MA 225 October 10, 2007

Partial derivatives and tangent planes

The partial derivative with respect to y is defined just like the partial derivative with respect
to x.

Definition. The partial derivative of f(z,y) in the y-direction at the point (a,b) is defined

by
O (0,) = iy T 001 = 10 0)

We keep = constant and vary y as we take the limit.

Example. Consider g(z,y) = yIn(zy) + y again and calculate dg/dy this time.

Example. Consider the function f(z,y) = 9 —x? —y? at the point (1,2). In what direction,
the z-direction or the y-direction, does f(z,y) decrease most rapidly?
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Geometric interpretation of partial derivatives

Now let’s discuss the geometric significance of the two numbers that we obtain from the
partials of f(x,y) = 9—a2?—y? at (1,2). For example, we can use these numbers to calculate
the equation of the tangent plane to the graph of z = f(z,y) at the point (1,2,4).
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Definition. Suppose that the partial derivatives

a—(a, b) and a—(a, b)

exist at the point (a,b). Then let

0 0
T,=i+ (a—i(a, b)) k and T,=j+ (8_;;(@’ b)) k.

The normal vector for f(z,y) at the point (a,b) is N =T, x T,.

The equation for the tangent plane can be written as

of of
Z2—c= <a$(a,b)> (x —a)+ (ay(a, b)) (y —b),

where ¢ = f(a,b).



MA 225 October 10, 2007

Linear approximation

The equation for the tangent plane can also be thought of as a linear approximation to
f(z,y) for (z,y) near (a,b).

We can use the the formula for the tangent plane to define a “linear” function

L) = a0+ (5100 o=+ (San) -,

The graph of this function is the tangent plane for f(z,y) at the point (a,b), and it provides
a linear approximation to f(x,y) near (a,b).

Example. The linear approximation of the function f(z,y) = 9 — 2*> — y? near the point
(1,2) is
f($7y> ~ L(l’,y) =4- 2(1'_ 1) _4<y_ 2)

Another way to write this approximation is as
fA+ Az, 24 Ay) ~4—2Azx — 4 Ay,
where Az =x — 1 and Ay =y — 2.

Example. Calculate the linear approximation of the function g(x,y) = yIn(zy) + y near
the point (1/2,2).
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Second partials

Just as there is a second derivative for a function of one variable, there are four second
partial derivatives for a function of two variables.

Example. Consider g(z,y) = yIn(zy) + y as discussed earlier. We have already calculated

that 9 9
g Y g
= == d = =2+1 :
e 1 an o + In(zy)
Consequently,
Pg_ v aq Fo_1
ox? a2 o2y

What about the other two partials

9 (99 amd 2 (99,
oy \ Oz or \dy )~



MA 225 October 10, 2007

Clairaut’s Theorem. If f(x,y) and its partial derivatives

of of 0*f 0*f

ox’ 0Oy’ 0xdy’  Oyor

are continuous, then the order of partial differentiation is irrelevant. In other words,

o*f B o*f
oxdy  Oyox’

There is a link on the course web page to a discussion of an example for which the conclusion
of Clairaut’s Theorem does not hold. We will do our best to avoid such functions in this
course.



