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Abstract

We consider synchronization in a pair of neurons described by voltage-gated conductance equations and coupled by
mutual excitation. Our model neurons have three time scales: the very fast transition between active and inactive states; an
intermediate scale during the active portion of a cell’s trajectory; and the slowest during the inter-burst interval. We show
that the interplay of time scales can lead to stable “almost-synchronous” solutions in which the jumps between active and
inactive states of the two cells happen with a time difference that is a small fraction of the total period of the coupled system.
Furthermore, modulation of parameters not affecting time scales can change the stable solution from almost-synchronous to
synchronous. We use a geometric analysis that enables us to identify the parts of the trajectories over which the interactions
move the coupled trajectory away from synchrony, the parameters responsible for this phenomenon and how the distance
from synchrony depends on the time scales and can be modulated. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Networks of neurons have many different time scales, both intrinsic and synaptic. Though much research has been
done on how the interaction of these time scales affects the ability of a network to synchronize [1–5,7–9,12,13,15,16,
18,21–23] surprising effects continue to emerge. The work of the last few years had shown that a previous and
widely held view that excitation is synchronizing and inhibition is desynchronizing is not generally true. Indeed,
in some instances [1–3,7–9,15,18,22,23] the opposite is true. However, the newer view that fast excitation is
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generally desynchronizing is also an oversimplification. For example, even if cells do not wholly synchronize
under excitatory coupling, the robust outcome of the network dynamics may be “almost-synchronous” solutions
[12,13].

Using a reduced version of a model of Traub and Miles [20] with excitatory synapses, Pinsky and Rinzel
[13] showed in simulations that there could be a stable state close to synchrony when the fully synchronized
state was unstable. Pinsky [12] analyzed a non-biophysical caricature of such a system and produced an “almost-
synchronous” solution. In related work van Vreeswijk et al. [22] analyzed a network of integrate and fire neu-
rons, using excitatory synapses with a prescribed time course for the Excitatory Post-Synaptic Potential of the
form gα2te−αt ; they found that for largeα, there are stable non-synchronous solutions that approach synchrony as
1/α → 0.

This paper revisits the existence and stability of almost-synchronous solutions, this time in the context of
conductance-based neurons, in the spirit of, but simpler than, Pinsky and Rinzel [13]. The goal is to understand
from the biophysical time scales and parameters what gives rise to the destabilization of the synchronous solution,
and what allows a nearby solution to be stable. In the process, we can see how far from synchrony this new solution
is, and how this can be modulated.

In conductance-based models, there can be many time scales associated with the kinetics of different currents
[14]. By changing which currents are expressed in the system, the rise time of the action potential, the time over
which the system has high voltage, and the time between action potentials can all be modulated independently.
In this paper, we are considering the case in which the length of the activated state is intermediate between the
(short) rise time and the (longer) time between action potentials. Such a situation corresponds to a spike produced
by calcium currents (which are slower to decay than spikes caused by standard sodium currents) or as a caricature
of the envelope of a short burst of sodium spikes.

In this parameter regime, there are three natural time scales in the problem. The rate constants for these are
denoted O(1), O(γ ), O(ε) with ε � γ � 1. The synaptic currents are modeled as functions of the presynaptic
voltage, with no further time scales, i.e. the synapses activate and inactivate fast as the presynaptic voltage changes.

We show that the intermediate time scale leads to almost-synchronous solutions, i.e. trajectories for the coupled
pair in which the times of arrival at the threshold for firing differ by an O(ε) fraction of the period. The analysis
involves an interplay of space and time scales, with analysis of spatial separation at different parts of the trajectory
used to infer temporal differences and vice versa.

Our methods are those of geometric singular perturbation theory, extended to deal with more than two time scales.
In standard two-time scale analysis, the jump between slow processes is instantaneous in the singular limit. In our
setting, part of the jump, the flow during the time a neuron is active, takes place on the intermediate time scale.
We show that in the early part of the active state, the dynamics pushes apart cells with sufficiently nearby initial
conditions, but bring together cells whose initial conditions are further apart. The two sets of estimates provide
bounds for the almost-synchronous solution in terms of the time scales.

In addition to analytical work aimed at dissecting out the origins of almost-synchronous solutions, we provide a
numerical section. This section gives numerical evidence for the variety of phenomena uncovered by the analysis.
It also uses the arguments of the previous work to discuss, and give numerical evidence for, the modulability of the
system by parameters not connected to time scales.

The outline of the paper is as follows. In Section 2, we give the equations for the full problem and also derive
relevant sets of reduced equations (i.e.ε = 0) which govern the behavior of the cells during different parts of their
trajectories. In Section 3, we analyze the reduced equations to produce a singular almost-synchronous solution. The
analysis in this section focuses on how the relative positions of intrinsic and synaptic thresholds, together with the
intermediate time scale conspire to produce different types of almost-synchronous solutions. Additionally, we show
that for a certain range of parameter values, the singular almost-synchronous solution is stable. In Section 4, we
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Fig. 1. The nullclines of (2.1).

show that the results concerning the existence and stability of singular solutions perturb toε small. In Section 5, we
provide numerical simulations of our model equations. In this section, we also show how modulating the intrinsic
and synaptic thresholds can produce stable synchronous solutions. Finally, in Section 6, we provide a discussion
where we compare our work to some of the prior work in this area.

2. Equations and statement of results

2.1. Equations

We start with equations for a single oscillator, which already contain the three time scales. The equations are

v′ = f (v, w), w′ = εg(v, w)

τ∞(v)
, (2.1)

whereε � 1 is the singular perturbation parameter. Thev-nullcline is the curveC = {(v, w) : f (v, w) = 0} and
is cubic shaped. Thew-nullclineD = {(v, w) : g(v, w) = 0} is a non-decreasing graph that intersectsC at exactly
one point (see Fig. 1). The parameters will always be chosen so thatC andD intersect along the middle branch ofC,
thus insuring that an isolated neuron is oscillatory. We assume thatf > 0 (< 0) below (above)C andg > 0 (< 0)

below (above)D. The functionτ∞(v) is given by

τ∞(v) =
{

1 if v < vθ ,

ε/γ if v ≥ vθ .

Here the parametervθ is the threshold for entering the active phase andγ governs the rate of passage through the
active phase. We assume thatvθ lies between the two knees ofC. It will also be necessary to assume that∂g/∂v > 0
and near the left and right branches ofC, ∂g/∂w < 0 and∂f/∂w < 0.

We now add coupling that represents fast excitatory synapses. The full equations are

v′
i = f (vi, wi) − gsynH(vj − vst)(vi − vsyn), w′

i = εg(vi, wi)

τ∞(vi)
, (2.2)
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wherej 6= i. Heregsyn is the conductance of the synaptic current,H(vj − vst) is the Heaviside function andvst is
the synaptic threshold.vsyn is chosen to be high so that the synaptic current is inward; that is,vi − vsyn < 0 along
the singular solutions. Thev-nullcline is the same as that of the uncoupled cell whenvj < vst. For vj > vst, the
effect of the coupling term is to raise the nullcline and change its shape; ifgsyn is not too large, then the excited
v-nullcline is still qualitatively cubic. We denote this cubic byC1.

Note that there are two thresholdsvθ andvst in the equations. For clarity, we assume, for now, that

vst = vθ .

In the numerics section, we discuss how the results may change if this does not hold.

2.2. Singular solutions

All of the solutions are analyzed by treatingε as a small, singular perturbation parameter. We construct singular
solutions after formally settingε = 0; it is then necessary to prove that the singular solution perturbs forε > 0 to
an actual solution of the full equations. One step in constructing the singular solution is to use fast and slow time
scales to derive equations for the fast and slow flows.

