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Abstract. Behavior of a network of neurons is closely tied to the properties of the individual neurons. We study this
relationship in models of layer II stellate cells (SCs) of the medial entorhinal cortex. SCs are thought to contribute
to the mammalian theta rhythm (4–12 Hz), and are notable for the slow ionic conductances that constrain them to
fire at rates within this frequency range. We apply “spike time response” (STR) methods, in which the effects of
synaptic perturbations on the timing of subsequent spikes are used to predict how these neurons may synchronize
at theta frequencies. Predictions from STR methods are verified using network simulations. Slow conductances
often make small inputs “effectively large”; we suggest that this is due to reduced attractiveness or stability of the
spiking limit cycle. When inputs are (effectively) large, changes in firing times depend nonlinearly on synaptic
strength. One consequence of nonlinearity is to make a periodically firing model skip one or more beats, often
leading to the elimination of the anti-synchronous state in bistable models. Biologically realistic membrane noise
makes such “cycle skipping” more prevalent, and thus can eradicate bistability. Membrane noise also supports
“sparse synchrony,” a phenomenon in which subthreshold behavior is uncorrelated, but there are brief periods of
synchronous spiking.

Keywords: synchrony, phase response, theta rhythm, cycle skipping, membrane noise

1. Introduction

Behaviorally correlated synchronous activity is com-
mon in the brain and likely to be functionally important
(reviews include O’Keefe, 1993; Farmer, 1998; Gray,
1999; Singer, 1999; Chrobak et al., 2000). Contrary

to what many might consider intuitive, such activity is
often best mediated by mutual inhibition rather than
mutual excitation (e.g., Lytton and Sejnowski, 1991;
Wang and Rinzel, 1993; Golomb et al., 1994; White
et al., 1998b). This tendency for inhibitory networks
to synchronize has been explained mechanistically for
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models with relatively simple firing properties (Van
Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout,
1996). Synchrony through mutual excitation can be ob-
tained by changing parameters in simple spiking mod-
els (Van Vreeswijk et al., 1994; Hansel et al., 1995;
Ermentrout, 1996), but in modeling studies, excitation-
based synchronization is often associated with more
complex membrane mechanisms, including afterhy-
perpolarization currents and slow K+ currents (Crook
et al., 1998; Ermentrout et al., 2001).

In this study we are concerned with synchronization
mechanisms in the specific context of layer II stellate
cells (SCs) of the medial entorhinal cortex (MEC). SCs
are responsible for the bulk of the “perforant path” in-
put to the hippocampus. They give rise to extensive
axon collaterals within layer II, suggesting that they
are coupled in vivo with a significant amount of mutual
excitation (Gloor, 1997). Recent physiological studies
(Dhillon and Jones, 2000) have failed to find such func-
tional connections in brain slices, either because such
monosynaptic connections are rarer than one would
suppose from anatomical results, or because the axon
collaterals leave the plane of the brain slice. Under in-
tracellular current clamp, SCs are characterized by slow
(4–12 Hz) subthreshold oscillations and spike rates
(Alonso and Llinás, 1989; Alonso and Klink, 1993).
Slow K+ currents and/or the slow, hyperpolarization-
activated cation current Ih are thought to pace theta-
frequency activity in SCs (Klink and Alonso, 1993;
White et al., 1995, 1998a; Dickson et al., 2000), which
is hypothesized to allow mutually coupled SCs to serve
as local generators of the 4–12 Hz theta rhythm (Alonso
and Llinás, 1989; Alonso and Klink, 1993; White et al.,
1995, 1998a; Hasselmo et al., 2000). In this paper, we
show in some detail how the properties of the particular
slow currents in the stellate cells affect the synchro-
nization behavior of very simple networks with mutual
coupling.

Many studies have explored neuronal synchrony us-
ing “spike time response” (STR) techniques, which ex-
amine network behavior based on how excitatory or
inhibitory inputs advance or delay impending spikes
(e.g., Kopell, 1988; Ermentrout and Kopell, 1991;
Hansel et al., 1995; Ermentrout, 1996; Canavier et al.,
1997; Crook et al., 1998; Ermentrout et al., 2001;
Winfree, 2001). When the inputs are small, spike ad-
vances and delays depend linearly on the size of the
perturbation, implying that effects can be calculated
analytically from the equations describing the intrin-
sic currents and the synapses. This “weak coupling”

assumption allows mathematically elegant, general,
and powerful analysis (e.g. Hansel et al., 1995; Ermen-
trout and Kopell, 1998; Ermentrout et al., 2001; Neltner
and Hansel, 2001), but may give rise to incorrect predic-
tions if the coupling is not adequately small. Even for
non-small coupling, techniques based on perturbation-
induced changes in spike timing can still be used,
with the effects calculated numerically (Jones et al.,
2000). In this case, one can still make powerful state-
ments about network behavior based on studies of in-
dividual cells. In the present study, we use two STR
techniques—one that depends on the weak coupling
assumption and one that does not—to study predicted
synchronization properties in previously developed
models of theta-frequency rhythmicity in SCs (White
et al., 1995, 1998a). We validate results from STR
methods by comparing them with results from two-
cell simulations, and use simple 10-cell simulations to
draw more general conclusions. We find that promi-
nent slow potassium currents support synchronization
through mutual excitation in modeled SCs, as would
be predicted from past studies (Crook et al., 1998;
Ermentrout et al., 2001). The slow, hyperpolarization-
activated cation current Ih, not studied previously in this
context, has similar effects. In models that include slow
conductances, we demonstrate that even very small in-
puts can be “effectively large” (i.e., induced advances
or delays that vary nonlinearly with input strength).
For large inputs and/or large slow conductances, ex-
citatory inputs can delay subsequent spikes for more
than one cycle. In simulations, this phenomenon of cy-
cle skipping tends to promote rapid synchronization.
Noise in membrane potential, a prevalent feature in
MEC cells (White et al., 1998a, 2000), can amplify the
effects of small inputs, increasing the prevalence of cy-
cle skipping and sometimes fundamentally altering the
qualitative phase-locked states in which the network
can exist. In other parameter regimes, noisy simulated
SCs show mostly uncorrelated subthreshold activity,
but occasional spontaneous spikes give rise to corre-
lated subthreshold activity, followed by short bouts of
synchronized spiking. Portions of this work have been
presented in abstract form (Acker et al., 2001).

2. Methods

2.1. Cellular and Network Model

The network formally studied here consists of two
mutually coupled model cells, although we also
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demonstrate that results from these small networks ap-
ply to larger networks. The cellular model is based
on measurements from Layer II stellate cells of the
MEC (White et al., 1995, 1998a; Dickson et al., 2000;
Fransén et al., 2003; equations in Appendix A.1). The
single compartment model has a pair of conductances
in addition to the standard action potential produc-
ing Hodgkin-Huxley sodium and potassium conduc-
tances. The additional pair, which allows the cellular
model to exhibit sub-threshold oscillations, includes a
persistent sodium current INap and either a slow, non-
inactivating potassium current, IKs (Eder et al., 1991),
or a hyperpolarization-activated, mixed cation current
called the h-current or Ih (Dickson et al., 2000). In this
study we perform all simulations twice, once with Ih

and again with IKs. Even though it is possible that a mix-
ture of these currents exists in stellate cells in vivo, the
effects of this possibility are not studied here. The cells
are always biased to oscillate naturally with a period of
120 ms, corresponding to the period of the theta rhythm
in vivo and natural firing frequencies measured in vitro
under current clamp (Alonso and Llinás, 1989; Alonso
and Klink, 1993). The model cells are connected using
model AMPA glutamatergic synapses (Destexhe et al.,
1998; equations in Appendix A.2), which are fast and
excitatory. Note that by symmetry, since the neuron
models are identical, in the two-cell network simula-
tion one can expect both synchrony and anti-synchrony
to be solutions of the network. However, these solutions
may be stable or unstable and more solutions may also
exist.

