MA 225 Section A Exercises on Centroids October 31, 2008

Note: The term *centroid* is used to describe the center of mass $(\overline{x}, \overline{y})$ of a flat plate (a lamina) with *uniform density* that occupies a region R in the plane. In this case, the density function $\rho(x, y)$ is constant, and consequently, it drops out of the computation for \overline{x} and \overline{y} .

- 1. Find the centroid of the region bounded by the graph of y = 1/x and the line 2x + 2y = 5.
- 2. Find the centroid of the region obtained by connecting the points (0,0), (4,0), (4,4), (2,4), (2,1), (0,1), and (0,0) in order by line segments.
- 3. Find the centroid of the region bounded by the graphs of $y = x^2$ and $y = x^3$.
- 4. Let R be the region in the first quadrant that inside the circle of radius a centered at the origin. Find its centroid.

Answers:

1.
$$(\overline{x}, \overline{y}) = \left(\frac{9}{30 - 32 \ln 2}, \frac{9}{30 - 32 \ln 2}\right)$$

2. $(\overline{x}, \overline{y}) = \left(\frac{13}{5}, \frac{17}{10}\right)$
3. $(\overline{x}, \overline{y}) = \left(\frac{3}{5}, \frac{12}{35}\right)$
4. $(\overline{x}, \overline{y}) = \left(\frac{4a}{3\pi}, \frac{4a}{3\pi}\right)$