We first demonstrate how to construct the singular trajectory for a single uncoupled cell. Whenε is set equal to
zero in (2.1), we obtain the equations for the fast flow

v′ = f (v, w), w′ = 0, if v < vθ , (2.3)

v′ = f (v, w), w′ = γg(v, w), if v ≥ vθ . (2.4)

By introducing the rescalingτ = εt into (2.1) and then settingε = 0, we obtain equations for the slow flow in
the silent phase,

0 = f (v, w), ẇ = g(vL(w), w), if v < vθ . (2.5)

Differentiation is with respect toτ andvL(w) is obtained by solving 0= f (v, w) along the left branch of the cubic
C.

Note that Eqs. (2.3) and (2.5) are simply scalar equations; in (2.3), the variablew serves as a parameter in thev′

equation. The full two-dimensional system (2.1) has been reduced to two one-dimensional equations and solutions
of these are easy to characterize. However, (2.4) is not reduced. In other fast-slow systems of the form (2.1), typically
the entirev-nullcline consists of rest points for the fast flow. In our case, however, only the portion ofC with v < vθ

consists of rest points. Thus, the structure of these flows is quite different depending on whether cells are silent or
active.

The singular periodic orbit for an uncoupled cell is shown in Fig. 2. The orbit begins at the left knee ofC,
which we denote by (vLK , wLK ). The first part of the singular orbit is a solution of (2.3) that connects
(vLK , wLK ) to (vθ , wLK ). The second part is a solution of (2.4) that connects(vθ , wLK ) to (vθ , wh), where
wh > wLK ; this corresponds to the active phase. The third part is a solution to (2.3) that connects (vθ , wh) back
to C at some point (vL(wh), wh). The fourth and final part is a solution to (2.5) that connects (vL(wh), wh) to
(vLK , wLK ).

The construction of a synchronous solution for the coupled system is done in the same manner as that of the
periodic solution for the uncoupled cell; the only difference is that the dynamics are changed once the voltage passes
acrossvst = vθ . Thus, if eachvi > vst, then (2.4) is replaced by

v′ = f (v, w) − gsyn(v − vsyn), w′ = γg(v, w). (2.6)
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Fig. 2. The singular periodic orbit.

Note that the synchronous solution is not the same as the uncoupled periodic solution (see Fig. 3); this is because
they satisfy different equations while in the active phase.

There is no difficulty in proving that these singular periodic solutions perturb, forε > 0 small, to actual solutions
of either (2.1) or (2.2) withv1 ≡ v2 andw1 ≡ w2. See, for example, [10]. The actual periodic orbits forε small
lie O(ε) close to the singular orbits in phase space, except near the left knee ofC, where the solution is typically
O(εa), a > 0, close to the singular solution. Note that the duration of each of these solutions in the silent phase is
O(1) in τ -time, i.e. O(1/ε) in t-time. By contrast, thet-time in the active phase is O(1/γ ). Hence, ifε � γ , then
the active phase is very short compared to the silent phase.

Fig. 3. The synchronous and intrinsic orbits.
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2.3. Almost-synchronous solutions

When we say that a solution is almost-synchronous, or an O(ε)-synchronous solution, we shall mean that the
cells cross the thresholdvθ at time differences that are small compared to the period of the oscillation. In phase
space, however, the solution will be far from synchronous in the sense that the values of the voltage and recovery
variables at which the cells jump to the activated state have a finite difference that does not go to zero as the small
parameterε goes to zero.

A non-synchronous singular solution is constructed as before, composed of pieces to fast and slow equations.
As before, if both cells are silent (i.e.v < vθ ) the fast flow is governed by (2.3) and the slow flow by (2.5). If both
cells are active the fast flow for each cell is governed by (2.6) and there is no slow flow. Since the voltages of the
two cells may not be identical, it is possible that one of the cells is silent while the other is active. In that case, the
active cell is governed by Eq. (2.4) while the silent one is governed by

v′ = f (v, w) − gsyn(v − vsyn), w′ = 0. (2.7)

The singular version of the almost-synchronous periodic solution is constructed as a fixed point of a Poincare
map: cell 1 starts at the left knee ofC and cell 2 at some point on the left branch ofC (and O(γ ) in phase
space) above the knee. The analysis follows the points until one of the cells again reaches the original knee. If
the other is at the original starting point of cell 2, we have a fixed point for the Poincare map, corresponding
to a periodic singular solution. To show that this corresponds to an almost-synchronous solution, we provide
estimates to show that the times at which the cells crossvθ differ by an amount that is an O(ε) fraction of the
period.

We now describe the singular trajectory more explicitly; as before, it consists of many pieces. The construction
holds if the cell not initially at the knee ofC starts low enough to be below the left knee ofC1. The first portion
begins as cell 1 leaves the left knee. In this portion, cell 1 is governed by (2.3) and has a trajectory in (v, w) space
that is horizontal until it crossesvθ at t = t1. During the timet < t1, cell 2 is governed by (2.3) in whichw′ = 0,
so cell 2 does not move.

At time t1, H(v1 − vθ ) switches from 0 to 1, so cell 2 is then governed by (2.7), while cell 1 is governed by
(2.4). Since, by hypothesis, cell 2 is below the left knee ofC1, cell 2 can now move, and does so horizontally until
it reachesvθ at t2. Note that fort1 < t < t2, cell 1 moves both horizontally and vertically, because it is governed by
(2.4) (see Fig. 4, we assume, for now, thatv1(t2) > vθ ). At time t2, H(v2 − vθ ) switches from 0 to 1. Hence cell 1
is then governed by (2.6). Furthermore, since cell 2 is also being excited andv1 > vθ , cell 2 is also governed by
(2.6). Following (2.6), both cells eventually reachvθ again. (In Fig. 4, this part of the trajectory is schematic; later
figures take into account more of the structure of the equations and different cases.)

Assume that cell 1 is the first to crossvθ again, att = T1. After this time, cell 2 satisfies (2.4) until it crossesvθ

atT2. ForT1 < t < T2, cell 1 is governed by (2.7). Once a cell crossesvθ , it moves horizontally towards a point on
the left branch ofC. The cells then evolve along the left branch ofC until one of the cells reaches the left knee of
C. A similar scenario holds if cell 2 is the first to reachvθ from the active branch.

Much of the analysis concerns the parts of the trajectories in phase space in which the two cells are governed by
different equations. In terms of voltages, letvF denote thev-value of the trajectory of cell 1 att = t2 (see Fig. 5).
Then forvθ < v < vF the two cells satisfy different equations. Over this range of voltages, cell 1 does not receive
excitation from cell 2, and hence satisfies (2.4). Cell 2 does however receive excitation when it is in that portion of
the phase plane, so it is governed by (2.6). As we show below, this difference causes a separation between the orbits
of the cells which is bounded from below byk1γ and from above byk2γ for somek2 > k1 > 0, independent of
the initial difference, providing the latter is small enough. BeyondvF, the two cells satisfy the same equations until
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Fig. 4. A general phase plane for cells 1 and 2. The timest1 < t2 < T1 < T2 denote the times a particular cell crosses the linev = vθ .

one of the cells again crossesvθ on the jump down. A similar analysis on the jump down shows that the difference
in governing equations leads to the maintenance of the O(γ ) separation at the end of that jump.

The singular flow naturally gives rise to a one-dimensional map, which we denote by5. More precisely, if
(v2, w2) is the initial position of cell 2 on the left branch ofC and(v̂, ŵ) is the position of the trailing cell after
the other cell has returned to the left knee, then5(w2) = ŵ. This map is well defined ifw2 − wLK is sufficiently

Fig. 5. The expansion in the up jump over thev-range [vθ , vF]. The ordering of times ist1 < t2 < t̂2. Cell 1 is governed by (2.4) and cell 2 is
governed by (2.6) over this range ofv-values.
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Fig. 6. The graphical description ofv = β. The valueβ is obtained by solvingg(β, wLK ) = 0, wherewLK is thew-value of the left knee of the
excited cubicC1.

small; in particular, cell 2 should lie below the left knee of the excited cubicC1. A fixed point of5 corresponds to a
periodic singular solution. The orbit may be orientation preserving or orientation reversing, depending on whether
the first cell to return to the left knee ofC is cell 1 or cell 2, respectively.

