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Phase-amplitude cross-frequency coupling (CFC) between theta
(4–12 Hz) and gamma (30–100 Hz) oscillations occurs frequently in
the hippocampus. However, it still remains unclear whether theta–
gamma coupling has any functional significance. To address this
issue, we studied CFC in local field potential oscillations recorded
from the CA3 region of the dorsal hippocampus of rats as they
learned to associate items with their spatial context. During the
course of learning, the amplitude of the low gamma subband
(30–60 Hz) became more strongly modulated by theta phase in
CA3, and higher levels of theta–gamma modulation were main-
tained throughout overtraining sessions. Furthermore, the
strength of theta–gamma coupling was directly correlated with
the increase in performance accuracy during learning sessions.
These findings suggest a role for hippocampal theta–gamma
coupling in memory recall.

associative memory � brain rhythms � local field potential

Brain oscillations have been classically divided into specific
frequency ranges associated with multiple cognitive processes

(1, 2). Oscillations in these frequency bands may occur simulta-
neously and can interact with each other (3, 4), suggesting that this
coupling may reflect a higher-order representation (5, 6). In one
type of interaction, the phase of low-frequency rhythms modulates
the amplitude of higher-frequency oscillations (3). This type of
cross-frequency coupling (CFC) is called phase-amplitude modu-
lation, and its best known example occurs in the rodent hippocam-
pus between the theta (4–12 Hz) phase and the amplitude of
gamma (30–100 Hz) oscillations (6–9). Based on this finding,
theoretical work has suggested that gamma and theta oscillations
coordinate in support of a neural code (10–15). According to this
view, events are represented by distinct neuronal ensembles, each
contained within a distinct gamma cycle, and entire episodes are
encoded by a succession of event-specific gamma cycles embedded
into each theta cycle (12–15). These theories are elegant and
appealing, but there is a paucity of evidence linking the existence
of theta–gamma coupling to behavior (but see ref. 16). Therefore,
it remains unclear whether the hippocampal theta–gamma cou-
pling possesses any functional role (13).

Here, we investigated coupling between theta and gamma
rhythms as rats learned which of two stimuli was rewarded depend-
ing on the environmental context in which the stimuli were pre-
sented. Learning in this type of conditional discrimination task
depends on hippocampal function (17, 18). On each trial, a rat
initially explored one of two environmental contexts, then the two
stimuli were placed into different corners of the environment and
the rat was required to choose the correct stimulus for that context
to receive a reward (Fig. 1A). In our preliminary studies, we found
that the initial context exploration period is essential for learning
the context-dependent choice. Therefore, we focused on the prom-
inent theta and gamma activity that is prevalent during this period.
We found that the strength of theta–gamma coupling in CA3
increases as animals learn and strongly correlates with the increased
performance accuracy associated with learning. These findings
provide evidence that increases in theta–gamma coupling parallel

learning and signal accurate memory performance. These obser-
vations support theoretical models that suggest a functional role for
the theta–gamma interaction in information coding.
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Fig. 1. Theta phase modulates the LG amplitude in the CA3 region. (A) Task
scheme. Animals have to learn to associate contexts (represented by different
shading) to items (represented by yellow and blue) for reward. A 40-s period
of context exploration is allowed before items presentation. The two contexts
(A or B) differed in their flooring and walls; the items (X or Y) differed in odor
and in the medium that filled the pots. (B) Representative phase-amplitude
comodulogram computed for a CA3 LFP recorded at stratum pyramidale
during context exploration.
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Results
Theta-Phase Modulates the Low Gamma (LG) Subband in the CA3
Region. Local field potentials (LFPs) were recorded from tetrodes
located in the CA3 pyramidal layer of the dorsal hippocampus of
six freely moving rats. The existence of phase-amplitude CFCs was
analyzed by using a comodulogram method as described (6). This
tool scans several narrowed-filtered frequency bands pairs search-
ing specifically for phase-amplitude coupling. The level of phase-
amplitude coupling in each frequency pair is assessed by a measure
called the modulation index (MI) (see Materials and Methods).
Although computationally intensive, the scanning of several fre-
quency pairs performed by the comodulogram analysis is ideal for
searching for phase-amplitude couplings when no a priori assump-
tions are made about the ‘‘phase modulating’’ and the ‘‘amplitude-
modulated’’ frequency bands.

