(0,π). Fixed points of Eq. (17) are solutions of

F(θ) = 0 with

F(θ) = 1−cosθ+

(

I − 3
2

gs

)

(1+cosθ)−gssinθ .

First we note that

F(−π) = 2 > 0 , F(0) = 2

(

I − 3
2

gs

)

< 0 , and F(π) = 2 > 0 . (22)

So in particular, ifθ ∈ [−π,π] is a solution ofF(θ) = 0, then sinθ 6= 0. This implies that no two

solutionsθ ∈ [−π,π] of F(θ) = 0 can be negatives of each other, since

F(θ) = 0 ⇒ F(−θ) = F(θ)+2gssinθ = 2gssinθ 6= 0 .

The inequalities (22) imply that there are at least one stable fixed point in(−π,0), and one

unstable fixed point in(0,π). We will now show that there can be no more than two fixed points

in [−π,π]. Suppose there were three different fixed pointsθi ∈ [−π,π], i = 1,2,3. Since no two

of these can be negatives of each others, their cosines

xi = cosθi , i = 1,2,3
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would have to be different from each other. But

F(θi) = 0 ⇒ 1−cosθi +

(

I − 3
2

gs

)

(1+cosθi) = gssinθi ⇒

(

1−cosθi +

(

I − 3
2

gs

)

(1+cosθi)

)2

= g2
s

(

1−cos2θi
)

⇒
(

1−xi +

(

I − 3
2

gs

)

(1+xi)

)2

= g2
s

(

1−x2
i

)

. (23)

This is a contradiction, sincex1, x2, andx3 would now be three different solutions of the quadratic

equation (23).
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Appendix C: Phase response curve of a theta neuron with decaying inhibition

In this appendix, we briefly review the standard phase response function for the theta neuron

(Ermentrout, 1996). We then define and compute a phase response function for a theta neuron

under the influence of exponentially decaying inhibition.

Consider the theta neuron given by Eq. (1), and assumeI > 0. The “phase”φ ∈ [0,1] corre-

sponding toθ ∈ [−π,π] is the time that it takes to advance from−π to θ, divided by the period

T = π/
√

I . If a delta pulse of strengthε > 0 is added toI when the neuron is at phaseφ, its phase

advances by an amount denoted byερ(φ). A standard and elementary calculation yields

ρ(φ) =
1
ε

[

1
2

+
1
π

tan−1
[

tan

(

π
(

φ− 1
2

))

+
ε√
I

]

−φ
]

.

We refer toρ as thephase response functionof the theta neuron. Its graph is called thephase re-

sponse curve. Passing to the limit asε → 0, one obtains theinfinitesimal phase response function

ρ0(φ) =
1

π
√

I
cos2

(

π
(

φ− 1
2

))

.

Its graph is called theinfinitesimal phase response curve. Figure 7A shows the graph ofρ for

I = 0.02,ε = 0.1 (solid), and the graph ofρ0 for I = 0.02 (dashes).

Next we consider a theta neuron subject to an exponentially decaying pulse of synaptic inhi-

bition arriving at timet = 0 (see Eq. (5)):

dθ
dt

= 1−cosθ+

(

I − 3
2

ge−t/τI

)

(1+cosθ)−ge−t/τI sinθ , (24)

with I > 0, g > 0, andτI = 10. The letterT now denotes the time that it takes for a solutionθ

of Eq. (24) to advance from−π to π. The phaseφ ∈ [0,1] corresponding toθ ∈ [−π,π] is again

the time that it takes for a solution of Eq. (24) to advance from −π to θ, divided byT. If a delta
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pulse of strengthε > 0 is added toI at timeφT, the time that it takes forθ to reachπ is shortened

to T̂ < T. The phase response curve is the graph of

ρ(φ) =
1
ε

T − T̂
T

.

As before, the infinitesimal phase response functionρ0 is obtained by passing to the limitε → 0.

We have no analytic expression forρ andρ0, but it is straightforward to calculate these curves

numerically for given parameter values. Figure 7B shows thegraphs ofρ for I = 0.02,g = 0.25,

ε = 0.1 (solid), andρ0 for I = 0.02,g = 0.25 (dashes).
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Appendix D: Phase response curve of an integrate-and-fire neuron with

decaying inhibition

Since some of the analysis of this paper is based on integrate-and-fire neurons, we repeat the

calculations of Appendix C for this model. We consider Eq. (7), with the threshold potential

VT = 1 and the reset potentialVR = 0. We assume that the drive is above the spiking threshold,

i.e., I > gm. The “phase”φ ∈ [0,1] corresponding toV ∈ [0,1] is the time that it takes for the

membrane potential to advance from 0 toV, divided by the period

T =
1

gm
ln

I
I −gm

.