2.2. Studying Spike Timing in a Pair
of Coupled Cells

Our methods focus on how fast excitatory interaction
affects the difference in spike times between two cou-
pled neurons from one cycle to the next. To do this we
use two methods, which we call the direct spike time re-
sponse (STR) method and the linear STR method. De-
tails of both are given below. As will be clear shortly, by
comparing the predictions of these two methods, one
can expose the nonlinear effects of strongly coupled
neurons. Application of both the linear and direct STR
methods is divided into two steps. We first construct
a spike time response curve (STRC), which describes
how the timing of the next spike in a periodically fir-
ing neuron is affected by a single input. The STRC is
very similar to the phase response curve (Hansel et al.,
1995; Ermentrout et al., 2001; Kopell and Ermentrout,

2001; Winfree, 2001), but is measured in terms of time
instead of phase. The reason for using time instead of
phase is that, when the coupling is strong, inputs can
have a large effect on the period of the coupled cells,
making “phase” ill defined. We then use the STRC to
predict the change in spike timing between two mutu-
ally coupled neurons from one cycle to the next. This
is done by generating the “spike time difference map”
(STDM). Given the predictions of network behavior
from the STDM, two-cell simulations are always per-
formed to verify their accuracy.

Our STR methods differ from similarly named spike
response models (SRMs; Kistler et al., 1997; Gerstner,
2001). See the Discussion for more detail on this issue.

2.2.1. Direct Spike Time Response (STR) Method.
The first step in this method is the direct measure-
ment of a STRC (spike time response curve) on a sin-
gle model neuron; we’ll call the result the STRCdir.
The bias current Iapp is chosen such that the neuron
spikes periodically with a desired natural period. A
single spike time response is obtained by perturbing
the neuron at a certain time in its cycle and measuring
the change in its next spike time. The key to this the di-
rect method is that this perturbation is a model AMPA
synaptic input (Appendix A.2) and is identical to the
input used during network simulations. Keep in mind
that this input need not be weak. A STRCdir is obtained
by varying the perturbation times over the entire cycle,
and plotting spike time advance vs. perturbation time
(see example STRC, Fig. 1A).

Once the STRCdir is computed numerically from a
model cell and a model of the synaptic input, one can
analytically construct a “spike time difference map”
(STDM) for the pair of coupled neurons. This map takes
the difference in spike times,�, between the cells in one
cycle, and computes the difference, �̄, in the next cycle.
The construction of this map from the STRCdir makes
two testable assumptions about the network dynamics.
The first is the cell that starts in the lead stays in the
lead through later cycles. The second assumption is that
the timing of each spike is affected by only the most
recent presynaptic spike (i.e., the cell’s memory does
not extend to previous inputs). While in our simulations
we never see leader switching, the memory condition
requires careful attention. For most of our computations
it holds well, but not for all; we will discuss this issue
and its implications later in the paper (Fig. 10).

The computation of the STDM from the STRCdir

is as follows and is illustrated in panel B of Fig. 1.
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Figure 1. Illustration of STR (spike time response) methods. (A)
STRC (spike time response curve). Spike time advance (ms) vs. time
of input with respect to previous action potential. Natural period
(T) equals 120 ms. (B) Illustration of STDM (spike time difference
map) derivation. Given spike times of cell 1 and 2, t1 and t2, the next
spike times, t̄1 and t̄2, can be predicted using the STRC. (C) F(�)
describes the change in STD (spike time difference), �̄ − �, as a
function of �, the present STD. Zero crossings with negative slope
not less than −2 (open circles) are predicted stable equilibrium STDs.
In this illustration, both synchrony and anti-synchrony, STD = 0 and
60 ms respectively, are predicted to be stable. Unstable equilibria at
42 and 78 ms (plus symbols) demarcate basins of attraction for the
two stable states.

For simplicity we label the STRCdir as P , which is a
function of the difference in time between the input
and the most recent spike of the postsynaptic cell. Let
t1 and t2 be the spike times of cell 1 and 2 during some
cycle. We choose the labels of cells 1 and 2 such that
cell 1 is leading cell 2. Denote by t̄1 and t̄2 the spike
times in the next cycle. Then,

t̄1 = t1 + T − P(t2 − t1)

That is, the time of firing of cell 1 is the previous
time, plus its unperturbed period T , minus the amount

of time the next spike is advanced. Similarly,

t̄2 = t2 + T − P(t̄1 − t2).

Using � = t2 − t1 and �̄ = t̄2 − t̄1, we get that

�̄ = � − P(T − � − P(�)) + P(�)
(1)

= � + Fdir(�)

where

Fdir(�) = P(�) − P(T − � − P(�)) (2)

Equation (1) gives the STDM. Fdir(�) (see example,
Fig. 1C) is the amount by which the time difference
between the cells changes from cycle to cycle.

From Eq. (1), one can determine equilibrium solu-
tions �0, which describe the time difference between
the cells at steady state. We see that �0 is a solu-
tion if Fdir(�0) = 0. Requirements for stability of the
steady state solution �0 are easily computed in terms of
Fdir(�) using theory of one-dimensional maps, which
gives us

−2 <
d

d�
Fdir(�)

∣
∣
∣
∣
�0

< 0.

Stable solutions are those for which Fdir(�) crosses
zero with a slope between −2 and 0 (open circles,
Fig. 1C). The “optimal” slope near a zero-crossing is
−1, for which the system will converge to equilibrium
in one cycle. In general, the closer the slope is to the
value −1, the faster the system will converge. Zero
crossings with slope outside the interval (−2, 0) indi-
cate the unstable solutions (plus symbols, Fig. 1C) and
define boundaries of basins of attraction for the stable
states (if there is more than one).

It should be mentioned that in the case of unidirec-
tional coupling, Fdir(�) is equivalent to the STRCdir.
Therefore, when one cell is driving another at the same
firing rate, the zeros and slopes through zero of the
STRCdir provide the predictions of network equilib-
rium behavior.

2.2.2. Linear STR Method. The linear STR method
relies on an additional crucial assumption. Delays (or
advances) are assumed to be linearly related to size of
synaptic input. This assumption is typically accurate
only if the actual size of the input is “small” (exactly
how small depends on the model cell), so the notion
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of weak coupling is therefore tied to linearity. We use
the linear method to determine the true weak coupling
behavior and compare that to the behavior predicted by
the direct method. Because the methods agree exactly
in the limit of weak coupling, any observed difference
between results is an effect of strong coupling.

Unlike the directly calculated STRCdir, the lin-
earized STRC, which we’ll call the STRClin, is com-
puted in two steps. In the first step, a collection of re-
sponse curves is obtained using extremely brief (1.0µs)
pulses of current that can be thought of as approxima-
tions to the scaled Dirac δ function. The curves, each
called a STRCδ , are obtained using pulses of differ-
ent amplitude. Pulse amplitude is used to control the
amount of charge (area under pulse) delivered by the in-
put. For small (area) inputs, the STRCδ simply scales
with (is linearly related to) charge delivered. An inf-
STRC (“infinitesimal” STRC) can be computed for the
neuron in this weak perturbation regime (Hansel et al.,
1995). The following limit is evaluated numerically
where Chrg equals the area under the current pulse
and � is time of input relative to the previous spike
time:

infSTRC(�) = lim
Chrg→0

STRCδ(�, Chrg)

Chrg
(3)

This method provides very similar results to the ana-
lytical phase response method mentioned in the Intro-
duction. In particular, the infSTRC (Eq. (3)) differs by
only by a scaling factor (usually between 1 and 2) from
the adjoint computed by XPPAUT (Ermentrout, 2002).

In the second step, infSTRC is then used to ana-
lytically obtain a STRClin that predicts the neuron’s
response to synaptic inputs. This is done by convolv-
ing the infSTRC with the PSC (postsynaptic current)
that would be elicited by a presynaptic action poten-
tial (Hansel et al., 1995). The central idea is that a
weak perturbation distributed in time, such as a synap-
tic potential, can be thought of as a sequential series of
essentially instantaneous perturbations weighted prop-
erly. The effect on the oscillator’s spike time due to
the synaptic potential equals the weighted sum of the
effects due to each of the instantaneous perturbations.
Notice that scaling the coupling strength, which scales
the PSCs, simply scales the STRClin. Therefore, a re-
sponse to a strong synaptic input is predicted to be the
scaled response to a weaker input.