From this explicit description of the Poincare map, we can see why a fixed point corresponds to an O(ε)-
synchronous solution. Though the cells begin a cycle with their recovery variablew at values that are O(γ ) apart,
they reachvθ at timest1 andt2, respectively, that are O(1) apart int ; as we will see, this continues to be true for the
full equations (2.2) in whichε > 0. Since the total period of the trajectory is O(1/ε) in t-time, the time lag has a
fraction O(ε) of the total period.

In the following section, we give conditions guaranteeing that5 defines a uniform contraction on some interval of
C that does not contain the left knee. The bounds on that interval give information about the degree of synchronicity
of the periodic orbit associated with the fixed point of5. The construction of the interval also gives information
about what properties of the cells determine how far from synchronous is the singular periodic trajectory. We also
prove that the latter perturbs, forε small, to a stable periodic solution of (2.2).

2.4. Main result

We now state two theorems. The first is concerned with the existence and stability of almost-synchronous singular
solutions. Recall that these correspond to fixed points of the map5, defined in the previous section. As described
above, the map5 may be orientation preserving or reversing near the fixed point we seek; thus Theorem 1 has two
sets of hypotheses, corresponding to these cases. Theorem 2 demonstrates that the almost-synchronous singular
solutions perturb for small, positiveε to O(ε)-synchronous solutions of (2.2).

Before stating the theorems, it will be necessary to introduce some notation. Assume that the right knee ofC1 is
at (vRK, wRK) and chooseβ so thatg(β, wRK) = 0 (see Fig. 6).

Definition 1. Theγ -dependent constantsδ1 andδ2 are said to bẽO(γ )-apart if there existK1 andK2 such that
K1γ < |δ1 − δ2| < K2γ for γ small.
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Note that the phrasẽO(γ )-apart implies a two sided bound (lower and upper) on the quantities in question;
alternatively, the phrase O(γ ) implies simply an upper bound on a given quantity. In what follows,Ci , Ki and
Mi, i = 0, 1, 2, . . . , will be positive constants that do not depend onε or γ .

Theorem 1. Suppose that the constantsvθ , β andgsyn satisfy one of the following conditions:
(R) Eithervθ > β, or vθ < β andβ − vθ is sufficiently small compared togsyn;
(P)vθ < β andgsyn is sufficiently small compared toβ − vθ .

Then forγ sufficiently small, there exist1exp < 1com such that5 has a unique asymptotically stable fixed point
w∗ on (1exp, 1com). The distance betweenw∗ and wLK is Õ(γ )-apart. If (P) is satisfied then5 is orientation
preserving on(1exp, 1com), while if (R) is satisfied then5 is orientation reversing on(1exp, 1com).

Remark 1. We will show that over the intervalvθ < v < vF, the orbits of the two cells that start below some minimum
distance(1exp) from each other separate to create a difference of sizeÕ(γ ) independent of initial conditions. The
order of magnitude of this distance is then shown to be maintained in the rest of the cycle. The conditions in(R)
or (P) are needed to maintain that distance. The parameter regimes in which both those conditions are violated
correspond to the reconvergence of the separated trajectories during the down jump part of the trajectory. Case
(R) is demonstrated forvθ > β; the conclusion of Theorem1 holds forvθ < β, with β − vθ small enough, by
continuous dependence on initial conditions. Note that the conditionvθ < β alone is not sufficient to determine
whether or not the solution is order preserving or reversing. It is the relation ofgsyn to β − vθ which determines
which case holds. In particular, see Remark6 for estimates on the parametersvθ , β andgsyn that insure that case
(P) holds whenvθ < β. For some range ofvθ < β, neither(P) nor (R) holds, and there may be solutions that are
more synchronous than ourO(ε)-synchronous solutions.

Theorem 2. The asymptotically stable singular periodic solution given by Theorem1 perturbs, forε > 0, to an
asymptotically stableO(ε)-solution of(2.2).

3. Proof of Theorem 1

There are three parts to the proof. In the first, we show that there is a regime of initial conditions, with spatial
differences in the initial conditions of size O(γ ), that expands under5. This is the part that depends critically on
the intermediate time scale O(γ ). The proof shows that the two cells satisfy different equations over some parts of
the trajectory, and that this creates the expansion.

In the second part, we show that initial conditions that start far enough away, but still at a spatial distance of size
O(γ ), are brought closer together under5. This part is more straightforward. The argument can be thought of as a
regular perturbation of the “fast threshold modulation” description in [16]; it does not use the subtleties associated
with the intermediate time scale.

These two estimates help to create an interval in initial conditions whose image under5 has points on both sides
of the diagonal in(1, 5(1)) space. The third part of the proof shows that, in such an interval,5 is uniformly
contracting. This implies that there is a unique fixed point5(1) = 1. The estimates will enable us to see that, for
this fixed point, the times at which the two cells cross the thresholdv = vθ areÕ(1)-apart, and hence the fixed point
corresponds to an O(ε)-synchronous solution.

3.1. Expansion

We now assume, without loss of generality, thatwLK = 0. In this section, we prove that if1 > 0 is sufficiently
small, then5(1) is not only greater than1, but is bounded from below by some constant that does not depend on
1. How small1 must be for that to hold does depend onγ , however.
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Proposition 3.1. There existC0 < C1 < C2 such that if1 < C0γ andγ is sufficiently small, thenC1γ < 5(1) <

C2γ .

This result is proved by carefully following the singular orbit around in phase space as in the definition of5.
As before, we assume that cell 1 begins at the left knee ofC and cell 2 initially lies on the left branch ofC with
w2(0) = 1. Let t1, t2, T1, andT2 be as in Section 2.3 (see also Fig. 4).

The trajectory of each cell is horizontal until the cell crossesvθ . Hence,w2(t2) − w1(t1) = 1. The next
lemma accounts for the primary source of expansion between the cells. This occurs when they first enter the
active phase and satisfy different equations. As before, letvF = v1(t2); we choosêt2 so thatv2(t̂2) = vF (see
Fig 5).

Lemma 3.1. There existsK0 such that if1 < K0γ and γ is sufficiently small, thenw1(t2) and w2(t̂2) are
Õ(γ )-apart.

Proof. Since eachvi(t) is increasing for 0≤ t ≤ t̂2, we may consider thewi as functions ofvi . In this case, we
write Wi(vi); that is,Wi(vi(t)) = wi(t). Let

8(v, w, s) = g(v, w)

f (v, w) − gsyns(v − vsyn)
.

Then for eachv ∈ [vθ , vF],

W1(v) = γ

∫ v

vθ

8(η, W1(η), 0) dη, W2(v) = 1 + γ

∫ v

vθ

8(η, W2(η), 1) dη.

Hence,

W1(v) − W2(v) = −1 + γ

∫ v

vθ

8(η, W1(η), 0) − 8(η, W2(η), 1) dη. (3.1)

Choosem1, M1 andM2 so that forvθ < v < vF and 0≤ s ≤ 1,

−m1 <
∂

∂s
8(v, Wi(v), s) < −M1, and

∣∣∣∣ ∂

∂w
8(v, Wi(v), 0)

∣∣∣∣ < M2.

The existence ofm1 and M1 follows from our assumption that the synapse is excitatory. LetM = vF − vθ ,
K0 = K1 = MM1/4 andK2 = 3Mm1. Assume that1 < K0γ . Then, from (3.1),

W1(v) − W2(v) < 1 + γ

∫ v

vθ

∂8

∂s
(−1) +

∣∣∣∣∂8

∂w

∣∣∣∣ |W1 − W2| dη

< 1 + γm1M + γM2

∫ v

vθ

|W1(η) − W2(η)| dη.