When an integrate-and-fire neuron receives a delta pulse of current input of strengthε > 0, its

membrane potential is assumed to rise instantaneously fromits valueV just prior to the arrival of

the pulse to

V+ =











V + ε if V + ε ≤ 1 ,

1 otherwise.

This raises the phase fromφ to a new valueφ+. Thephase response functionρ is defined by the

equation

ερ(φ) = φ+−φ .

A straightforward calculation yields

ρ(φ) =
min(z,1)−φ

ε
with z=

ln((1−gm/I)φ− εgm/I)
ln(1−gm/I)

.

The limit of ρ asε → 0 is theinfinitesimal phase response function, denoted byρ0; it is not hard

to show that

ρ0(φ) =
gm/I

(1−gm/I)φln(1/(1−gm/I))
.
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Figure 7C shows the graph ofρ for gm = 0.1, I = 0.11, andε = 0.1 (solid), and the graph ofρ0

for gm = 0.1 andI = 0.11 (dashes).

Next we consider an integrate-and-fire neuron, driven abovethe spiking threshold, subject to

an exponentially decaying pulse of synaptic inhibition arriving at timet = 0:

dV
dt

= −gmV + I −ge−t/τIV , (25)

with I > gm, g > 0, andτI = 10. The letterT now denotes the time that it takes for a solutionV

of of Eq. (25) to advance from 0 to 1. The phaseφ ∈ [0,1] corresponding toV ∈ [−1,1] is again

the time that it takes for a solution of Eq. (25) to advance from 0 toV, divided byT. If a delta

pulse of strengthε > 0 is added toI at timeφT, the time that it takes forV to reach 1 is shortened

to T̂ < T. The phase response curve is the graph of

ρ(φ) =
1
ε

T − T̂
T

.

As before, the infinitesimal phase response curveρ0 is obtained by passing to the limitε → 0.

We have no analytic expression forρ andρ0, but it is straightforward to calculate these curves

numerically for given parameter values. Figure 7D shows thegraphs ofρ for gm = 0.1, I = 0.11,

g = 0.25,ε = 0.1 (solid), andρ0 for gm = 0.1, I = 0.11,g = 0.25 (dashes).
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Legends of figures

Figure 1: Examples of oscillatory inputs of the form (6).

Figure 2: Periodic input pulses to both the E-cell and the I-cell entraining both cells. Spikes of

the E-cell are indicated by open circles, and spikes of the I-cell by filled circles.

Figure 3: Two-cell target networks, consisting of an E-celland an I-cell (spike times indicated by

open and filled circles, respectively), driven by a coherently oscillating primary stimulus (solid)

competing with a less coherently oscillating distractor (dashed). The distractor often has little

effect even though its temporal average is greater than thatof the primary stimulus (panel A).

The distractor frequency may be lower than that of the primary stimulus (panel A) or higher

(panel B). With strong local inhibition, this effect can even be seen when the distractor is so

strong that itsamplitudeexceeds that of the primary stimulus (panel C).

Figure 4: Panel A: The fact that coherent stimuli are more powerful than incoherent ones does

not, by itself, explain Figure 3A. When inhibition is removed, the distractor has a strong effect.

Panel B: For a weakly coherent distractor to remain ineffective in the absence of local inhibition,

it must have very low strength.

Figure 5: Injection of a square input pulse of total chargeq and durationτJ into a neuron at rest

elicits a spike if and only if(q,τJ) lies in the (lightly or darkly) shaded region. With constant

synaptic inhibition (gs = 0.2) added,(q,τJ) must lie in the darkly shaded region for a spike to be

elicited. Panel A: Linear integrate-and-fire neuron withgm = 0.2, Vrev = −0.1. Panel B: Theta

neuron withI = −0.1. The boundaries are slanted to the right, so it requires less charge to elicit

a spike with a brief pulse than with a broad one. This effect isgreatly amplified by inhibition.

Figure 6: Panel A: A timing effect: Once inputB synchronizes with the target, inputA cannot
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break through even though its characteristics are identical with those ofB except for phase. Panel

B: The timing effect of Panel A disappears when inputB is made significantly less coherent than

inputA.

Figure 7: Phase response curves: A delta pulse of input of strengthε, finding its target at phaseφ,

advances the phase of the target byερ(φ). Panel A: Theta neuron, no inhibition,I = 0.02;ε = 0.1

(solid), andε → 0 (dashed). Panel B: Same as Panel A, but with a decaying inhibitory pulse

added (g = 0.25,τI = 10). Panel C: Integrate-and-fire neuron, no inhibition,gm = 0.1, I = 0.11;

ε = 0.1 (solid), andε → 0 (dashed). Panel D: Same as Panel C, but with a decaying inhibitory

pulse added (g = 0.25,τI = 10).

