Selected Publications
Anesthesia
- * M. McCarthy, E. Brown, and N. Kopell. Potential network mechanisms mediating electro-encephalographic beta rhythm changes during propofol-induced paradoxical excitation. J. Neurosci., 2008;28(50):13488-504.
- * S. Ching, A. Cimenser, P. Purdon, E.N. Brown, and N. Kopell. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc. Natl. Acad. Sci. U. S. A., 2010;107(52):22665-70.
- S. Ching, P.L. Purdon, N. Kopell, and E.N. Brown. A neuronal-metabolic model for the burst suppression electroencephalogram. Proc. Nat. Acad. Sci., 2012 Feb 21; 109(8):3095-100.
- M. McCarthy and N. Kopell. The effect of propofol anesthesia on rebound spiking. SIAM J. Applied Dynamical Systems, (2012.Dec.13) 11(4):1674-1697.
- * S. Vijayan, S. Chin, P. Purdon, E. Brown, and N. Kopell. Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. J. Neurosci., 2013; 33 11070-11075.
- * P. Purdon, E. Pierce, E. Mukamel, J. Walsh, M. Prerau, K. Wong, A. Salazar-Gomez, P.G. Harrell, A.L. Sampson, A. Cimenser, S. Ching, N. Kopell, C. Tavares-Stoeckel, K. Habeeb, R. Merhar, and E. Brown. Electroencephalogram signatures of loss and recovery of consciousness during propofol-induced general anesthesia. Proc. Natl. Acad. Sci. U. S. A., 2013 Mar 19;110(12):E1142-51. doi: 10.1073/pnas.1221180110. Epub 2013 Mar 4.
- A. Soplata, M. McCarthy, J. Sherfey, S. Lee, P. Purdon, E. Brown, and N. Kopell. 2017 Thalamocortical control of propofol phase-amplitude coupling. PLOS Comput. Biol., 2017 Dec 11;13(12):e1005879. doi: 10.1371/journal.pcbi.1005879. eCollection 2017.
- * A. Soplata, E. Adam, E. Brown, P. Purdon, M. McCarthy, and N. Kopell. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J. Neurophysiol., 2023 Jul 1;130(1):86-103. doi: 10.1152/jn.00068.2022. Epub 2023 Jun 14.
- * E. Adam, M. Kowalski, O. Akeju, E. Miller, E. Brown, M. McCarthy, and N. Kopell. Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors. Proc. Natl. Acad. Sci. U. S. A., 2024 May 28;121(22):e2402732121. doi: 10.1073/pnas.2402732121. Epub 2024 May 20.