Once the STRClin is computed via the convolution
integral, Flin(�) is obtained using a simplified version

of Eq. (2). This simplification is made to maintain
linearity such that scaling the synaptic input, scales
Flin(�) along with the STRClin. By expanding the sec-
ond term in (2) using a Taylor series for small amplitude
P(�), where P(�) is the STRClin, we find

Flin(�) = P(�) − P(T − �) + E(�) (4)

where

E(�) ≈ P(�) · P ′(T − �). (5)

E(�) is the error in this approximation, which we
ignore.

2.3. Comparison of Predicted and Simulated
Network Behavior

As described above F(�) (from either the direct or lin-
ear STR method) gives the predicted dynamics of the
two cell network based solely on the STRC from the
individual neuron. To confirm the predictions of F(�),
we compare them with the behavior of the simulated
two-cell network. Details of the two-cell network sim-
ulations are given in the next section. There are two
ways one could make this comparison. First, one could
iterate the STDM (Eq. (1)), predict the spike times of
the two cells, plot raster plots of these times, and com-
pare to the spike times found in the two-cell simula-
tion. Rather than this method, we choose the following,
which avoids displaying raster plots. From a two-cell
simulation, we simply measure the STD (spike time dif-
ference, �, Fig. 1B) on each cycle. Then, the change in
STD, �̄−�, can be plotted vs. � for each cycle. Sim-
ulations with different initial STDs are used to form
a complete curve that can be plotted along with F(�)
(open circles, Figs. 2–5). Specifying initial STDs for
the cells of the network is done using a detailed record-
ing of the state variable waveforms over one full period
starting from the beginning of a spike. One cell is al-
ways started at time zero at the beginning of a spike.
The periodic waveforms for all states are then evalu-
ated at the desired initial STDs to determine the initial
conditions of the remaining cells. The same method
is used for stochastic simulations except that the state
variable corresponding to persistent sodium activation
is rounded off so that it represents an integer number
of open sodium channels (Appendix A.3).
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2.4. Numerical Methods and Simulation Software

Simulation software was written in MATLAB (The
MathWorks, Inc.) and C using MATLAB’s applica-
tion program interface (API). Numerical integration
was performed in C using a standard adaptive step size
Runge-Kutta algorithm (Press et al., 1992), adapted for
the MATLAB API, with a relative tolerance of 10−6.
The model equations are specified in a separate .c file
making it relatively easy to change to a new model and
quickly apply the STR methods or run network simula-
tions. Model parameters can be controlled in MATLAB
so one can apply the STR methods as a parameter is
varied such as we do in this study. For both STRC com-
putation and network simulations, it was necessary to
include a threshold crossing detection algorithm be-
cause the model AMPA synapse (Appendix A.2) uses
a threshold on the presynaptic voltage. A routine based
on the secant method of root finding was used (Press
et al., 1992) to detect crossing times to within 10−4 ms.
In several cases, 10-cell simulations with all-to-all cou-
pling (no autapses) were performed along with the two-
cell simulations. For these larger simulations, an effi-
cient algorithm (Lytton, 1996) was used that takes full
advantage of the simplified synaptic model in order to
achieve short simulation times. The maximal synap-
tic conductance was scaled by N − 1, where N is the
number of cells in the network. Software implementing
the linear and direct STR method as well as software
for simulation of the two-cell network is available at
http://bme.bu.edu/ndl/acker.html with documentation.
The programs require MATLAB. XPPAUT, the differ-
ential equation utility program (www.pitt.edu/∼phase,
Ermentrout, 2002), was used to test the accuracy of
our simulations, and to find values of Iapp required to
maintain 120 ms period for uncoupled cells.

2.5. Measuring Limit Cycle Attractiveness

An idea we use later is that of a limit cycle’s attractive-
ness, or how stable it is. Here we describe the mea-
sure of limit cycle attractiveness we use, which we
label “A”. To calculate A, we first use AUTO under
XPPAUT to output Floquet multipliers for limit cy-
cles using the command “File/All Info”. Behavior of
Floquet multipliers and their relation to limit cycle sta-
bility and bifurcations is covered in many texts (for ex-
ample Guckenheimer and Holmes, 1983; Section 11.7,
Alligood et al., 1997). For a stable limit cycle, all mul-
tipliers lie within the unit circle (they may be complex)

except one trivial multiplier that is exactly equal to one.
The worst-case multiplier is that which is closest to one
in absolute value (not counting the trivial one) and we
label that �. A is obtained by converting the multiplier
� to a Floquet exponent, σ = − ln(�)/T , and taking
the real part, A = real(σ ).

3. Results

3.1. Effects of Coupling Strength

In this section, we show how linear methods of esti-
mating spike time differences begin to fail as coupling
strength is increased. With strong coupling, we show
that there is another mechanism for synchronization,
which we call “cycle skipping”. In cycle skipping, start-
ing the two cells near anti-phase leads to suppression
of a spike in one of them, such that a sub-threshold
oscillation is displayed instead. When the suppressed
cell spikes again during the following cycle, its spike
time is much closer to that of the non-suppressed cell.
The change in network dynamics is substantial and,
in some cases, eliminates a stable anti-synchronous
state. Cycle skipping can be detected by direct methods,
but not linear methods, of calculating the STRC and
F(�).

3.1.1. Dynamics in the Model with Ih. We start by
illustrating this with the model using Ih. Figure 2A
demonstrates the effects of coupling strength on STRCs
and F(�). The cells are biased so that they spike nat-
urally with a period of 120 ms. In the first row, the
maximal synaptic conductance is 0.0006 mS/cm2. As
indicated by the STRCs, the maximal advance induced
by this input is approximately 1.7 ms. The directly mea-
sured STRC (STRCdir) and linearized STRC (STRClin)
are very similar (closely overlapped), confirming that
coupling is weak, according to our operational defini-
tion. As expected from the STRCs, Fdir(�) and Flin(�)
in Fig. 2A (right side) are very similar. They predict
stable synchrony and unstable anti-synchrony. These
predictions are confirmed by results from two-cell sim-
ulations (open circles, which represent trajectories of
intercellular timing differences for a number of simu-
lations begun with different initial conditions).

After increasing the maximal synaptic conductance
by a factor of 10 (gsyn = 0.006; Fig. 2A, 2nd row), we
begin to observe the effects of strong coupling, as re-
flected in the fact that the solid and dashed lines no
longer match. The negative peak of STRCdir (solid
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Figure 2. The effects of strong coupling; model includes Ih. (A) gsyn, the maximal synaptic conductance or coupling strength (mS/cm2) is
varied among three values as shown on the left. Vertical scale is greatly contracted in the first row to make weak interactions clearly visible.
STRCs (spike time advance vs. input time) and F(�)s (�̄ − � vs. �) are shown using both the linearized (dashed lines) and direct method
(solid lines). Units are ms. Any difference between these methods indicates an effect of strong coupling. Open circles (right column) are sampled
data from two-cell simulations used to verify F(�). Discontinuities in the STRCdir and Fdir(�) indicate cycle skipping, see text. Parameters are
given in Appendix A.1 for Ih. (B) Cycle skipping appears while measuring the spike time response to a mid-cycle input. Spikes clipped to show
sub-threshold behavior. Two simulations are started from identical initial conditions; in one the cell is left unperturbed (thin gray waveform),
while in the other (thick black), an EPSC is applied at the time indicated by the arrow (55 ms). The subsequent spike time in the perturbed
waveform is much later than the unperturbed spike and occurs after a sub-threshold oscillation is performed (very small amplitude in this case).
Parameters as in row 3 of Fig. 2A. (C) Two cell network simulation with the cells initially 55 ms out of phase. Cycle skipping is seen and the
cells are pushed near synchrony in one cycle.

line) is sharper and slightly larger than its linearized
counterpart (dashed line). This implies that inputs ar-
riving near mid-cycle can delay the cell slightly more
than predicted by scaling its response to weaker inputs.
Also, the positive peak falls with a smaller slope. Non-
linearity limits the amount by which the cell can be
advanced by inputs arriving just before it was about to
spike. The linear method does not sense this natural
limit and sometimes predicts anti-causal responses (in
response to an input, the cell is advanced such that it
spikes before the input).

