Multivariable chain rules

Today we start our discussion of multivariable chain rules. There are two basic types, and both generalize the single variable chain rule.

Chain Rule—Type I

Consider a vector-valued function \(\mathbf{P}(t) = x(t)i + y(t)j \) which parameterizes a curve in the \(xy \)-plane and a function \(f(x, y) \). How is the derivative \(df/dt \) related to the partial derivatives of \(f(x, y) \) and the derivative \(\mathbf{P}'(t) \)?

Example. Consider \(\mathbf{P}(t) = ti + t^2j \) and \(f(x, y) = 2x^2 + y^2 \). Let’s calculate the derivative \(df/dt \) at \(t = 1 \).
The problem with this approach is that it ignores the fact that the function in question is really a composition of two functions. We can illustrate this composition symbolically by making a dependency chart.

Chain Rule. The derivative of the composition $f(P(t))$ is given by

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$$

Example. Back to the composition of $P(t) = ti + t^2j$ and $f(x, y) = 2x^2 + y^2$. Let’s calculate the derivative df/dt at $t = 1$ using the Chain Rule.
This version of the Chain Rule has an important formulation in terms of the gradient of f.

Definition. Given a function $f(x, y)$ that is differentiable at the point (a, b). Then the *gradient vector* of f at (a, b) is the vector
\[\nabla f(a, b) = \frac{\partial f}{\partial x}(a, b) \mathbf{i} + \frac{\partial f}{\partial y}(a, b) \mathbf{j}. \]

Sometimes the gradient vector of f is denoted $\text{grad} f(a, b)$.

Restatement of the Chain Rule. The derivative of the composition $f(P(t))$ is
\[\left. \frac{df}{dt} \right|_{t=t_0} = \nabla f(P(t_0)) \cdot P'(t_0). \]

Example. Once again we return to $P(t) = ti + t^2j$ and $f(x, y) = 2x^2 + y^2$.
Animation of this chain rule

Example. Use the polar curve $r = \cos 2\theta$ to parameterize a curve $P(t)$ in the xy-plane and consider the composition $f(P(t))$ where

$$f(x, y) = y^2 - x^2.$$
This chain rule has some important theoretical implications as well.

Theorem.

1. Let $f(x, y)$ be a differentiable function such that $\nabla f(x, y) = 0$ for all (x, y). Then $f(x, y)$ is a constant function.

2. If $g(x, y)$ and $h(x, y)$ are two differentiable functions such that

$$\nabla g(x, y) = \nabla h(x, y)$$

for all (x, y). Then $g(x, y) = h(x, y) + K$ for some constant K.