The results are graphically illustrated in a pseudocolor plot
representing the MI values obtained for the analyzed frequency
pairs, wherein hot colors in a given coordinate (x, y) indicate that
the phase of the x frequency modulates the amplitude of the y
frequency. As shown in Fig. 1B, we observed substantial theta-
phase modulation of the amplitude of oscillations in the gamma
range during the context exploration phase of the task, confirming
previous reports of theta-modulated gamma (6–9). In particular,
this analysis revealed especially strong theta-phase modulation of
the LG (30–60 Hz) subband in the CA3 region (Fig. 1B). Based on
this preliminary result, we focused our systematic LFP analyses on
wide-band-filtered theta and LG in CA3.

Theta–Gamma CFC in CA3 Increases During Learning and the Strength
of CFC Correlates with Mean Performance Accuracy. Fig. 2A shows the
gradual improvement in behavioral performance during learning
for a single rat. An initial trial-by-trial quantification of theta–
gamma comodulation revealed that the relationship between LG
amplitude and theta phase increased over the course of the learning
session (Fig. 2B). We also examined the relationship between
theta–gamma modulation during context exploration and subse-
quent choice accuracy of the learning session by calculating the
percentage correct and MI over sliding windows of 20 trials shifted

in steps of one trial (Fig. 2 A and C). This analysis revealed that the
intensity of theta–gamma coupling positively and significantly
correlated with performance accuracy as the animal makes more
correct responses during the course of learning (Fig. 2D). Theta–
gamma coupling was also significantly higher during context ex-
ploration when mean performance accuracy was high (�80%)
compared with coupling when performance accuracy was low
(�60%) both within (Fig. S1a) and across animals [Fig. S1b; F(1,
344) � 224.57, P � 10�20)]. This result was robust across all learning
sessions (Fig. S1d), wherein the mean correlation coefficient (r)
between performance and MI was significantly different from zero
[r � 0.67 � 0.08 (mean � SEM), t (5) � 8.66, P � 0.001; see also
Figs. S2 and S3). Because the MI scores for each window are not
independent, we calculated the significance of the correlations
against the distribution of r values calculated from 10,000 shuffles
of trial and MI. We found that the observed r values could not have
been derived from the chance distribution (Fig. S1c; z � 3.5, P �
0.001). Thus, when mean performance accuracy was high, theta was
also more strongly coupled with LG during exploration of the
context.

Increased Theta–Gamma Coupling Is Maintained During Overtraining
Sessions. We next studied the level of theta–gamma coupling during
sessions where the animals were overtrained on the conditional
discrimination problem. In those sessions the rats’ performance had
been �80% for at least three consecutive preceding sessions on the
same problem, such that very little new learning occurred during
the recording session.

As shown in Fig. 3, the strength of theta–gamma CFC in
overtraining sessions was high from the outset, and varied less
during the overtraining session than during learning (Fig. 3 and Fig.
S4). Moreover, whereas the average MI for the last 30 trials in
learning sessions divided by the MI for the first 30 trials was 0.6, this
MI ratio was close to 1 in overtraining sessions (Fig. 3B), indicating
that the levels of theta–gamma coupling did not differ across the
session in rats highly trained on the task [learning MI ratio: 0.596 �
0.041 (mean � SEM), t(4) � �9.85, P � 0.001 when compared with
1; overtraining MI ratio: 0.988 � 0.039 (mean � SEM), t(4) �

Fig. 2. Theta modulation of LG amplitude in the
CA3 region during context exploration increases
with learning. (A) Behavioral profile of a represen-
tative rat during learning of the task. Shown is the
animal’s performance (correct, black bar up; error,
black bar down) at each trial of the session (Upper)
and the associated learning curve computed by
using a sliding window of 20 trials (Lower). (B)
Pseudocolor scale representation of the mean CA3
LG amplitude as a function of the theta phase for
each trial in the session (Left). The mean LG ampli-
tude per theta phase averaged over the first and
last 20 trials is also shown (Right). (C) MI curve
computed by using a 20-trial sliding window. (D)
Linear correlation study between theta-LG cou-
pling strength and task performance. The correla-
tion between the MI and learning curves (Left) and
the average MI value over each mean performance
percentage (Right) are shown. These results were
derived from the average over electrodes located
in the CA3 region of this representative animal (see
Figs. S1 and S2 for group results).
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�0.32, P � 0.76 when compared with 1; difference between groups
t(4) � �8.54, P � 0.001]. In addition, on average, the CFC levels
observed during the last trials in learning sessions were comparable
with the levels observed throughout overtraining sessions (Tukey
posthoc, P � 0.05; Fig. 3B; see also Fig. 5B).

