
NeuronRK package

1 Introduction

This package contains a library of C++ functions for the dynamical simulation

of networks of Hodgkin-Huxley-type of neurons. There is a broad variety of such

models for many different types of cells. They all contain the core components of

the Hodgkin-Huxley model (sodium, potassium, and leak currents) and extend

this basic formalism by including different sorts of other ionic currents, levels of

compartmentalization, etc. Complexity levels of these models reflect different

degrees of physiological relevance in such a way that they naturally build up

on top of each other, progressing from simple to more detailed. This makes

the object-oriented programming an ideal formalism for implementation of such

type of models.

2 Design

The two fundamental classes used in the package are Network and Neuron.

Network is used as an enveloping object to keep all the information about

elements of the network, time, simulation status etc. It contains an array of

Neurons, a counter to track the number of elements in the array, and the cycle

method which is used to call the corresponding cycle methods in each element of

the array. The cycle method executes one step of the dynamical simulation. In

each Neuron, the corresponding cycle method computes all ionic and synaptic

currents, calculates the right-hand side of the dynamic equations, and updates

the dynamic variables.

The class called Neuron contains dynamic variables of not just one neuron

but those of a population of similar neurons (for instance, a population of pyra-

1



midal cells). Network may contain several such populations. The dynamic

variables are organized as a n×m array, where n is the number of cells and m

is the number of variables. We assume that all neurons within one population

(i) are of the same type, i.e., obey the same dynamic equations, (ii) are con-

nected all-to-all by chemical synapses (we assume that synaptic conductances

are the same across population; zero conductance is used for uncoupled cells),

(iii) are connected all-to-all by electrical (gap junction) synapses (these conduc-

tances are also assumed to be the same), and (iv) can have autapses. Whenever

we say that two populations of neurons are connected by a synapse, we assume

all-to-all connections between their corresponding cells with the same value of

synaptic conductance. To track the connections between populations, we use

an array of external synaptic inputs (pointers to other Neurons) and the cor-

responding arrays of external synaptic and external gap junction conductances.

This design allows important simplifications that are critical for effective sim-

ulations of large networks and dramatically improve the computation time as

explained below.

Let Ω be the set of populations (Neurons) in the Network. Consider a

Neuron α ∈ Ω and let i ∈ α be one cell in α. The sum of synaptic inputs to

i contains two components: Isyn,i = Iint
syn,i + Iext

syn,i, where Iint
syn,i is the sum of

synaptic inputs to i from within population and Iext
syn,i is the sum of synaptic

inputs to i from other populations. Specifically,

Iint
syn,i =

∑

j∈α,j 6=i

gj→isj(Vi − Vrev,j) + gi→isi(Vi − Vrev,i),

where gj→i, sj , Vi, and Vrev,j are the synaptic conductance between cells j and i,

the synaptic gating variable, the membrane potential and the reversal potential,

respectively. We assume that the synaptic conductances are the same across

population, i.e., gj→i = gα. The reversal potential Vrev,i = Vrev,j = Vrev,α is

also independent of i or j. Thus, we have

Iint
syn,i = gα


∑

j∈α

sj − si


 (Vi − Vα) + gself,αsi(Vi − Vα) =

= gα(sα − si)(Vi − Vα) + gself,αsi(Vi − Vα),

where sα =
∑
j∈α

sj and gself,α is the conductance of the autapse. Similarly, the

2



sum of external synaptic currents is

Iext
syn,i =

∑

β∈Ω

∑

j∈β

gj→isj(Vi − Vrev,j) =
∑

β∈Ω

gβ→α(Vi − Vrev,β)


∑

j∈β

sj


 =

= Vi

∑

β∈Ω

gβ→αsβ −
∑

β∈Ω

gβ→αsβVrev,β ,

where the synaptic conductance gj→i is the same for all connections between

these two populations (gj→i = gβ→α) and the reversal potential Vrev,j depends

only on β (Vrev,j = Vrev,β). The sum of gap junction currents is Ielc,i = Iint
elc,i +

Iext
elc,i, where

Iint
elc,i =

∑

j∈α

ej→i(Vj − Vi) = eα


∑

j∈α

Vj − nαVi


 = eαVα − eαnαVi,

Iext
elc,i =

∑

β∈Ω

∑

j∈β

ej→i(Vj − Vi) =
∑

β∈Ω

eβ→α


∑

j∈β

Vj − nβVi


 =

=
∑

β∈Ω

eβ→αVβ − Vi

∑

β∈Ω

eβ→αnβ ,

where eα is the gap junction conductance within population, ej→i is the gap

junction conductance between cells j and i (as before, ej→i = eβ→α), Vα =
∑
j∈α

Vj , and nβ is the number of cells in β.

The computations are organized such a way that we first compute the

values of sα and Vα for each population and then compute
∑

β∈Ω

gβ→αsβ ,
∑

β∈Ω

gβ→αsβVrev,β ,
∑

β∈Ω

eβ→αVβ , and
∑

β∈Ω

eβ→αnβ for all populations that are

connected. These computations are executed in the cycle method of the class

Network. As a result, the computation of the synaptic current, which other-

wise involves combinations of all pairs of cells in the network, takes linear time

with respect to the total size of the network and results in a dramatic speedup

of the overall simulation time.

Every Neuron contains a method called f. Its puprose is to compute the

right-hand side of the ODE for every cell in the population (the dynamical

equations reside here). Different cell models have different dynamic equations

and, consequently, different dynamic variables and different f methods. One of

the advantages of using the object-oriented paradigm is that f methods can be

overridden during class inheritance, while other methods which are not related to

3



specific details of the model can be inherited from the enveloping class Neuron

without overriding.

One of the “housekeeping” methods, which is inherited without overriding,

is RungeKutta. It calls the f method for every cell in the population and

updates its dynamic variables. RungeKutta is called from the cycle method

of each Neuron, which, in turn, is called by the cycle method of the Network.

Another housekeeping method called track spikes is used to detect spike times.

It is paired with the cycle method and updates the array of spike times for each

cell in the population. Note that we define the time of the spike as a midpoint

between two time points, at which the membrane potential of a cell crosses the

+10 mV threshold.

Additionally, Neuron contains the report method, which prints out the

values of the dynamic variables in a tab-delimited text file. To reduce the size

of the output, this method is executed only if the membrane potential changes

by more than 0.1 mV compared to the previously reported value. At that, even

if a change in the membrane potential was detected in only one cell, report is

executed for all cells in the network to keep the rectangular shape of the output

matrix.

Now the computation of a spike time response curve is nothing but a loop

that repetetively applies a short DC current pulse to trigger exactly one spike

in the presynaptic cell and measures the effect of this spike on the spike time of

the postsynaptic cell by using the track spikes method. This loop is executed

in the method called getprc, which logically belongs to the class Network

since it involved different types of cells (for instance, an O-cell and an I-cell, or

a an O-cell and a PING network which consists of an E-cell and an I-cell).

4