Figure 8: IfA oscillates far below gamma frequency, the distractorB easily disrupts the rhythm

in the target. Notice that this figure shows a 400 ms time window, whereas others in this paper

show a 200 ms time window.

Figure 9: Parameter dependence of stimulus selection basedon gamma rhythmicity: Frequencies

of target E- and I-cells (circles and triangles) as functions of inhibitory conductance (A–C) and

distractor frequency (D). Panel B shows an example in which the distractor is far stronger on the

average than the primary stimulus. Panel C shows a case in which the coherence contrast between

primary stimulus and distractor is weak; see text for more detailed discussion.

Figure 10: A noisy version of Figure 3A with reduced inhibitory conductance.

Figure 11: When the primary stimulusA does not suffice to activate the I-cell (panel A), the

E-cell is left vulnerable to distractors (panel B). However, a distracting stimulusB to the I-cell

may activate that cell, and thereby enable entrainment of the target to stimulusA (panel C).
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Figure 1: Examples of oscillatory inputs of the form (6).
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Figure 2: Periodic input pulses to both the E-cell and the I-cell entraining both cells.

Spikes of the E-cell are indicated by open circles, and spikes of the I-cell by filled

circles.
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Figure 3: Two-cell target networks, consisting of an E-celland an I-cell (spike times

indicated by open and filled circles, respectively), drivenby a coherently oscillat-

ing primary stimulus (solid) competing with a less coherently oscillating distractor

(dashed). The distractor often has little effect even though its temporal average is
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greater than that of the primary stimulus (panel A). The distractor frequency may be

lower than that of the primary stimulus (panel A) or higher (panel B). With strong

local inhibition, this effect can even be seen when the distractor is so strong that its

amplitudeexceeds that of the primary stimulus (panel C).
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Figure 4: Panel A: The fact that coherent stimuli are more powerful than incoherent

ones does not, by itself, explain Figure 3A. When inhibitionis removed, the distractor

has a strong effect. Panel B: For a weakly coherent distractor to remain ineffective

in the absence of local inhibition, it must have very low strength.
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Figure 5: Injection of a square input pulse of total chargeq and durationτJ into a

neuron at rest elicits a spike if and only if(q,τJ) lies in the (lightly or darkly) shaded

region. With constant synaptic inhibition (gs = 0.2) added,(q,τJ) must lie in the

darkly shaded region for a spike to be elicited. Panel A: Linear integrate-and-fire

neuron withgm = 0.2, Vrev = −0.1. Panel B: Theta neuron withI = −0.1. The

boundaries are slanted to the right, so it requires less charge to elicit a spike with a

brief pulse than with a broad one. This effect is greatly amplified by inhibition.
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Figure 6: Panel A: A timing effect: Once inputB synchronizes with the target, input

A cannot break through even though its characteristics are identical with those ofB

except for phase. Panel B: The timing effect of Panel A disappears when inputB is

made significantly less coherent than inputA.
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Figure 7: Phase response curves: A delta pulse of input of strengthε, finding its

target at phaseφ, advances the phase of the target byερ(φ). Panel A: Theta neuron,

no inhibition, I = 0.02; ε = 0.1 (solid), andε → 0 (dashed). Panel B: Same as

Panel A, but with a decaying inhibitory pulse added (g = 0.25, τI = 10). Panel C:

Integrate-and-fire neuron, no inhibition,gm = 0.1, I = 0.11; ε = 0.1 (solid), and

ε → 0 (dashed). Panel D: Same as Panel C, but with a decaying inhibitory pulse

added (g = 0.25,τI = 10).
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Figure 8: IfA oscillates far below gamma frequency, the distractorB easily disrupts

the rhythm in the target. Notice that this figure shows a 400 mstime window, whereas

others in this paper show a 200 ms time window.
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Figure 9: Parameter dependence of stimulus selection basedon gamma rhythmicity:

Frequencies of target E- and I-cells (circles and triangles) as functions of inhibitory

conductance (A–C) and distractor frequency (D). Panel B shows an example in which

the distractor is far stronger on the average than the primary stimulus. Panel C shows

a case in which the coherence contrast between primary stimulus and distractor is

weak; see text for more detailed discussion.
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Figure 10: A noisy version of Figure 3A with reduced inhibitory conductance.
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Figure 11: When the primary stimulusA does not suffice to activate the I-cell (panel

A), the E-cell is left vulnerable to distractors (panel B). However, a distracting stimu-

lusB to the I-cell may activate that cell, and thereby enable entrainment of the target

to stimulusA (panel C).
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