MA 225 October 17, 2005

Multivariable chain rules

Today we discuss two types of chain rules. Both generalize the single variable chain rule.

Chain Rule—Type I

Consider a vector-valued function P(t) = z(¢)i + y(t)j which parameterizes a curve in the
xy-plane and a function f(x,y). How is the derivative df /dt related to the partial derivatives
of f(z,y) and the derivative P’(t)?

Example. Consider P(t) = ti + t%j and f(z,y) = 222 + y2.

Chain Rule. The derivative of the composition f(P(t)) is given by
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This version of the Chain Rule has an important formulation in terms of the gradient of f.

Definition. Given a function f(z,y) that is differentiable at the point (a,b). Then the
gradient vector of f at (a,b) is the vector

0 0
Vf(a,b) = ai(a, b)i+ a‘;(a, b)j.

Sometimes the gradient vector of f is denoted gradf(a,b).
Restatement of the Chain Rule. The derivative of the composition f(P(t)) is

4

gt |y, — V(P (t0)) - (ko).

Example. We return to P(t) = ti + t?j and f(x,y) = 22% + 3°.

Animation of this chain rule

Example. Use the polar curve r = cos 260 to parameterize a curve P(¢) in the zy-plane and
consider the composition f(P(t)) where

f(l‘,y> :y2 _‘%2‘
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This chain rule has some important theoretical implications as well.

Theorem.

1. Let f(z,y) be a differentiable function such that Vf(z,y) = 0 for all (x,y). Then
f(x,y) is a constant function.

2. If g(z,y) and h(x,y) are two differentiable functions such that
Vy(z,y) = Vh(z,y)

for all (z,y). Then g(z,y) = h(z,y) + K for some constant K.
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Chain Rule—Type II

For this situation, consider a function f(x,y) of two variables and suppose that the variables
x and y are functions of other variables.

For example, consider x and y as a function of the polar coordinates r and 6. That is,

x=rcosf and y=rsind.

Example. Let f(z,y) = vy +y*> What is the angular rate of change of f(z,y) at the point
(x,y) =(1,2)7