Of note, we observed that the MI values tended to increase for
both correct and error trials during learning sessions (Fig. 3C and
Fig. S5), and we found a positive correlation between trial number
and MI value for errors (r � 0.31) or correct trials (r � 0.32; all trials
r � 0.35, all Ps � 0.0001). During overtraining sessions, however,
there were no statistical correlations between trial number and MI
value for both error and correct trials (all Ps � 0.18). In all, these
results suggest that stronger theta–gamma coupling persists as long
as overall task performance is high.

The Increase in Theta–Gamma Coupling Associated with Learning
Cannot Be Explained by Changes in Theta Power, Speed of Locomo-
tion, or Gamma Power. We next examined whether changes in theta
power could account for the increase in theta–gamma phase-
amplitude coupling during learning. It was previously shown that
the intensity of the theta–gamma coupling depends on the mag-
nitude of theta power such that theta–gamma coupling is stronger
when theta power is high if other confounding variables are
controlled (5, 6). We have confirmed this finding during context
exploration in our current data, as shown in the example in Fig. 4
A and B. When LFP epochs were divided into four periods varying
from lowest to highest theta power (see Materials and Methods)
theta–gamma modulation strength monotonically increased with

theta power. Therefore, theta power level does influence the level
of coupling and changes in theta power along the learning session
could potentially account for the changes in theta–gamma coupling
(but see below).

We also asked whether changes in running speed or path length
across trials during the exploratory period could account for the
increase in theta–gamma coupling. As expected, both running
speed and path length significantly decrease across trial blocks in
learning and overtraining sessions [path length: F(2, 20) � 36.719,
P � 0.00001; speed: F(2, 20) � 29.793, P � 0.00001; see Fig. S6].
However, the change of the speed and path length did not differ
significantly between learning and overtrained sessions [interaction
of trial block with session type; path length: F(2, 20) � 2.034, P �
0.157; speed: F(2, 20) � 1.217, P � 0.296]. Therefore, the obser-
vation that rats slow and move less during the course of performing
in both learning and overtraining sessions does not account for
the selective increase in theta–gamma coupling only in learning
sessions.

There are also reports that the hippocampal theta power and a
rat’s running speed can be positively correlated (19, 20). Therefore,
the observed increase in theta–gamma coupling during learning
could be caused by an increase in either theta power or locomotion
speed during late trials in the session. However, our observations
were opposite to this prediction: both theta power and speed
decrease (Fig. 4C) as the animal’s performance accuracy increases
(Fig. 4D). Moreover, the levels of theta–gamma phase-amplitude
coupling increased during the learning session when the MI analysis
was restricted (within each trial) to any of the four theta power-level

Fig. 3. Rats performing overtraining ses-
sions maintain high levels of CA3 LG mod-
ulation by theta phase. (A) (i) Animal’s per-
formance during an overtraining session.
(ii) Pseudocolor scale representation of the
mean LG amplitude as a function of the
theta phase for each trial in the overtrain-
ing session. (iii) Mean LG amplitude per
theta phase in four nonoverlapping win-
dows of 20 trials each. These results were
obtained from a representative animal (see
also Fig. S4). (B) Group data results. (Upper)
MI ratio between the first and last 30 trials
of learning and overtraining sessions.
(Lower) Normalized MI for the first and last
30 trials of learning and overtraining ses-
sions. The normalization was done within
each rat by dividing each group value by
the average over the four groups. Bars rep-
resent the mean (� SEM) over rats. *, P �
0.001. (C) Pooled data results. (Upper Three
Rows) Shown are the number of correct
(green) and error (red) trials pooled among
all animals in nonoverlapping 10 trial
blocks for learning (Left) and overtraining
(Right) sessions, and the percentage of cor-
rect trials in each block. The mean MI value
in each trial block is shown (black squares).
(Lower Row) Also shown are the mean MI in
each trial block separated for correct
(green squares) and error (red squares) tri-
als. Error bars represent SEM.
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periods (Fig. 4E). Of note, gamma power did not vary during
learning (Fig. 4F), so it is also unlikely to account for the observed
changes in the strength of theta–gamma phase-amplitude CFC with
learning. Taken together, these findings indicate that the increase
in theta–gamma coupling cannot be explained by changes in theta
power, running speed, or gamma power.