We now apply Gronwall’s inequality to obtain the upper bound:

W1(v) − W2(v) ≤ (1 + γm1M)eγM2M < 2(1 + γm1M) < K2γ,

for γ sufficiently small. In particular, ifv = vF, then

w1(t2) − w2(t̂2) < K2γ,

for γ sufficiently small.
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In order to obtain a lower bound onw1(t2) − w2(t̂2), note that forvθ < η < vF,

8(η, W1(η), 0) − 8(η, W2(η), 1)

= [8(η, W2(η), 0) − 8(η, W2(η), 1)] + [8(η, W1(η), 0) − 8(η, W2(η), 0)]

≥ M1 − M2|W1(η) − W2(η)| ≥ M1 − M2K2γ

>
M1

2
,

if γ is sufficiently small. It now follows from (3.1) withv = vF that

w1(t2) − w2(t̂2) > −1 + γ MM1

2

> −K0γ + γ MM1

2
> K1γ. �

Remark 2. Note that the right-hand side of the last inequality for the lower boundK1γ has terms of both signs.
This comes from the fact that the trajectories of the two cells, which satisfy different equations, cross paths between
vθ andvF. The negative term comes from the size of the initial difference in the w-components of the cells, and the
positive term from the difference in equations that govern the cells. For smallK0, the sum is dominated by the latter,
so the final distance is bounded below, independent of the initial distance.

Remark 3. During this initial excursion through the active phase, cell2 feels coupling, but cell1 does not. The
effect of the excitatory coupling is to decrease the slope of the vector field of cell2. This is the geometric reason
why the cells enter the active phase withw1 < w2 but when they crossv = vF, w1 > w2 and expansion has taken
place.

Remark 4. The estimates in Lemma3.1show thatw1(t2) andw2(t̂2) are alsoÕ(gsyn)-apart. This follows since both
K1 andK2 contain either the factorM1 or m1, both of which areO(gsyn). Thus by makinggsyn sufficiently small,
we can make the difference in the w-values of the cells arbitrarily small, independent ofγ . This will be important
for the expansion argument for the orientation preserving case. See also Remark6.

We now follow each of the cells until they leave the active phase atv = vθ . These times are denoted asTi . The
following lemma implies that thew-components continue to bẽO(γ )-apart through this part of the trajectory.

Lemma 3.2. If the conclusion of Lemma3.1 is satisfied, thenw1(T1) andw2(T2) are Õ(γ )-apart (see Fig. 4).

Proof. We need to apply results from Fenichel’s geometric singular perturbation theory [6]. Before applying this
theory, we briefly summarize the results which are needed.

For smallγ , there is a center manifoldRγ for (2.6) that is O(γ ) close to the right branchR0 of the cubicC1. In a
neighborhood ofRγ , there is a Fenichel fibration. This associates to eachp0 ∈ Rγ a smooth, one-dimensional fiber;
two points lie on the same fiber if they have the same ‘asymptotic phase’. By definition, this means the following:
suppose thatq1 andq2 are two points which lie nearRγ and letqi(t) be the solutions of (2.6) which pass through
theqi at the same time, sayT0. Thenq1 andq2 have the same asymptotic phase if there exist constantsB andK,
which do not depend on the points orγ , such that

‖q1(t) − q2(t)‖ < Be−K(t−T0)/γ ,

for γ sufficiently small andt > T0, as long as these trajectories lie nearRγ . We note that the fibers do not correspond
to actual solutions of (2.6). We will need the fact that the fibers depend smoothly on bothγ and the pointsp0 ∈ Rγ .
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Fig. 7. The expansion in the down jump for case (R). Note thatp1(t) andp2(t) have the same asymptotic phase as cell 1 and 2, respectively.
The ordering of times iŝT1 < T̂2. The linev = vθ lies to the right ofv = β. Over thev-range [̂v2(T̂1), vθ ], p1 is governed by (2.6) whilep2 is
governed by (2.4).

Now recall that cell 1 reachesv = vF (at low values ofw) with t = t2 and cell 2 reaches that line witht = t̂2. For
uniformity of notation, let̂t1 ≡ t2. AlthoughvF is not necessarily nearRγ , we can still determine the asymptotic
phase of points which lie onvF since the vector field forces all these points to eventually become nearRγ . Thus
choosepi ∈ Rγ so that each point (vF, wi(t̂i )), i = 1, 2, lies on the fiber associated to pointpi . Hence, ifpi(t) is
the solution of (2.6) that passes throughpi at timet = t̂i , then

‖(vi(t), wi(t)) − pi(t)‖ < Be−K(t−t̂i )/γ ,

for t > t̂i as long as the trajectories lie nearRγ . In particular, the trajectories(vi(t), wi(t))andpi(t)are exponentially
close to each other when they eventually leave a small neighborhood ofRγ . This is shown in Fig. 7, which is a
more accurate version of Fig. 4 for this part of the trajectory. It follows that if we now view(p1(t), p2(t)) as a
singular(ε = 0) solution of the full system (2.2), then the places where celli andpi(t) leave the active phase are
exponentially close to each other. Suppose thatpi(t) = (v̂i(t), ŵi(t)) and choosêTi so thatv̂i (T̂i ) = vθ . Lemma
3.2 follows if we can show that̂wi(T̂i) areÕ(γ )-apart.

We note that thêwi(t̂i ) areÕ(γ )-apart. This is true because the fibers through thepi are horizontal whenγ = 0,
and the fibers depend smoothly onγ . Since, according to Lemma 3.1, thewi(t̂i ) areÕ(γ )-apart, and each (vF, wi(t̂i ))

andpi lie on the same fiber, we conclude thatŵi(t̂i ) areÕ(γ )-apart. We further note that̂w1(t̂2) andŵ2(t̂2) are
Õ(γ )-apart. This is because

ŵ1(t̂2) − ŵ2(t̂2) = (ŵ1(t̂2) − ŵ1(t̂1)) − (ŵ1(t̂1) − ŵ2(t̂2)).

We have just shown that the second term on the right-hand side isÕ(γ ). The first term is positive becauset̂2 > t̂1;
it is O(γ ) becausêt2 − t̂1 = O(1) andŵ′

1 = O(γ ) onRγ . It then follows thatŵ1(t̂2) andŵ2(t̂2) areÕ(γ )-apart.
For t̂i < t < T̂1, pi lie on the same one-dimensional curve that containsRγ . It follows thatT̂1 < T̂2 and we can

choosêt < T̂1 so that

p1(t̂) = p2(T̂1) ≡ (v̂H , ŵH ),
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as shown in Fig. 7. We claim that

v̂H − vθ > K3, (3.2)

for some constantK3 that does not depend onγ . To prove this, we first estimatêT1− t̂ . Recall that for̂ti < t < T̂1,pi

satisfy the same differential equations, but with different initial conditions. Hence, the time between these solutions
remains invariant. In particular, if̂t0 is such thatp2(t̂2 + t̂0) = p1(t̂2), thenT̂1 − t̂ = t̂0. Now, ŵ′

2 = O(γ ) for
t̂2 < t < t̂2+t̂0. Sinceŵ1(t̂2)andŵ2(t̂2)areÕ(γ )-apart, we conclude thatT̂1−t̂ = t̂0 = O(1)with respect toγ . Away
from the cubics,̂v′

1 is bounded from zero by a constant that does not depend onγ . Sincev̂H − vθ = v̂1(T̂1) − v̂1(t̂)

the inequality (3.2) now follows.
We now estimate|ŵ1(T̂1) − ŵ2(T̂2)|. To do this, we divide the proof into two cases given in the statement of

Theorem 1. First suppose that (R) is satisfied andvθ > β. In this case, eacĥwi(t) must increase until thepi(t)

crossvθ , as shown in Fig. 7. This is becausevθ > β implies that forv > vθ , the trajectory is in the region in which
w′ > 0. For t̂i < t < T̂1, pi satisfy the same equations with different initial conditions that areÕ(γ )-apart. In the
rescaled timeη = γ t , eachŵ′

i (η) is positive, bounded from above and bounded away from zero. It then follows
thatŵ1(T̂1) andŵ2(T̂2) remainÕ(γ )-apart. In particular, there existK4 andK5

K4γ < ŵ1(T̂1) − ŵ2(T̂1) < K5γ.