These two changes in STRCdir shape with gsyn =
0.006 warp Fdir(�) and therefore change the predicted
network dynamics, as seen in the right column of
Fig. 2A. These changes can be broken up into two cat-
egories: zero crossing locations (and associated slope)
that predict locations of stable equilibria, and the shape

and amplitude of the curve that predict the evolution,
i.e. dynamics, of spike time differences. Fdir(�) and
Flin(�) agree closely on locations of zero crossings,
implying that there are no predicted changes in equilib-
rium behavior due to strong coupling in this case. There
are, however, large differences in predicted dynam-
ics. The slope of Fdir(�) near anti-synchrony is much
greater than the linearized version. This result implies
that if the network is started near anti-synchrony (unsta-
ble), it will move away much more rapidly than the lin-
ear method predicts. Intercellular time-difference tra-
jectories from 2-cell simulations (open circles) agree
closely with predictions from the direct method. The
prediction of stable synchrony for gsyn = 0.006 was
verified in 2-cell and 10-cell simulations (data not
shown), which showed stable intercellular timing dif-
ferences of less than 10 µs.
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When the maximal synaptic conductance increases
to 0.013 mS/cm2 (Fig. 2A, row 3), the negative peak
of the STRCdir “snaps”, leaving a gap near 60 ms. This
gap is caused by a phenomenon we call “cycle skip-
ping” that is immediately apparent when measuring the
spike time response to a mid-cycle input (Fig. 2B). In
response to the excitatory perturbation near mid-cycle
(arrow, 55 ms), the cell “skips a cycle”: rather than
spiking, it performs a sub-threshold oscillation (very
small amplitude in the Ih model), greatly delaying the
next spike.

The gap in Fdir(�) is due to the gap in the STRCdir.
As a result, Fdir(�) makes the following predictions.
If the network is started “in the gap”, for example if
� is initially near 55 ms, cycle skipping is expected,
with no prediction of the subsequent dynamics. Other-
wise, the network is expected to synchronize without
cycle skipping with dynamics given by Fdir(�). The
network is not expected to move back into the gap be-
cause Fdir(�) is positive to the right and negative to the
left of the gap. If � is initially greater than 58 ms, it
will grow until the cells synchronize. Likewise, if � is
initially less than 54 ms, it will shrink on subsequent
cycles until the cells synchronize.

Two-cell simulations confirm the above predictions
and, in addition, allow us to observe the dynamics fol-
lowing cycle skipping (Fig. 2C). When the network
is given an initial � of 55 ms, cycle skipping takes
place as expected and a cell “skips a beat”. Typically,
when the cell resumes firing it is much closer to be-
ing in phase with the other cell (Fig. 2C). When away
from anti-synchrony, cycle skipping does not take place
and the cells synchronize. Synchrony is therefore the
only stable equilibrium state as predicted by the STDM
and no persistent behavior including cycle skipping is
observed.

3.1.2. Dynamics in the Model with IKs. Similar re-
sults are obtained when the model includes IKs instead
of Ih. In this case, the appearance of cycle skipping not
only changes network dynamics, it also eliminates one
of the stable equilibrium states.

In Fig. 3A, with gsyn = 0.001, Fdir(�) and Flin(�)
have an extra pair of maxima and minima compared
with the Ih case and both synchrony and anti-synchrony
are predicted to be stable. When the coupling strength is
increased by a factor of 10 (gsyn = 0.01), we see some-
thing very similar to the Ih case. The negative peak of
the STRCdir is enlarged, which causes some warping of
Fdir(�) (solid line). In particular, the slope of Fdir(�)

as it crosses at anti-synchrony is closer to −1, the op-
timal value for rapid convergence (see Methods). This
predicts that if the network starts within the basin of
attraction for anti-synchrony, it will anti-synchronize
significantly faster than predicted by the linear
method.

Notice also for gsyn = 0.01 (Fig. 3A, row 2), Fdir(�)
does not cross zero at exactly 60 ms, as does Flin(�).
Instead, the zero occurs at approximately 63 ms. Due
to the network’s symmetry, this implies that when the
cells are locked in anti-synchrony, their period is ap-
proximately 126 ms, not 120 ms, their uncoupled pe-
riod. This result agrees well with the STRCdir, which
shows that the neurons delay each other by approxi-
mately 6 ms on every cycle when in anti-synchrony.
Even though a reduced network frequency is not pre-
dicted by Flin(�), the STRClin predicts that the cells
delay each other by approximately 4 ms on every cycle
and this corresponds to a coupled period of 124 ms.

When gsyn is sufficiently large to cause cycle skip-
ping (gsyn = 0.015), we see effects very similar to the
Ih case. Cycle skipping appears when measuring the
spike time response to a mid-cycle input (Fig. 3B)
and is the cause of the gap shown in the STRCdir and
Fdir(�). Two-cell network simulations (Fig. 3C) re-
veal cycle-skipping dynamics similar to that with Ih.
Cycle-skipping tends to push the network away from
anti-synchrony and allows the network to quickly syn-
chronize. The stable anti-synchronous solution that is
seen if the coupling is sufficiently weak is therefore lost
due to cycle-skipping. Previously, albeit under some-
what different circumstances, anti-synchrony has been
shown to disappear in the presence of strong coupling
(Chow and Kopell, 2000; Kopell et al., 2000).

As in the Ih case, additional simulations were per-
formed to confirm predicted equilibria behavior (raw
data not shown; intercellular time-difference trajec-
tories shown as open circles in the right column of
Fig. 3A). In two-cell simulations anti-synchronization
was typically very rapid for initial conditions within the
basin of attraction of anti-synchrony. Also, the cells
synchronized to within 10 µs after 25 s from an ini-
tial STD of 5 ms. There is one interesting effect in
Fig. 3A not observed previously with Ih. Intercellular
time-difference trajectories from two-cell simulations
(open circles) do not match the shape of Fdir(�). This
discrepancy is due the fact that this cellular model has
extended memory: in violation of the assumptions of
both direct and linear STR methods, spike timing is
determined not only by the most recent input, but also



Synchronization of Strongly Coupled Excitatory Neurons 79

−0.5

 0.0

 0.5

 1.0

 1.5
STRCg

syn

0.001

−1.5
−1.0
−0.5
 0.0
 0.5
 1.0
 1.5

F

−10
 −5
  0
  5

 10
 15

0.01

−15
−10
 −5
  0
  5

 10
 15

  0  20  40  60  80 100 120

−10
 −5
  0
  5

 10
 15

time [ms]

0.015

  0  20  40  60  80 100 120
−15
−10
 −5
  0
  5

 10
 15

∆ [ms]

  0  50 100 150 200 250 300

−65

−55

−45

time [ms]

V
m

 [m
V

]

−50   0  50 100 150 200 250 300

−65

−55

−45

time [ms]

V
m

 [m
V

]

A 

B C 

Figure 3. The effects of strong coupling; model includes IKs. Same format as Fig. 2. (A) Increasing values of gsyn are shown on the left. STRCs
(spike time advance vs. input time) and F(�)(�̄ − � vs. �) are shown using both the linearized (dashed lines) and direct method (solid lines).
Units are ms. Open circles plotted along with F(�) are sampled data from two-cell simulations. All parameters are in Appendix A.1 for IKs.
(B) Cycle skipping appears during direct STRC measurement. (C) Two cell network simulation with the cells initially out of phase. Cycle
skipping is seen and the cells are pushed near synchrony in one cycle.

by inputs that arrived in previous cycles. This issue is
examined further in the Discussion and Fig. 10.

Ten-cell simulations are especially interesting in this
case given that the two-cell network is bistable. In gen-
eral these simulations (data not shown) formed two
clusters of cells. Cells within each cluster were closely
synchronized and the two clusters of cells fired out of
phase with one another. Depending on initial conditions
it was possible to create clusters that contained unequal
numbers of cells, in which case the two clusters would
not fire in exact anti-synchrony. Also, if similar initial
conditions were used for all cells, the network would
closely synchronize.