The Learning-Related Changes in the Level of Theta–Gamma Coupling
Persist Until Stimulus Sampling and Selection. The above analyses
have been focused on the context exploratory period of the task (see
Fig. 1A), when the rat must recognize which context it occupies to
subsequently choose the correct stimulus. We also analyzed CFC on
the LFPs recorded during the choice period of the task, when the

Fig. 5. The strength of theta–gamma cou-
pling correlates with learning up to stimulus
sampling. (A) Time-frequency decomposi-
tion of a representative fissure electrode
during the choice period of the task. The
time point 0 denotes the initiation of stim-
ulus sampling, defined as the crossing of the
rat’s nose over the rim of the pot (see Ma-
terials and Methods). (B) Normalized MI
during the choice period of the task. The
normalization was done within each rat by
dividing the MI value of each group by the
average MI over groups. Data points repre-
sent the mean (� SEM) over rats. *, P � 0.05.
(C) Linear correlation of the pooled data
around the period of stimulus sampling and
selection.

Fig. 4. Theta-phase modulation of LG amplitude is positively related to theta power, but changes in theta power level across trials do not account for the
increase in theta–gamma coupling with learning. (A) Mean LG amplitude per theta phase for periods of low [first interquartile (IQ) interval], medium (second
and third IQ), and high (fourth IQ) theta power, which were defined within each trial. These results were obtained from a representative CA3 electrode by
analyzing all trials (n � 80) in a learning session. (B) MI computed for each case shown in A. (C) Theta power in this electrode as a function of the trial number.
A sliding window of 20 trials was used, and each point is the average theta power over the 20 trials. The mean rat’s speed is also shown (dashed line, right y-scale).
(D) Learning curve of this animal. (E) MI curves computed for each theta power quartile. (F) Group results showing the theta and LG CA3 power levels during
the first and last 30 trials of learning sessions. The power normalization was done within rats by dividing each power value by the average power over the two
groups of trials. Bars represent the mean (� SEM) over rats. *, P � 0.05.
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rat is presented with the two stimuli and must select the stimulus
associated with that context to obtain a reward.

The results of these analyses are shown in Fig. 5. Theta power was
high as the rats walked toward the scented pot. However, theta
power and peak theta frequency were reduced when the rats
stopped to sample (i.e., sniff) the stimulus and dig for reward (Fig.
5A). Theta–gamma phase-amplitude coupling was also greatly
reduced during digging (Fig. 5B). Moreover, while the learning-
related changes in the level of theta–gamma CFC observed during
context exploration were present while rats were approaching the
item (Fig. 5 B and C), the strength of theta–gamma coupling during
stimulus sampling and selection did not change during learning
(Fig. 5B) nor was the strength of CFC correlated with performance
(Fig. 5C). These results therefore suggest that theta–gamma cou-
pling could be promoting memory recall up to when the animals
sample the stimulus items.

Discussion
Our results strongly suggest a functional role for the theta-phase
modulation of the gamma amplitude in the CA3 region. The
strength of theta–gamma coupling increased during learning (Fig.
2 and Fig. S1) and remained high in overtraining sessions (Fig. 3 and
Fig. S4 and S5). Correspondingly, the magnitude of theta–gamma
CFC during context exploration was correlated with the high
accuracy of behavioral performance, which increased during the
course of learning (Fig. 2 and Figs. S1–S3). These findings support
the view that the theta–gamma interaction contributes to memory
processing (10, 14, 21).

The present results also constitute neurophysiological evidence
corroborating a role of the rodent hippocampus in learning about
what happens where (17, 18) and points to CA3 as an important
region for this type of associative memory. These findings are
consistent with previous proposals suggesting that the CA3 region
combines converging information about events and the context in
which they occur (22), which is required for the learning of new
associations in the present task.

