Level sets for functions of three variables

As we discussed last Friday, it’s hard to draw a graph of a function of three variables. So we must visualize its level sets.

Recall that the level sets of the function

\[P(x, y, z) = x + y + 10z \]

are parallel planes that are almost horizontal.

Example. Sketch the level sets of the function

\[f(x, y, z) = x^2 + y^2 - z^2. \]
Limits and continuity

In order to be able to do calculus for multivariable functions, we need to be able to talk about limits.

Informal definition. We say that

\[\lim_{(x,y) \to (a,b)} f(x,y) = L \]

if \(f(x,y) \to L \) as \((x,y) \to (a,b) \) along any path in the xy-plane.

Here are two examples to illustrate some of the issues that arise.

Example. Consider

\[\lim_{(x,y) \to (0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}. \]

Example. Consider

\[\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + y^2}. \]
Partial derivatives

Consider a function of two variables $f(x, y)$. How do we talk about its rate of change at a given point?

Definition. The partial derivative of $f(x, y)$ in the x-direction at the point (a, b) is defined by

$$\frac{\partial f}{\partial x}(a, b) = \lim_{h \to 0} \frac{f(a + h, b) - f(a, b)}{h}.$$

In other words we vary x but keep y constant as we take the limit.

Example. Consider $f(x, y) = 9 - x^2 - y^2$. Let’s calculate

$$\frac{\partial f}{\partial x}(1, 2)$$

directly from this definition.

There is another, more efficient way to calculate this partial derivative.
Let’s try a more complicated example.

Example. Consider \(g(x, y) = y \ln(xy) + y \).

The partial derivative with respect to \(y \) is defined in a similar fashion.

Definition. The partial derivative of \(f(x, y) \) in the \(y \)-direction at the point \((a, b)\) is defined by

\[
\frac{\partial f}{\partial y}(a, b) = \lim_{h \to 0} \frac{f(a, b + h) - f(a, b)}{h}.
\]

We keep \(x \) constant and vary \(y \) as we take the limit.

Example. Consider \(g(x, y) = y \ln(xy) + y \) again and calculate \(\partial g/\partial y \) this time.
Example. Consider the function \(f(x, y) = 9 - x^2 - y^2 \) at the point \((1, 2)\). In what direction, the \(x \)-direction or the \(y \)-direction, does \(f(x, y) \) decrease most rapidly?