3.2. Changes in Intrinsic Parameters Turn “Weak”
Coupling to “Effectively Strong” Coupling
and Change Synchronization Properties

Functionally, “weak” coupling means that there is
almost no difference between the linear and direct

methods. In this section, we show that this notion of
weak coupling depends on intrinsic as well as cou-
pling conductances: if the level of Ih or IKs is changed,
it can change the value of the coupling conductance
gsyn at which ”strong” coupling effects are produced,
obtaining them even at very low levels of gsyn. Even
when there is little difference between the direct and
linear method, intrinsic conductances can change the
ability to synchronize. This is mirrored in the shape of
the STRCs. When the STRC is strictly positive (akin to
the “type I” PRC of Hansel et al., 1995), it is not possi-
ble to delay the cell with an excitatory input. Cellular
models with these properties cannot perfectly synchro-
nize by physiologically realistic mutual excitation (Van
Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout,
1996). By contrast, if the STRC has an initial portion
that is negative (akin to the “type II” PRC of Hansel
et al., 1995), cells can be either delayed or advanced
by excitation, depending on the timing of the input
(Figs. 1–3 display type II STRCs). We will show that
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Figure 4. Effects of varying gKs on network behavior. Five values of gKs (mS/cm2), the maximal conductance of IKs, are shown to the left of
the figure. STRCs (spike time advance vs. input time) and F(�)(�̄ − � vs. �) are shown using both the linearized (dashed lines) and direct
method (solid lines). Units are ms. Open circles are data from two-cell simulations. gsyn = 0.01 mS/cm2. Iapp is adjusted to maintain a natural
period of 120 ms; values for increasing gKs are: −1.197, 0.191, 1.791, 2.841, and 3.37 µA/cm2.

changing the level of gKs or gh can change the STRCs
from type I to type II, which changes the synchroniza-
tion properties of the network.

3.2.1. Effects of Changing gKs. We start by illustrat-
ing this with the model using IKs. Figure 4 demonstrates
the effects of increasing gKs, the maximal conductance
of IKs, on STRCs and F(�). As gKs is varied, so too
is Iapp, the bias current, in order to maintain a natu-
ral period of 120 ms. Gsyn, the coupling strength, is
maintained at 0.01 mS/cm2.

3.2.1.1. Increasing gKs Changes Neurons from Type I to
Type II and Creates Bistability. Restricting our atten-
tion to the predictions from the linearized STR method
(dashed lines), we observe the changes due to increas-
ing gKs (Fig. 4). With gKs = 0, so that no slow cur-
rent exists in the model, the STRClin is strictly positive
(type I). From Flin(�), we see that synchrony is pre-
dicted to be unstable, with a stable time lag of 19 ms.
When gKs = 1.0, there is a tiny negative portion early
in the STRClin. This change in STRClin from type I to
type II pushes the stable equilibrium point of Flin(�) to

� = 0 ms, indicating synchronous phase-locking. As
gKs is increased from 1.0 to 2.0 mS/cm2, the negative
peak of the STRClin grows in amplitude and shifts to
the right (later times in the cycle). Flin(�) continues to
predict that the cells can synchronize using excitation.
For gKs > 2.0, the linear STR method predicts bista-
bility: Flin(�) crosses zero with negative slope at 60 ms
(anti-synchrony) and 0 ms (synchrony).

3.2.1.2. High gKs Causes Cycle Skipping and Effec-
tively Strong Coupling. For gKs ≤ 2 mS/cm2, predic-
tions from linear and direct methods are quite similar.
However, when gKs = 2.5 (identical to row 2, Fig. 3)
strong coupling effects are very evident. We may say
that for this value of gKs, the value of gsyn used in this
figure (0.01) is “effectively strong”. When gKs is fur-
ther increased to 2.7, it seems that the coupling strength
is effectively even stronger; the STRCdir continues to
change shape and cycle skipping is observed. These
effects are very similar to those in the last row of
Fig. 3A where the synaptic conductance was increased
by a factor of 1.5. This apparent increase in coupling
strength for large gKs is due, we suspect, to reduced
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(to maintain a natural period of 120 ms) for increasing gh are: 1.288, 0.618, −1.071, −2.23, and −3.296 µA/cm2.

attractiveness or stability of the spiking limit cycle. It
is possible to measure the attractiveness of a limit cycle
(see part E, Methods) and we apply this measure for
increasing gKs in Fig. 9. A discussion of these results
is found in part A, Discussion.

3.2.2. Effects of Changing gh. Similar results are
obtained when the model includes Ih (Fig. 5). Syn-
chronization properties change as gh is varied. Gsyn,
the maximal synaptic conductance is maintained at
0.006 mS/cm2.

3.2.2.1. Increasing gh Changes Neurons from Type I to
Type II. Restricting attention to the dashed lines (from
the linear method), the following “weak coupling” be-
havior is observed in Fig. 5. With gh = 0.0, the STRClin

is type I and has a very large amplitude. Flin(�) pre-
dicts that a time difference of 22 ms exists between
the cells at steady state and that synchrony is unstable.
Flin(�) has a small amplitude compared to the STRClin

because the STRClin is nearly symmetric about 60 ms.
Consequently, on every cycle the cells advance each

other by approximately the same amount, and hence
the difference between them changes very little from
cycle to cycle. With gh = 0.3, the STRClin changes
from type I to type II, and Flin(�) predicts stable syn-
chrony. In the last three rows, the negative peak of the
STRClin grows and moves to the right while Flin(�)
maintains its prediction of stable synchrony and unsta-
ble anti-synchrony.

The weakly coupled network does not exhibit bista-
bility as it does with IKs in the model. This is because
the negative peak of the STRClin does not shift suffi-
ciently to the right, as it did with large gKs (see Discus-
sion for further explanation and proof in Appendix B).
It is important to note that the precise location of this
negative peak is sensitive to details of Ih such as tim-
ing and location of its halfway activation point (data
not shown). The halfway activation voltage of Ih in
particular is known to be subject to modulation (Pape,
1996) and this behavior may easily change.

3.2.2.2. Strong Coupling Effects Appear for Different
Ranges of gh and High gh Causes Cycle Skipping. In
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contrast to the case of IKs, strong coupling effects are
seen for large and small values of Ih. In row 1 of Fig. 5,
the direct STRC has large amplitude and differs sig-
nificantly from the linearized one. The large amplitude
of the STRCdir causes the shift of the unstable equilib-
rium point near anti-synchrony in Fdir(�) from 60 to
45 ms. This leftward shift indicates that the period of
the cells decreases when near anti-synchrony to 90 ms
(instead of 120 ms). This result agrees well with the
STRCdir, which indicates that cells advance each other
by approximately 30 ms on any cycle in which they are
out of phase. For larger values of gh (rows 2–4), strong
coupling effects are still evident. In these cases, strong
coupling effects have more dramatic consequences for
spike time difference dynamics, discernable from the
shape of Fdir(�), than for predicted equilibrium time
differences, which depend only on behavior of Fdir(�)
near its zero-crossings.

When gh = 1.5, parameters are identical to row 2
of Fig. 2, and strong coupling effects are noticeable.
When gh is increased to 2.0 (row 5, Fig. 5), dramatic
strong coupling effects including cycle skipping appear
as they do when the synaptic conductance is signifi-
cantly increased (row 3, Fig. 2). It appears that this in-
crease in gh causes an increase in the effective strength
of coupling in a similar manner as observed previously
with large gKs. The appearance of cycle skipping in
this case has a similar effect on network dynamics: the
neurons are pushed away from anti-synchrony and then
synchronize quickly. For all values of gh, Fdir(�) (solid
lines) and results from simulations (open circles) are
in close agreement.

3.3. How Slow Conductances Can Cause Delays in
Response to Excitatory Inputs (Type II STRCs)

The first rows in Figs. 4 and 5 show that the model stel-
late cell with no slow current displays a type I STRC,
i.e., in response to excitatory input the cell can only
be advanced. The rest of Figs. 4 and 5 show that this
is not true when there is a slow current that is suffi-
ciently large. Similar results have been reported before
(Crook et al., 1998; Ermentrout et al., 2001). In Fig. 6
we explore how the properties of IKs or Ih, can lead to
a type II STRC in which delays are possible that allow
the neurons to synchronize via mutual excitation.