Sinceŵ′
2 > 0 for T̂1 < T < T̂2, we conclude that

ŵ1(T̂1) − ŵ2(T̂2) < ŵ1(T̂1) − ŵ2(T̂1) < K5γ. (3.3)

We now establish a lower bound forŵ1(T̂1) − ŵ2(T̂2). At time t = T̂1, p2 stops receiving excitation fromp1,
thus causing a switch of the governing equation forp2 for the remainder of its active phase. In particular, over the
rangevθ < v < v̂H , p2 is governed by (2.4) whereasp1 is governed by (2.6). This situation is analogous to Lemma
3.1. To better understand the present case, letWi(v) and8 be as in the proof of Lemma 3.1 and chooseM̂1 andM̂2

so that

∂

∂s
8(v, Wi(v), s) < −M̂1, and

∣∣∣∣ ∂

∂w
8(v, Wi(v), 0)

∣∣∣∣ < M̂2.

Then integrating the governing equations,

W1(vθ ) = ŵH + γ

∫ vθ

v̂H

8(η, W1(η), 1) dη, W2(vθ ) = ŵH + γ

∫ vθ

v̂H

8(η, W2(η), 0) dη.

Subtracting the two equations and reversing the limits of integration (sincevθ < v̂H ) yields,

ŵ1(T̂1) − ŵ2(T̂2) = W1(vθ ) − W2(vθ ) = γ

∫ v̂H

vθ

8(η, W2(η), 0) − 8(η, W1(η), 1) dη

= γ

∫ v̂H

vθ

− ∂

∂s
8(η, W(η∗), s∗) + ∂

∂w
8(η, W(η∗), 0)(W2 − W1) dη

> γ (v̂H − vθ )(M̂1 − γK2M̂2) >
γ M̂1K3

2
. (3.4)

Together with (3.3), this demonstrates thatŵi(T̂i) areÕ(γ )-apart.
The above argument shows that Lemma 3.2 holds if (R) is satisfied andvθ > β. By continuous dependence of

solutions, Lemma 3.2 still holds if (R) is satisfied withvθ < β andβ − vθ is sufficiently small. Note that cell 2
returns to the left branch below cell 1. Thus their orientations have been reversed.
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Fig. 8. The expansion in the down jump for case (P). The ordering of times isT̂1 < T̂2. The linev = vθ lies to the left ofv = β. Over thev-range
[v̂2(T̂1), vθ ], p1 is governed by (2.6) whilep2 is governed by (2.4).

Now suppose that (P) is satisfied. In this case, letp1(t) cross thew-nullcline at (vD, wD). Thusŵ1(t) increases
to a maximum valuewD and then decreases. First assume thatŵ2(T̂1) lies above thew-nullcline D, as in Fig. 8.
As before, over the interval̂v2(T̂1) to vθ , p2 satisfies (2.4) whilep1 satisfied (2.6). As above, this creates anÕ(γ )

difference in theŵ values. Thus,̂w2(T̂2) andŵ1(T̂1) differ by Õ(γ ), as desired.
It remains to show that the sufficient condition thatŵ2(T̂1) lies aboveD can be satisfied. This is the case if the

distance betweenp1 andp2 can be made sufficiently small. Recall from Remark 4 that we have an explicit upper
bound on the amount of expansion of thepi in terms of the parametergsyn. Thus, by makinggsyn sufficiently small,
we can guarantee thatŵ2(T̂2) is O(γ ) aboveŵ1(T̂1). Finally, since cell 1 returns to the left branch below cell 2, the
orientation of the cells has been preserved. This completes the proof of Lemma 3.2. �

Remark 5. Note that in the estimate for the lower bound in Lemma3.1, there were two terms, one of which came
from differences in initial conditions and the other from the difference in governing equations. In the down jump,
there is only one term corresponding to the difference in governing equations(3.4),since thepi both pass through
(v̂H , ŵH ). As discussed in Remark3, this Õ(γ ) difference occurs because the magnitude of the ‘slope’ of the
uncoupled cell, p2, is less than that of the coupled cell, p1.

It is now a simple matter to complete the proof of Proposition 3.1. Fort > T̂i , each cell moves horizontally to
the left under the fast flow until it reaches the nullclineC. Each is then governed by (2.5) until one of the cells
reachesv = vLK . Over that range, the distance between the cells is compressed. However, the amount apart is
bounded below, independent of initial conditions if the latter is sufficiently small. Thus, by choosingC0 small
enough, we can obtain the expansion in the statement of Proposition 3.1. The upper bound in that statement also
follows. �

Remark 6. The arguments in the proof of Lemma3.2 provide a simple estimate forgsyn to satisfy condition(P).
Letp1(t) cross the w-nullcline att = t̂D. Letδ denote the time fromp2(t̂D) to p1(t̂D) under the dynamics(2.6).Let
σ = T̂1 − t̂D. The sufficient condition for(P), recast in terms of these newly defined quantities, isδ < σ . We now
estimateδ andσ .
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Fig. 9. Compression for case (R). The ordering of times isT̂2 < T̂1. Over thev-range [̂v1(T̂2), vθ ], p2 is governed by (2.6) whilep1 is governed
by (2.4). Note for these initial conditions, the cells preserve their orientation.

Let N = max|f (v, w) − gsyn(v − vsyn)| for vθ < v < vD andw > wRK. Then

σ ≥ vD − vθ

N
≥ β − vθ

N
.

Note thatβ − vθ is independent ofgsyn andN is O(1) with respect togsyn. Next we estimate the timeδ. The
time between thepi is invariant as thesepi evolve alongRγ to v = vD. On Rγ , ŵ′

i is O(γ ) while the dis-
tance between thêwi is O(gsynγ ), by Remark 4. Thus the time between theŵi is O(gsyn). Therefore the simple
condition

β − vθ

N
> O(gsyn),

implies that the parameters fall into case (P).

3.2. Compression

We again start with cell 1 at the left knee and cell 2 on the left branch with height1 above the knee. It is also
assumed that cell 2 lies below the left knee ofC1. We show that if1 is sufficiently large (but still O(γ )), then the
cells return after one cycle with a closer distance. More precisely, we prove

Proposition 3.2. There existsM0 such that if1 > M0γ , then5(1) < 1.

Proof. As before, we estimate the distance between the cells as they traverse through different portions of phase
space. We use much of the same notation as in the proof of Proposition 3.1. In particular, letpi = (v̂i , ŵi) be the
point on the center manifoldRγ which has the same asymptotic phase as celli at t = t̂i (see Fig. 9). Analysis
similar to that in Lemma 3.1 shows that there existsM3 such that for eachi = 1, 2,

0 < ŵi − wi(0) < M3γ.
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Therefore, if1 > M3γ , then

0 < ŵ2 − ŵ1 < 1 + M3γ.

There is an important difference between the argument in the expansion part and the current situation. In the
former, with1 small enough, the fact that the cells satisfy different equations in some voltage interval leads to
the crossing of the trajectories and the expansion of the initial spatial differences. However, theÕ(γ ) expansion is
bounded, independent of1, and for large enough1 (but still O(γ )), this effect is not enough to cause the crossing
of trajectories. Thus, we havep2 abovep1 on Rγ unlike the estimates with small difference in initial conditions.
Hence,p2(t) will leave the active phase beforep1(t) does so; i.e.̂T2 < T̂1.