Phase-amplitude coupling of neuronal oscillations has been
gaining interest during the last few years (4–6, 23–25). Phase-
amplitude CFCs have been described in mice (8, 9, 26), rats (7),
monkeys (4), and humans (5, 24, 25) and in multiple brain regions
including neocortex (4, 5, 25), hippocampus (7), and basal ganglia
(6, 24). Phase-amplitude CFCs have also recently been described
across different brain regions (6, 23), suggesting that they may be
also involved in long-range information processing. Although the
exact functional significance of CFC remains unclear, some have
suggested that the coupling of low- and high-frequency brain
oscillations subserves sensory signal detection (27) and attention
selection (28). Surprisingly, no compelling evidence has been
previously shown for a functional role for the best-known example
of CFC, namely the theta–gamma coupling observed in the rodent
hippocampus, despite a wealth of theoretical work attempting to
link this phenomenon to hippocampal function in learning and
memory (10–15, 21). The present work constitutes empirical evi-
dence that the theta–gamma CFC in the hippocampus supports
cognitive functions, specifically memory processing, as suggested by
the models (10–15, 21).

Although our findings are consistent with the proposal that
theta–gamma interaction functions as a memory code (10, 14, 21),
our findings do not shed light on how the higher modulation of the
gamma amplitude by the theta phase supports memory. The
knowledge about the biophysical mechanisms underlying such
effects might provide important clues (26, 29). Nevertheless, the
data provide some potential insights into cognitive processing
during performance on the task. Notably, levels of theta–gamma
phase-amplitude coupling increased during learning for both error
and correct trials (Fig. 3C and Fig. S5). A possible explanation for
this observation is that error trials may reflect a miscoding of
information, which would be reflected in strong CFC and lead

actively to an incorrect response (30), rather than the absence of
coding, wherein one might expect weak CFC and guessing. The
higher levels of coupling seen for error trials after learning and
during overtrained sessions also suggest that theta–gamma cou-
pling in the hippocampus is unlikely to play a role in attentional
modulation (but see ref. 28).

It still remains to be established whether theta–gamma coupling
would be more functionally important than either of these two
rhythms alone. We found that the level of gamma power was not
correlated with performance accuracy [r � 0.08 � 0.31 (mean �
SEM)], whereas the decrease in theta power along the learning
session presented a negative correlation [r � �0.54 � 0.19 (mean �
SEM)]. Although the decrease in theta power is likely associated
with the decrease in locomotion along the session, a functional role
for the levels of theta power in this task cannot be ruled out.

The association of specific events with the context in which they
occur is known to be a function of the rodent hippocampus (31, 32),
although the mechanisms by which these associations are generated
in the hippocampus are only beginning to become clear (17).
Studies using the same conditional discrimination paradigm have
revealed that the hippocampus is critical for this kind of learning
(18) and that hippocampal principal cells encode conjunctive
representations of items and places in a way that parallels learning
and predicts performance accuracy (17). Here, we extend these
findings by showing a direct correlation between theta–gamma
CFC strength, learning, and the consequent increase in perfor-
mance accuracy. Furthermore, the present results are consistent
with the notion that the theta–gamma interaction subserves a role
in information coding of relevance to successful recall required for
accurate performance.

Materials and Methods
Training and Data Acquisition. Behavioral training and electrophysiology record-
ing methods are described in detail in ref. 17 and reproduced in SI Text. During
all recording sessions, LFPs were obtained from tetrodes located in the pyramidal
cell layer of CA3 (see SI Text and Fig. S7); the signals were filtered from 1 to 300
Hz and sampled at a rate of 1,000 samples per s. Behavior was recorded with
digital video (30 frames per s) that was synchronized with the acquisition of
neural data. The onset of stimulus sampling (time 0 in Fig. 5) was defined as the
video frame on which the rat’s nose crossed the rim of the pot. The LFPs and the
time stamps for the onset of stimulus sampling were imported into MATLAB
(Mathworks) for subsequent data analysis.

Data Analysis. All analyses were done with built-in and custom-written routines
in MATLAB.