In Fig. 6A, mKs, the activation variable underlying
IKs, is shown in response to an early and a late excitatory
input. Any excitatory input tends to activate IKs, which
in turn tends to hyperpolarize the cell. Early inputs
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Figure 6. A slow current can cause delays in response to excita-
tory inputs (“type II” STRC). A, top: Response of mKs (activation of
slow potassium current) to an early (solid gray), and late (solid black)
excitatory input. Arrows indicate input times, arrow color matches
corresponding trace. Black dashed trace shows unperturbed mKs tra-
jectory. Bottom shows resulting spike timing. Parameters are as in
row 4 of Fig. 4. B: Response of mh (activation of h-current equals
0.65 mhf + 0.35 mhs), arrows and line types have same meaning as
in panel A. Parameters are as in row 4 of Fig. 5.

allow the slow current to activate before the fast sodium
channels are recruited and cause the neuron to spike. In
this case, the hyperpolarization is sufficient to delay the
cell (Fig. 6A, solid gray). In contrast, when inputs arrive
late in the cycle, the slow current does not have time
to activate before the fast sodium current takes over
and the cell spikes before reaching its natural period
(Fig. 6A, solid black). Figure 6B demonstrates the same
experiment with mh, the activation of Ih. In general, mh

behaves the same as mKs except that mh inactivates in
response to excitatory inputs. However, since Ih is an
inward current, this also tends to hyperpolarize the neu-
ron. Qualitatively, the results are the same: early inputs
delay the next spike, whereas late inputs advance it.

3.4. Intrinsic Noise Can Promote
Synchronous Spiking

The previous results describe the behavior of a net-
work of deterministically modeled MEC stellate cells.
In reality, however, these cells are intrinsically noisy
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(White et al., 1998a, 2000). Intrinsic noise has signifi-
cant effects on experimentally measured STRCs (pre-
liminary data, not shown). In this section we implement
a stochastic model of the MEC stellate cell (White et al.,
1998a, 2000) and compare network behavior to that ob-
tained previously. Often, the behavior is simply a noisy
version of that seen previously and obeys the predic-
tions made by the deterministic STR results. However,
for the model MEC neuron (including IKs) there are
two exceptions in which fundamentally different be-
havior is seen. (1) Cycle skipping-based synchrony
(as in Figs. 2C and 3C) occurs for smaller inputs in
intrinsically noisy models than in noise-free models.
(2) Under conditions of low current drive to noisy
model cells or cells in vitro (Alonso and Klink, 1993),
cellular behavior is dominated by sub-threshold oscilla-
tions and action potentials are generated only sparsely.
In this case sub-threshold oscillations control spike
timing in a powerful way that promotes “sparse syn-
chronous firing”.

3.4.1. Small Inputs Induce Cycle Skipping-Based
Synchrony in Noisy Models. Figure 7 demonstrates
the consequence of increased input sensitivity due to
intrinsic noise. As in the second row of Fig. 3A, the net-
work is bistable: along with synchrony, anti-synchrony
is also stable with a wide basin of attraction. This equi-
librium behavior is reproduced in Fig. 7A (dashed line).
This deterministic behavior is clearly different than
the equilibrium behavior observed from the stochas-
tic simulations (solid line, Fig. 7A). The stochastic
network displays noisy equilibrium behavior around
synchrony only, not around anti-synchrony. Thus the
addition of noise has allowed the network to avoid the
anti-synchronous state. Figure 7B shows how this is
possible. When the deterministic network (top panel,
Fig. 7B) is started at anti-synchrony, it remains that
way for the duration of the simulation and is there-
fore locked in anti-synchrony. In contrast, when the
stochastic network (bottom panel, Fig. 7B) is started
from anti-synchrony, cycle skipping eventually appears
and pushes the network close enough to synchrony to
allow the network to synchronize. Once synchronized,
it remains so.

3.4.2. Sparse Synchronous Firing. Intrinsic noise
can also cause “sparse synchronous firing” (Fig. 8). In
this case the two cells predominantly display noisy sub-
threshold oscillations. Initially, these oscillations are
out of phase. The early “rogue” spike (t = 1400 ms)
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Figure 8. Synchrony among sparse action potentials in simula-
tions including intrinsic noise. Sub-threshold oscillations control
spike timing and encourage in-phase spiking. Parameters are in
Appendix A.1 for IKs except Iapp = 2.39 µA/cm2, gsyn = 0.01.

in the gray trace fails to elicit a spike in the black, but
it does appear to reset the phase of subthreshold os-
cillations in the black trace, meaning that subsequent
noisy oscillations are roughly in phase. Even though
the oscillations are quite noisy and not communicated
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by the synapses, they sometimes remain in phase for
a significant period of time. When the second spike is
fired (black trace, t = 2100 ms) the postsynaptic cell is
significantly depolarized due to the sub-threshold os-
cillation. A nearly in-phase spike is elicited in the gray
trace, initiating a cluster of nearly synchronous activ-
ity. The cluster is maintained for two additional cycles
by a mixture of these cells’ intrinsic tendency to gener-
ate spike clusters (Alonso and Klink, 1993; White and
Haas, 2001) and the properly phased input each cell re-
ceives from its neighbor. Eventually, the spikes fail and
noise begins to desynchronize the sub-threshold oscil-
lations. Even if the next random spike fails to elicit
a spike, it tends to resynchronize the ensuing oscilla-
tions. In this way, sub-threshold oscillations can control
spike timing such that clusters of nearly synchronous
spike pairs can appear from the noisy background
oscillations.

4. Discussion

The behavior of a network of cells is determined by
the properties of the participant cells. We find cou-
pling strength, intrinsic voltage-dependent conduc-
tances, and the presence of noise all to be important
factors in determining the network’s behavior. The di-
rect method of estimating spike time response curves
(STRCs) and spike time difference maps (STDMs)
helps to summarize the cellular properties that are im-
portant for network function. Any parameter that sig-
nificantly changes the shape of the STDM or F(�) also
significantly changes the network’s behavior. Predic-
tions from direct STDMs are extremely accurate for
most cases, in which only the most recent synaptic
perturbation has measurable effects on spike timing.
Even for cases in which this assumption of “mem-
orylessness” is not met (e.g., Fig. 3; see also below
and Fig. 10), results are qualitatively predictive. Re-
sults from STR methods and two-cell simulations pre-
dict the behavior of larger networks with all-to-all cou-
pling accurately. Synchronization in two-cell networks
leads to identical behavior in ten-cell networks. Bista-
bility in two-cell networks leads to two “clusters” (fir-
ing synchronously within a cluster and roughly anti-
synchronously between clusters) in larger networks.
The proportion of cells within a given cluster depends
on initial conditions.

Our spike time response (STR) methods are very
similar to previously developed phase response meth-
ods (Hansel et al., 1995; Ermentrout et al., 2001; Kopell

and Ermentrout, 2001; Winfree, 2001). However, our
direct method avoids the assumption of weak coupling
or linearity often made when generating phase response
curves (PRCs). This difference allows us to study sys-
tems with strong coupling and detect nonlinear effects
such as cycle skipping. This gain does not come with-
out a cost: without linear effects of input magnitude
on spike timing, one loses all the advantages of lin-
ear systems. For the experimentalist, these advantages
may be important because they make it possible to
predict the STRC for any input given the measure-
ment of a single response curve. Without linearity, it
is not possible to predict the exact change in the re-
sponse curve when the form or size of the input is
changed.

Although the direct STR method does require nu-
merical computation of STRCs, it provides consider-
able insight that is difficult to obtain by only running
simulations of the network. For a given set of model
parameters, the STR method gives one a map of global
network behavior including existence of bistability, do-
mains of attraction, and rates of attraction. Perhaps
most importantly, the STR method allows one to easily
study the effects of particular membrane conductances
on global network behavior.