We next followp1(t) andp2(t) for t̂2 < t < T̂2. It is during this time that compression takes place. Note that
t̂1 < t̂2. Hence,ŵ1(t̂1) < ŵ1(t̂2) and

ŵ2(t) − ŵ1(t) = ŵ2(t̂2) − ŵ1(t̂2) + γ

∫ t

t̂2

g(v̂2, ŵ2) − g(v̂1, ŵ1) dτ

< ŵ2 − ŵ1 + γ

∫ t

t̂2

g(v̂2, ŵ2) − g(v̂1, ŵ1) dτ

< 1 + M3γ + γ

∫ t

t̂2

∂g

∂v
(v̂2 − v̂1) + ∂g

∂w
(ŵ2 − ŵ1) dτ.

Recall that nearRγ , ∂g/∂v > 0 and∂g/∂w < 0. Let M4 = min {|∂g/∂w|} nearRγ . Since the slope ofRγ is
negative,̂v2 − v̂1 < 0. Thus, as long aŝw2(t) > ŵ1(t),

ŵ2(t) − ŵ1(t) < 1 + M3γ − γM4

∫ t

t̂2

ŵ2 − ŵ1 dτ.

We apply Gronwall’s inequality to conclude that ifγ is sufficiently small, then

ŵ2(t) − ŵ1(t) ≤ (1 + M3γ )e−γM4(t−t̂2). (3.5)

We now consider the orientation reversing and preserving cases separately. Suppose that (R) is satisfied andβ < vθ

(see Fig. 9). Then botĥwi(t) continue to increase witĥw2(t) > ŵ1(t) until v̂2 crossesvθ whent = T̂2. The time
T̂2 − t̂2 is O(1/γ ) so there existsα ∈ (0, 1), which does not depend onγ , such that exp{−γM4(T̂2 − t̂2)} < α.
From (3.5), we conclude that

0 < ŵ2(T̂2) − ŵ1(T̂2) < α(1 + M3γ ). (3.6)

For t > T̂2, ŵ1(t) continues to increase, at least until cell 1 crossesv = vθ at t = T̂1. Moreover,p1(t) no longer
receives input from cell 2, sop1(t) now satisfies (2.4). As discussed in Remark 5, this decreases the magnitude of
the slope ofp1(t). As in the proof of Lemma 3.2, this implies thatŵ1(T̂2) < ŵ1(T̂1) < ŵ2(T̂2). Hence, from (3.6)

0 < ŵ2(T̂2) − ŵ1(T̂1) < α(1 + M3γ ).

Since each cell crossesv = vθ exponentially close topi(t), we can chooseα andM3 such that

0 < w2(T2) − w1(T1) < α(1 + M3γ ).

By continuous dependence, a similar estimate holds if (R) is satisfied withvθ < β andβ − vθ is sufficiently small.
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After the cells crossvθ they move horizontally to the left branch ofC and then along the left branch until one of
the cells reaches the left knee. Along their evolution to the left knee, thew-values of the cells further compress, as
another Gronwall-type argument shows. Hence,

5(1) < α(1 + M3γ ).

The proposition now follows if we letM0 = max{M3, αM3/(1 − α)}.
The argument for case (P) is very similar, the only difference being that theŵi begin to decrease before the cells

crossv = vθ . ChooseTD so thatp2(t) crosses thew-nullcline whent = TD. Hence,ŵ2(t) reaches a maximum
whent = TD. Now TD − t̂2 = O(1/γ ), so there existsα1 ∈ (0, 1) with exp{−γM4(TD − t̂2)} < α1. From (3.5),
we conclude that

0 < ŵ2(TD) − ŵ1(TD) < α1(1 + M3γ ).

Now, ŵ2(t) decreases forTD < t < T̂2. Note thatT̂2 − TD = O(1). This is becausev′
2 = O(1) for TD ≤ t ≤ T̂2

andvD − vθ = O(1). Sincew′
2 = O(γ ), it follows that there must existM5 such that

0 < ŵ2(TD) − ŵ2(T̂2) < M5γ.

Now p1(t) follows the same trajectory asp2(t) until t = T̂2. For T̂2 ≤ t ≤ T̂1, p1(t) satisfies (2.4). As discussed
in Remark 5, this decreases the magnitude of the slope ofp1(t). It follows thatŵ1(t) increases to at most̂w2(TD)

and then decreases until cell 1 crossesv = vθ . Hence,

|ŵ2(T̂2) − ŵ1(T̂1)| < |ŵ2(TD) − ŵ2(T2)| + |ŵ2(TD) − ŵ1(TD)| < α11 + (α1M3 + M5)γ.

Since each celli crossesv = vθ exponentially close topi(t), we can choose the constants so that the same estimate
holds for|w2(T2) − w1(T1)|. The cells then move horizontally to the left branch ofC and then down that branch.
As before, thew-values of the cells continue to compress. We therefore have that

5(1) < α11 + (α1M3 + M5)γ.

The proposition now follows ifM0 = max{M3, (α1M3 + M5)/(1 − α1)}. �

Remark 7. The synchronizing effect for two cells starting at a large enoughO(γ ) distance is analogous to the
synchronization associated with “fast threshold modulation”(FTM) for a pair of cells with only two time scales
O(1) andO(ε). In the FTM case, the synchrony arises because thew-coordinate does not change across a jump,
while the rate in the active state is higher than that in the silent state, producing a compression in the time metric. In
the current case, in which there is an intermediate time scale, there is a change inw across the the jump; however,
the dominant effect in the synchronization is still that the progress through the active state is much faster than that
in the silent state.

3.3. Contraction mapping argument

We now produce an interval (1exp, 1com) with the properties that 0< 1exp < 1com, 5(1exp) > 1exp, 0 <

5(1com) < 1com, and5 is a contraction map on that interval. This will imply that the graph of5 crosses the
diagonal with slope strictly between−1 and+1, and hence there is a unique fixed point in that interval.

From the expansion argument, we know that we can choose a1exp so that5(1exp) > 1exp. For1com, the con-
traction map argument becomes easier if we choose a value that is not too large. More specifically, consider the
case (R). We know that for small enough1, cells reverse their orientation after one cycle. However, for cells that
start far enough apart, the compression argument for case (R) showed that cells preserve their initial orientation.
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Fig. 10. The contraction of cells 2 and 3 for case (R). The ordering of times isT̂1 < T̂3 < T̂2. Throughout their trajectories, cells 2 and 3 are
governed by the same sets of equations.

We choose1com > 1exp so that on [1exp, 1com], the map5 reverses orientation after one cycle. Since there
are points1 at which5 is orientation reversing, and others for which5 is orientation preserving,1com may
be chosen so that5(1com) is arbitrarily close to 0; in particular, we may choose it so that 0< 5(1com) <

1com. A similar argument works for the case (P), but now the map5 is orientation preserving on the interval of
interest.

The argument that5 is a uniform contraction map has a different flavor than the compression argument. In the
latter, we considered a trajectory starting above the left knee and interacting with the one starting at that knee. To
show that5 is uniformly contracting, we must show that any two points12, 13 in the interval (1exp, 1com) get
brought closer together under5. For this, trajectories starting out above the knee each interact with the one starting
at the knee, not with each other; that is, it is the trajectory starting at the knee whose position determines when the
other trajectories receive excitation.

The following result demonstrates that5 is a uniform contraction on (1exp, 1com).

Proposition 3.3. There existsα2 ∈ (0, 1) such that if1exp < 12 < 13 < 1com andγ is sufficiently small, then
|5(13) − 5(12)| < α2(13 − 12).

Proof. As before, we follow the trajectories corresponding to each cell around in phase space. Cell 1 starts from
the left-hand knee, and cells 2 and 3 start above it.

When cell 1 crossesvθ it excites cells 2 and 3, thus causing them to jump up. Their trajectories are horizontal
until vθ . Let pi = (v̂i , ŵi) be defined as before, now fori = 1, 2, 3. Recall that these are the points onRγ which
have the same asymptotic phase as celli. Because of our choice of1com, cell 1 now has the largestw-value. The
other two do not reverse orientation, soŵ1 > ŵ3 > ŵ2 (see Fig. 10).

