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Limits and continuity

In order to be able to do calculus for multivariable functions, we need to be able to talk
about limits.

Informal definition. We say that

lim
(x,y)→(a,b)

f(x, y) = L

if f(x, y)→ L as (x, y)→ (a, b) along all paths in the xy-plane.

Here are two examples to illustrate some of the issues that arise.

Example. Consider

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
.
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Example. Consider

lim
(x,y)→(0,0)

2xy

x2 + y2
.
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Partial derivatives

Consider a function of two variables f(x, y). How do we talk about its rate of change at a
given point?

Definition. The partial derivative of f(x, y) in the x-direction at the point (a, b) is defined
by

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
.

In other words, we vary x but keep y constant as we take the limit.

Example. Consider f(x, y) = 9− x2 − y2. Let’s calculate

∂f

∂x
(1, 2)

directly from this definition.
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There is another, more efficient way to calculate this partial derivative.

Let’s try a more complicated example.

Example. Consider g(x, y) = y ln(xy) + y.

The partial derivative with respect to y is defined in a similar fashion.

Definition. The partial derivative of f(x, y) in the y-direction at the point (a, b) is defined
by

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

We keep x constant and vary y as we take the limit.

Example. Consider g(x, y) = y ln(xy) + y again and calculate ∂g/∂y this time.
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Example. Consider the function f(x, y) = 9−x2−y2 at the point (1, 2). In what direction,
the x-direction or the y-direction, does f(x, y) decrease most rapidly?
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