As mentioned in Methods, STR methods are sim-
ilar in name to the spike response models (SRMs;
Kistler et al., 1997; Gerstner, 2001). In SRMs, one
builds kernel-based representations of behavior be-
tween spikes, and finds a best-fit threshold value. In
practice, only the linear kernel is typically estimated
(estimation of higher-order kernels is much more de-
manding), and the threshold is set to an approximate
constant value. Once determined, the SRM can be
used to predict the cellular response to an arbitrary,
continuous-time input. In our STR methods, one builds
functional descriptions of how a periodically-spiking
neuron responds to perturbations that occur only once
per cycle. For this reason, the STR method outlined
here is appropriate only for studying neuronal popula-
tions that are entrained at a given firing frequency. By
operating under these constrained conditions, the STR
method accounts for nonlinear behavior much more
easily than do SRM methods. STR analysis could be
extended to account for more complex stimulus pat-
terns (e.g., two perturbations per cycle), but at the cost
of needing much more data to perform the analysis: the
number of data points needed would be expected to be
proportional to the square of the number of perturba-
tions per cycle.
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4.1. Effects of Coupling Strength, Intrinsic
Conductances, and Noise

Linear methods of spike time response analysis are
predicated on the assumption that perturbation-induced
spike time advances and delays are a linear function
of the magnitude of the perturbation. Not surprisingly,
this assumption breaks down for large enough synap-
tic conductance perturbations. Here, we see signifi-
cant breakdown of the assumption of linearity with in-
puts less than 0.01 mS/cm2 (with gKs = 2.5 mS/cm2).
During active exploration and information acquisition,
neuronal activity driving stellate cells is likely to be
highly coherent (Chrobak et al., 2000), implying that
the synaptic “perturbations” received by MEC cells in
vivo are large enough to induce considerable nonlin-
ear effects in spike timing, and may be large enough to
induce cycle skipping, as seen in Figs. 2C and 3C.

We see two principal effects of increasing magni-
tudes of the slow conductances gKs or gh. First, increas-
ing either slow conductance from zero to moderate val-
ues changes the STRC from “type I” (always advanced
by depolarizing stimuli) to “type II” (delayed for some
depolarizing inputs). Correspondingly, F(�) changes
to support synchrony via mutual excitation. Second,
further increases in gKs or gh induce “effectively large
coupling,” in which even a small synaptic perturbation
induces nonlinear effects in spike timing, including cy-
cle skipping. The first of these effects is reminiscent
of results seen by Ermentrout and colleagues (Crook
et al., 1998; Ermentrout et al., 2001). Like (Ermentrout
et al., 2001), we see subtly different effects for differ-
ent slow currents. However, these studies are different
in the details; our implementation of IKs is similar to
the M-current IM used by (Ermentrout et al., 2001), but
our Ih is both quantitatively and qualitatively dissimilar
to the spike afterhyperpolarization they studied. More
importantly, our work focuses on the effects of large
and effectively large inputs, which cannot be studied
using their analytical method.

In Figs. 4 and 5, we saw evidence that certain changes
in model parameters can cause changes in apparent
coupling strength. We suspect that effectively strong
coupling is due to a reduction in the “attractiveness”,
or stability, of the spiking limit cycle. Limit cycle at-
tractiveness is relevant to STR analysis because inputs
applied to a nonlinear model with a weakly attractive
limit cycle can trigger large divergences from the pe-
riodic waveform. Using a measure of attractiveness
we call “A” based on the system’s worst case Floquet
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Figure 9. Large values of gKs lead to reduced limit cycle attrac-
tiveness. Top panel shows measure A of limit cycle attractiveness
(see Discussion and Methods for details) as a function of increas-
ing slow potassium conductance gKs. Iapp is simultaneously varied
to maintain a spiking period of 120 ms as indicated in the bottom
panel. Specific values of gKs that correspond to rows of Fig. 4 are
indicated by open circles.

multiplier (see Methods, part E for details), we can in-
vestigate this idea. Results are given in Fig. 9, where A
is plotted as a function of increasing slow conductance
gKs.

In Fig. 9, we see that increasing gKs eventually leads
to a sharp fall off in the limit cycle’s attractiveness
towards a value of zero. This helps to explain our ob-
servations from Fig. 4; the increase in effective cou-
pling strength for large gKs may be due to a reduction
in limit cycle attractiveness. The only discrepancy is
that from Fig. 4, effectively strong coupling effects are
present when gKs = 2.7, but we see that the measure
of limit cycle attractiveness in Fig. 9 doesn’t drop off
until immediately after this value. One possible cause
of this slight discrepancy is the fact that the measure
A only accounts for the system’s properties at or very
near the limit cycle. Remember that we consider cou-
pling that is not weak and inputs can perturb the system
significantly away from the limit cycle where the rate
of attraction back to the limit cycle may be less than
that right at the limit cycle. For inputs even larger than
those considered here, one may expect further reduced
accuracy of measure A. In this case it may be necessary
to use a different measure of limit cycle attractiveness
that takes into account properties of the system in some
appropriately large region about the limit cycle.

Whether F(�) predicts stable or unstable anti-
synchrony depends on the location of the negative peak
of the type II STRC: anti-synchrony changes from be-
ing unstable to stable when the negative peak shifts
to the right past Ta/2, where Ta is the period of the
coupled cells when at anti-synchrony (Ta may be dif-
ferent than T , the uncoupled period). In Appendix B
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we prove that the change in stability happens when the
negative peak is exactly at Ta/2. If we look back to the
top row of Fig. 3 (IKs) we see that anti-synchrony is
stable and Ta/2 equals 60 ms. Given that the negative
peak of the STRC is to the right of 60 ms we would
predict stable anti-synchrony. In the top row of Fig. 2
(Ih), however, the negative peak is to the left of 60 ms
and anti-synchrony is unstable.

Simulations of coupled noisy neurons can often
be understood, at least qualitatively, from noiseless
STDMs. Noise in our simulations can amplify the
effects of synaptic perturbations. In particular, cycle
skipping in response to inputs is more prevalent in
noisy simulations than in the noiseless case. This phe-
nomenon effectively destabilizes the anti-synchronous
state in our simulations (Fig. 7), converting a bistable
deterministic system to a system that hovers around the
synchronous state. This effect is seen with noise lev-
els below those observed physiologically (White et al.,
1998a). A separate effect was observed in simulations
where cycle skipping dominated the cell’s natural be-
havior (Fig. 8). Spikes that appear from this “back-
ground” of activity tend to occur in nearly-synchronous
clusters.

4.2. Predictions from both Linear and Direct
STR Methods Suffer When Model has
Extended Memory

When the coupling between the cells is truly weak, both
the linear and direct STR methods are usually able to
accurately predict network behavior. However, this is
not always the case, as exemplified by Fig. 3. We be-
lieve that this discrepancy is caused by cellular “mem-
ory” (i.e., sensitivity to more than just the most recent
synaptic perturbation). Figure 10 shows measurements
of infSTRCs in response to a single, weak perturbation
for two cycles. For the model including IKs (parame-
ters as in Fig. 3), single perturbations have measurable
effects in the second cycle (top panel, dashed line); ef-
fects in later cycles (not shown) are negligible. For the
comparable model including Ih (Fig. 10, bottom panel),
the effects of inputs in the second cycle are minimal.
This result likely explains why linear and direct STR
methods are more accurate for models with Ih than for
models with IKs.

Inaccuracies due to extended memory could in
principle be greatly reduced by developing maps that
depend on perturbations during the most recent two
cycles. Such maps would require measurement of all
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Figure 10. Demonstration of secondary infSTRC. The infSTRC
(see Eq. (3)) shows the neuron’s response to weak, brief pulses of
injected current. For primary infSTRCs (solid lines), advances are
measured in the same cycle that the pulse is injected. Secondary
infSTRCs (dashed lines) show any residual perturbations in spike
timing during the following cycle. In the case of Ih (bottom panel),
the secondary infSTRC is essentially zero as the neuron returns to
its natural period in the cycle after the perturbation. In the case of
IKs (top panel), the effect of the pulse persists into the second cycle.

combinations of delays in perturbations over two fir-
ing cycles. Although this is feasible in a model cell,
it would be difficult to achieve in the duration of an
experimental recording.