We now need results concerning the Fenichel fibration [6]. These results state that the fibers depend smoothly on
bothγ and their position alongRγ . Since the fibers are horizontal whenγ = 0, it follows that there existsM6 such
that, forγ sufficiently small,

|ŵ3 − ŵ2| ≤ (1 + M6γ )(13 − 12).
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Let (v̂i(t), ŵi(t)) be the solution of (2.6) which passes throughpi at t = t̂i . A Gronwall-type argument, just as
in the preceding section, shows that as long asŵ3(t) > ŵ2(t),

ŵ3(t) − ŵ2(t) < (ŵ3 − ŵ2)e
−γM7(t−t̂3) < (1 + M6γ )(13 − 12)e

−γM7(t−t̂3), (3.7)

for someM7.
Now p1(t) is the first to crossvθ . If (R) is satisfied, then̂w2 andŵ3 continue to increase untilp2(t) andp3(t)

crossvθ , say whent = T̂i . Hence, (3.7) continues to hold. The time for these cells to crossvθ is O(1/γ ), so as
before, there existsα2 ∈ (0, 1) such that

|ŵ3(T̂3) − ŵ2(T̂2)| < α2(1 + M6γ )(13 − 12). (3.8)

A similar estimate must also hold for|w3(T3) − w2(T2)|.
After the cells crossvθ , they approach the left branch ofC horizontally and then proceed down this left branch.

A Gronwall-type argument shows that during this time, cells 2 and 3 are further compressed. Sinceα2 < 1, the
proposition follows from (3.8) ifγ is sufficiently small.

A similar argument holds if (P) is satisfied. Just as in the proof of Proposition 3.2, an additional estimate is needed
because thêwi(t) begin to decrease before the cells reach the threshold atvθ . We do not give the details here, since
the analysis is so similar to that done previously. �

4. Proof of Theorem 2

We demonstrate in this section that Theorem 2 follows from Theorem 1 and Theorem 1.2 in [10]. In order to
explain why this is so, we need to view solutions of the model from a more traditional dynamical systems point of
view. We have so far imagined the solution as two points, each corresponding to one of the oscillators, evolving in a
two-dimensional phase space. We now imagine the solution as a single point evolving in the full four-dimensional
phase space.

We need to reinterpret the geometric constructions of the singular solutions described earlier. First consider the
silent phase. Before we considered two points(v1, w1) and(v2, w2), evolving along the one-dimensional left branch
of C until one of the points reached the left knee ofC. We now think of this as a single trajectory moving along
a two-dimensional slow manifold until the trajectory reaches a fold, or curve of knees, of that slow manifold. The
slow manifold is given by

M ≡ {(v1, v2, w1, w2) : v1 = vL(w1), v2 = vL(w2), w1 > 0, w2 > 0},
and its fold is given by

F ≡M ∩ {w1 = 0 orw2 = 0}.
Here we have assumed thatwLK = 0, as before.

We actually have to consider only the evolution of the slow variablesw1 andw2. This is because each of the
fast variables is given byvi = vL(wi). Hence, we can project the full trajectory, along with the slow manifoldM
and the foldF , onto the(w1, w2) slow phase plane. This reduces the full system to the following two-dimensional
system for the slow variables:

w′
1 = g(vL(w1), w1), w′

2 = g(vL(w2), w2). (4.1)

This system remains valid as long as

(w1, w2) ∈MP ≡ {(w1, w2) : w1 > 0 andw2 > 0}.
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The silent phase ends when(w1, w2) reaches the boundary ofMP along the curve

FP ≡ {(w1, w2) : eitherw1 = 0 andw2 ≥ 0, orw1 ≥ 0 andw2 = 0}.
Note thatFP is smooth except there is a ‘corner’ at the origin; this corresponds to the point where the synchronous
solution leaves the silent phase.

Now the return map5 can be viewed as defining a map from some subset ofFP back intoFP. We will also
denote this map as5. Theorem 1 states that if (P) or (R) is satisfied andγ is sufficiently small, then5 is a uniform
contraction on a subset ofFP that is anÕ(γ ) distance away from the origin. This subset contains the fixed point
corresponding to the almost-synchronous singular solution. As a result, there is no problem in showing that this
map is differentiable in an O(γ ) neighborhood of the fixed point. So we conclude that the linearization of5 at its
fixed point has one eigenvalue which has absolute value less than one.

We now wish to invoke Theorem 1.2 in [10] to conclude that the singular periodic solution given by Theorem 1
perturbs, forε > 0, to an asymptotically stable O(ε)-solution of (2.2). To do this, we must check that the hypotheses
of the theorem in [10] are satisfied. These are considered below. In what follows, we fixγ so that the conclusion of
Theorem 1 holds. We also assume that the fixed point of5, given by Theorem 1, is atw2 = 1. Hence, if we view
5 as a map from a subset ofFP intoFP then the fixed point is at(w1, w2) = (0, 1) ≡ p0. Of course, by symmetry,
there is also a fixed point at(1, 0).

The first hypothesis that we need to verify concerns solutions of the slow subsystem (2.5). We must check that
the solution of (4.1) corresponding to the singular periodic solution approachesp0 transverse toFP. However, this
is trivial since atp0, bothw′

1 andw′
2 are non-zero.

The second hypothesis is concerned with the fast subsystem. Consider the pointP0 = (v1, v2, w1, w2) =
(vL(0), vL(1), 0, 1). This is the point in the full phase space that lies on the singular periodic solution along the
fold F inM. That is,p0 is the projection ofP0 onto the slow phase plane. We must show that there is a unique
solution of the fast subsystem which approachesP0 ast → −∞. This will be the case if the left knee ofC is in
some sense non-degenerate. That is, if we write the cubicC asw = h(v), thenh” 6= 0 at the left knee ofC. We
assume that this is the case.

The next hypothesis that has to be verified is concerned with the map5. We need precisely what was discussed
above; that is, the linearization of5 has all of its eigenvalues inside of the unit circle.

We also need that the jump-up curveFP is smooth. This is certainly true atp0. Note that this is not the case at the
origin whereFP has a corner. Hence, one cannot apply the results in [10] directly to analyze the stability properties
of the synchronous solution.

There is one more technical condition to worry about. In order to apply the results of [10], we need that the
vector field defined by the model is sufficiently smooth. This is actually not the case because of the Heaviside step
functions. Once we prove Theorem 1, however, we can smooth out the discontinuities in the Heaviside functions to
conclude that Theorem 1 is still valid for the smooth approximations. We are then justified to apply the results in
[10].

5. Numerical simulations

We simulated the network of two coupled cells using the equations given in Appendix A. In Fig. 11, we show
voltage traces of an order preserving solution. The parametersε = 0.001, γ = 0.025, vθ = vst = −15, v3 =
−5 andgsyn = 0.5 were used. The parameterβ which appears in the analysis does not enter in the simula-
tions. Instead the parameterv3, which is the half activation voltage for an outward current associated with the
g-nullcline, does. If the rise of theg-nullcline is sufficiently sharp, thenv3 closely approximatesβ. Notice that
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Fig. 11. Order preserving solution. Time is measured in ms.

vθ < v3 produces an order preserving orbit which is consistent with condition (P) of Theorem 1. By changing
the parameters tovθ = vst = 0, v3 = −20, andgsyn = 2.0, we obtain an order reversing solution, depicted in
Fig. 12. Again note that the choice of these parameters falls into condition (R) for which the solution is order
reversing.