Spectral Analyses, Filter Settings, and Amplitude and Phase Time Series Extrac-
tion. Power spectra estimation during the exploratory period of the task was
done by means of the Welch periodogram method (50% overlapping Hamming
windows with a length of 2 s), which was obtained by using the pwelch function
from the Signal Processing Toolbox. The time frequency decomposition during
the choice period of the task shown in Fig. 5A used 1-s time windows with 95%
overlap and was obtained by using the spectrogram function from the Signal
Processing Toolbox. All filtering used for the data analysis was done by means of
a linear finite impulse response filter using the eegfilt routine from the EEGLAB
toolbox (33). The filter order depends on the low-frequency cutoff, and it is given
by three times the ratio of the sampling frequency to the low-frequency cutoff
(rounded to the nearest integer toward zero). Both the instantaneous amplitude
and the phase time series of a filtered signal were computed from the Hilbert
transform, which was obtained by using the hilbert routine from the Signal
Processing Toolbox. The amplitude envelope of the theta-filtered signal (i.e., the
instantaneous theta power) was used in Fig. 4 for dividing the time series of each
trial into four quartiles. The instantaneous theta power was also used to deter-
mine the mean theta power in each trial, and the reported results during the
context exploration were obtained from analyzing the trial periods where theta
power was above its mean value (except in Fig. 4). However, the same qualitative
results were obtained when no prior selection of ‘‘high-theta’’ periods was
performed (see Fig. S8).

The MI and the Phase-Amplitude Comodulogram. To measure the intensity of
theta-LG phase-amplitude coupling, we used a MI as described (6). This index is
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calculated as follows: (i) the theta phases are binned into 18 20o intervals (0–360o)
and the mean amplitude of the LG oscillation in each phase bin is determined; (ii)
this result is then normalized by dividing the mean amplitude in each phase bin
by the sum over the bins. This last step thus transforms the mean amplitude per
phase into a probability distribution-like function (see Figs. 2B, 3A, and 4A for
examples); (iii) then the Kullback-Leibler (KL) distance (34), a measure that is
widelyusedto infer thedistancebetweentwodistributions,wasusedtomeasure
how much the phase-amplitude distribution deviates from the uniform distribu-
tion. The MI is obtained by dividing the KL distance by a constant factor [log(18),
i.e., the logarithm of the number of phase bins], which makes the measure
assume values between 0 and 1. Therefore, a MI value of 0 denotes that the
phase-amplitude distribution is equal to the uniform distribution; that is, in this
case the mean amplitude is the same for all phase bins, which characterizes the
absence of phase-amplitude coupling. The further away the amplitude distribu-
tiongets fromtheuniformdistribution(as inferredbytheKLdistance), thehigher
the MI. The comodulgram plot shown in Fig. 1B was obtained by applying the MI
measure to several narrowed-filtered frequency pairs (phase frequencies: 4-Hz
bandwidths and 2-Hz steps; amplitude frequencies: 10-Hz bandwidths and 5-Hz
steps) and expressing the results by a pseudocolor code scheme (see also ref. 6).
For the other figures, the MI was calculated between the 6- to 10-Hz (theta) and
30- to 55-Hz (LG) frequency bands.

Learning and MI Curves. The learning curve was computed by calculating the
percentage of correct choices in sliding trial windows of 20 trials shifted in steps

of one trial. The MI curve is obtained by computing the mean MI over all 20 trials
in each trial window used to compute the learning curve. The MI curve of each rat
is computedfrommeanMIcurveoveralleligibleelectrodes inthatrat; inpractice,
all CA3 electrodes tend to present similar MI curves (see Fig. S8).

MI Computation During Item Sampling. Given the brief duration of the stimulus
sampling periods, the MI during the choice period of the task shown in Fig. 5 was
computed by using phase and amplitude time series merged across all trials (as in
ref. 6). In Fig. 5B, each MI time point denotes the MI value for a time window of
1sendingonthetimepoint (therefore, foreachrat, theMItimepointsduringthe
first 30-trial block were obtained from the analysis of a 30-s time series). The MI
values shown in Fig. 5 B Inset and C were computed by using the time interval as
denoted in the figure’s labels.

Statistical and Correlation Analyses. Comparisons of the MI between groups
were done by using a t test or ANOVA followed by Tukey’s test, as appropriate.
Linear correlations were measured by using the Pearson correlation coefficient.
P � 0.05 level of confidence was used in these analyses.
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