4.3. Future Efforts

The ability to study strong coupling effects using STR
methods represents an important step in developing
these methods for more general application in model-
ing and experimental studies. Future modeling studies
should focus on application of STR methods to more
realistic conditions, including larger, sparsely coupled
networks (Golomb et al., 2001), networks including
noise and heterogeneity (Golomb and Rinzel, 1993;
White et al., 1998b; Tiesinga and Jose, 2000), and net-
works that do not fire in a stationary periodic mode. In
addition, further work is needed to understand why,
after cycle skipping, trajectories return with greater
synchrony. Future experimental work should use dy-
namic clamp technology (Robinson and Kawai, 1993;
Sharp et al., 1993; Dorval et al., 2001) to introduce
mock synaptic conductances experimentally, and thus
directly measure STRCs rather than estimating them
using current pulse inputs (Reyes and Fetz, 1993).
Routine, successful measurement of STRCs experi-
mentally will require stable whole-cell or perforated
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patch recordings that do not significantly change cellu-
lar characteristics and are stationary for at least 30 min.
Estimation of STDMs from experimental data may re-
quire statistical methods to handle jitter in spike timing
as well.

Appendix A

A.1. Model MEC Layer II Stellate Cell Equations

The current-balance equation for the modeled neuron
is:

C
dV m

dt
= Iapp − (

gNam3
NahNa + gNapmNap

)
(Vm − VNa)

− (gkn4 + gKsmKs)(Vm − VK)

− gh(0.65mhf + 0.35mhs)(Vm − Vh)

− gL(Vm − VL) − gsynmsyn(Vm − Vsyn) (A.1)

where C is membrane capacitance (µF/cm2), Vm is
membrane potential (mV), Iapp is the applied bias (DC)
current (µA/cm2), g is conductance (mS/cm2), and
units of time are ms. All dynamic variables obey the a
first order differential equation expressed either as in
Eq. (A.2a), using expressions for the voltage depen-
dent steady state values or (x∞) and time constants (τ ),
or as in Eq. (A.2b), in terms of voltage dependent rate
constants of α and β.

dx

dt
= x∞(Vm) − x

τx (Vm)
(A.2a)

dx

dt
= αx (1 − x) − βx x (A.2b)

Definitions for the αx (Vm) and βx (Vm) functions for
each of the dynamic variables are as follows.

αm Na(Vm) = −0.1 · (Vm + 23)

exp(−0.1 · (Vm + 23)) − 1
(A.3a)

βm Na(Vm) = 4 · exp

(−(Vm + 48)

18

)
(A.3b)

αh Na(Vm) = 0.07 · exp

(−(Vm + 37)

20

)
(A.4a)

βh Na(Vm) = 1

exp(−0.1 · (Vm + 7)) + 1
(A.4b)

αn(Vm) = −0.01 · (Vm + 27)

exp(−0.1 · (Vm + 27)) − 1
(A.5a)

βn(Vm) = 0.125 · exp

(−(Vm + 37)

80

)
(A.5b)

αm Nap(Vm) = 1

0.15 · (1 + exp(− (Vm + 38) /6.5))
(A.6a)

βm Nap(Vm) = exp(− (Vm + 38) /6.5)

0.15 · (1 + exp(− (Vm + 38) /6.5))
(A.6b)

mKs(∞) = 1

1 + exp(−(Vm − Vha−Ks)/6.5)
(A.7a)

τm Ks = 90 ms (A.7b)

mhf∞ (Vm) = 1/(1 + exp((Vm + 79.2)/9.78))

(A.8a)

τm hf(Vm) = 0.51/[exp((Vm − 1.7)/10)

+ exp(−(Vm + 340)/52)] + 1

(A.8b)

mhs∞ (Vm) = 1/(1 + exp((Vm + 71.3)/7.9))

(A.9a)

τm hs(Vm) = 5.6/[exp((Vm − 1.7)/14)

+ exp(−(Vm + 260)/43)] + 1

(A.9b)

IKs and Ih are never on simultaneously; i.e. one of
gh or gKs is set to zero. Equations for Ih (A.8a)–(9b)
are taken from previous studies (Dickson et al., 2000;
Fransén et al., 2003) with some simplifying modifi-
cations. Simulations were run to confirm that these
modifications do not affect results presented in this pa-
per. Parameter values corresponding to Figs. 2 and 3
are as follows. For Ih (Fig. 2): VL = −65, gNap = 0.5,

gh = 1.5, gsyn = 0.006, gL = 0.5, Iapp = −2.25. For IKs

(Fig. 3): VL = −54, gNap = 0.21, gsyn = 0.01, gL = 0.1,
Iapp = 1.791, gKs = 2.0 (default), Vha−Ks = −35. Para-
meter values that are common to all figures are as
follows. VNa = 55, VK = −90, Vh = −20, gNa = 52,
gk = 11, C = 1.5.

A.2. AMPA Synapse Equations and Parameters

A simple, efficient synapse model was implemented
(Destexhe et al., 1994) with parameters chosen to
mimic the fast kinetics of AMPA receptors (Destexhe
et al., 1998). The synaptic gating variable msyn, obeys
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the following equation, which depends on neurotrans-
mitter concentration, NT.

dmsyn

dt
= αsyn · N T (1 − msyn) − βsynmsyn (A.10)

NT depends very simply on the potential of the presy-
naptic cell as follows. When the presynaptic cell’s po-
tential is above a threshold of −20 mV, NT = 0.001,
otherwise it is zero. In Eq. (A.10), αsyn = 1100 and
βsyn = 0.19. For these parameter values, msyn rises in
response to a presynaptic action potential to a value
near 1 with a time constant of 0.78 ms and then falls
with time constant 5.3 ms.

A.3. Stochastic Treatment of Persistent Sodium
Channel Population

In the stochastic simulations, the deterministic descrip-
tion of the persistent sodium (INap) given above is re-
placed by a stochastic description used in our past work
(White et al., 1998a, 2000) and described briefly here.
In the stochastic model, gNap·mNap is replaced by the ra-
tio N·γ /SA. N is the number of open persistent sodium
channels and varies from 0 to 2400 (population size).
γ = 20 pS is the open channel conductance and SA
= 2.29 × 10−4 cm2 is the cell’s surface area. This
is given by the ratio γ · N/gNap in order to preserve
the maximal conductance of this conductance equal to
gNap. The channels are assumed to be independent and
identical. Random numbers are chosen from an expo-
nential distribution based on the equations αNap(Vm)
and βNap(V m) above to determine the time of the next
channel transition. The equations are then integrated
up to that time using backward Euler integration and
the number of open channels is updated. This method
is generally used for exact stochastic simulations of
chemical reactions (Gillespie, 1977). A maximum step
size of 10 µs is enforced; the average time step is ap-
proximately 0.5 µs.

Appendix B

Here we show that anti-synchrony is neutrally stable
when the negative peak of the type II STRC is located at
Ta/2, where Ta is the period when the cells are at anti-
synchrony. Recall from Methods that the stability of
� = Ta/2 is given by the derivative of F(�) evaluated
at Ta/2. We therefore differentiate Eq. (2) in Methods
and evaluate at Ta/2 in order to determine the stability

of anti-synchrony given that the negative peak of the
STRC is at Ta/2:

F ′
(

Ta

2

)
= P ′

(
Ta

2

)
+ P ′

(
T − Ta

2
− P

(
Ta

2

))

×
(

1 + P ′
(

Ta

2

))
(B.1)

When the negative peak of the STRC is located exactly
at Ta/2:

P ′
(

Ta

2

)
= 0

Eq. (B.1) can be rewritten:

F ′
(

Ta

2

)
= P ′

(
T − Ta

2
− P

(
Ta

2

))
. (B.2)

When the cells are perfectly out of phase and have
period Ta, on each cycle, the input arriving mid-cycle
causes an advance of T − Ta. Therefore, Ta is related
to T as follows:

Ta = T − P

(
Ta

2

)
. (B.3)

Subtracting Ta/2 from both sides of Eq. (B.3) and plug-
ging into Eq. (B.2), we see that

F ′
(

Ta

2

)
= P ′

(
Ta

2

)
= 0 (B.4)

Equation (B.4) implies that anti-synchrony is neu-
trally stable when the negative peak of the STRC is
exactly at Ta/2. A change in stability is therefore ex-
pected when the negative peak shifts past Ta/2.
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