In our analysis, we showed how O(γ ) differences in thew-values of the cells as they evolve along the left branch
of C get transformed into O(1) differences in the time at which they cross the thresholdvθ . In Table 1, we verify
this fact and show how the relative lag time atvθ is a fraction of the period of the cell. In the table, the lag time is
computed by constructing a Poincare section at the position of cell 1, at for examplev = −50 mV, and measuring
the time cell 2 takes to reach this section. The relative lag atv = vθ is simply the lag atvθ divided by the period of
the cell. The parameters are the same as in Fig. 11.

Our analysis concentrated only on the existence of order reversing and preserving orbits. Other solutions do exist,
however. When the initial conditions are outside the basin of attraction of the O(ε)-solution then the cells may be
attracted to an anti-phase orbit as shown in Fig. 13. Here the parameters are identical to Fig. 11. Rigorous conditions
and proofs for existence of anti-phase solutions in relaxation oscillator models are given in [9]. This study reports
that there exists a region of bistability in parameter space in which both the anti-phase and the synchronous solution
are stable. For our case, the simulations indicate bistability between an anti-phase and O(ε)-synchronous solution.
However, since the duty cycle of our cells, the ratio of time in the active phase to time in the silent phase, is O(ε/γ )
and therefore small, initial conditions which start away from the anti-phase solution take long amounts of time to
actually approach it. This is consistent with results in [9] which show that the time length of transients is inversely
related to the duty cycle.
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Fig. 12. Order reversing solution. Time is measured in ms.

In our analysis, we restricted the parameters tovθ = vst. In this situation, the synchronous solution is unstable. By
changingvθ > vst, we can stabilize the synchronous solution. In Fig. 14, we start with the parameters of the order
preserving orbit of Fig. 11. Att = 500 ms, we changevθ = −5, and the cells quickly synchronize. Att = 1200 ms,
we change back tovθ = −15 to illustrate the instability of the synchronous solution whenvθ = vst. The reason why
changingvθ > vst affects the stability of solutions is straightforward. Considerε = 0, and letvθ > vst independent
of their relationship toβ. When cell 1 jumps up, it will crossvst before it reachesvθ , causing cell 2 to jump up.
However, until it reachesvθ , cell 1 will still be governed by (2.3), wherew′ = 0. This limits the expansion on the
up jump. In fact, analysis similar to that given in Lemma 3.1 demonstrates that the range of voltages over which
expansion takes place is (vθ , vF ). Hence, ifvθ > vF , then no expansion will take place and the synchronous solution
will be stable. Recall, from the proof of Lemma 3.1, thatvF is determined by the time it takes for cell 2 to cross
vst. Hence, raisingvθ and loweringvst both help to stabilize the synchronous solution.

Table 1
The table shows how differences in thew-values of the cells atv = −50 mV get transformed into differences in times to thresholdvθ

γ Period (ms) Lag atV = −50 (ms) w2 − w1 atV = −50 Lag atv = vθ (ms) Relative lag atV = vθ

0.001 573 0 0 0 0
0.005 388 7 0.007 5 0.012
0.01 360 10 0.010 5.5 0.015
0.02 332 19 0.019 8 0.024
0.025 315 32 0.032 9 0.028
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Fig. 13. Anti-phase solution. Time is measured in ms.

By takingvθ < vst and specifying that both lie to one side or the other ofv3 (or β) one can enhance the time lag
between cells in either the order reversing or preserving case. The logic is similar to above. This change expands
the region in phase space over which the cells are governed by different equations, thus heightening the amount of
expansion. When the parameterβ lies betweenvθ andvst the situation is more complicated.

6. Discussion

In this paper, we have shown that two cells coupled by instantaneous excitatory synapses can display a variety of
firing patterns ranging from almost-synchronous to synchronous to anti-phase solutions. The existence and stability
of these different solutions depend critically on the relative values of the thresholdsvθ , which is intrinsic to the
cell, andvst, which is related to the synapses between cells. For the almost-synchronous solution, the effect of
the intermediate time scale is to provide a region in phase space over which the cells follow different differential
equations. This difference in governing equations creates an expansion for cells that are too close together and a
compression for cells which are too far apart. Our analysis provides bounds for not only the degree of asynchrony
in the almost-synchronous solution, but also the basin of attraction of this solution.

Many of the works studying cells coupled by excitation [1,7,8,21,22] use simplified description of the cells such
as integrate and fire or spiking neuron models. These studies report that the synchronous solution is stable if the rise
time of excitation is fast enough. In our work, using instantaneous synapses which have infinitely fast excitatory rise
times, we have shown that the synchronous solution is unstable, and that a nearby almost-synchronous solution is in
fact stable. One reason for the difference in our conclusions is that these simplified models ignore the dynamics of
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Fig. 14. Effects of makingvθ > vst. The cells were started with the order preserving parameters of Fig. 11 withvθ = vst. At t = 500 ms, we
changed tovθ = −5. At t = 1200 ms, we changed back tovθ = −15. The figure shows how the thresholdsvθ andvst can modulate the stability
of the synchronous solution.

cells during their active phase; we have shown that the dynamics of the active phase of a cell can determine whether
or not synchrony is stable, as well as the amount of asynchrony that may occur.

Almost-synchronous solutions can also arise in networks with excitatory synapses if there is some heterogeneity
in either the individual cells or the total amount of synaptic input which individual cells receive [12,17,19]. In this
paper, we assumed that the network is completely homogeneous. The almost-synchronous solution arises because
of interactions between different time scales, not because of heterogeneities in the network. As discussed above, the
almost-synchronous solution considered here is created primarily while the cells are in the active phase and satisfy
different differential equations. Unlike [12], we were able to give specific conditions on the biophysical parameters
insuring that almost-synchrony occurs. We also considered relatively strong coupling between the cells in the active
phase, unlike [12].

Several papers [8,9,16,22] report that stable anti-phase solutions may exist in the same parameter ranges as the
synchronous solution. Our numerical simulations support this conclusion except that the bistability may also be
between the anti-phase and almost-synchronous solutions. Note that in [9,16], the intrinsic dynamics of the cells
occur on only two time scales, precluding the possibility of almost-synchronous solutions.

The model of a cell with three time scales that we have described may provide certain computational advan-
tages. Suppose, for instance, that a downstream detector receives input from the network described above. If the
detector measures firing rate, then it will be unable to distinguish between an almost-synchronous and synchronous
solution. In this case, the cells may as well be governed by standard two-time scale models. However, if the down-
stream detector measures inter-spike interval, then it will be able to discriminate between almost-synchronous and



A. Bose et al. / Physica D 140 (2000) 69–94 93

synchronous solutions. In this case, our three-time scale model possesses the advantage that by modulating various
thresholds, it can produce stable behaviors of both of these types. Moreover, by adjusting parameters in the model,
the degree of asynchrony, or alternatively, the inter-spike interval, can be varied. Thus these neurons are capable of
encoding far more information than two-time scale cells.

Appendix A

The equations that we used are based on the Morris–Lecar equations [11], with parameter values largely taken
from [14]. Only those that were fixed throughout the simulations are listed below. Those parameters that were varied
are given in Section 5. The equations for each oscillator, fori 6= j , are

v′
i = (−gl(vi − vl) − gkwi(vi − vk) − gcam∞(vi)(vi − vca) − gsynH(vj − vst)(vi − vsyn) − Iapp)

c
,

w′
i = ε (w∞(vi) − wi)

τ∞(vi)
,

where

m∞(v) = 0.5

(
1.0 + tanh

(
v − v1

v2

))
, w∞(v) = 0.5

(
1.0 + tanh

(
v − v3

v4

))
,

τ∞(v) = 0.5

(
1.0 + tanh

(
v − vθ

vr

)) (
ε

γ
− 1.0

)
+ 1.0.

The parametersgca = 5, v1 = −10,v2 = 18,gk = 8, v4 = 4, gl = 2, Iapp = 90,c = 100,vca = 120,vk = −84,
vl = −60,vsyn = 40, andvr = 0.001. The equations were scaled by a factor of 4 to speed up the oscillations since
ε is taken to be so small.
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