MA 225 October 31, 2008

A little more about double integrals over general regions

I got a couple of questions after last class, and I think that everyone could benefit from
hearing the answers.

I briefly mentioned an example that is impossible to integrate using y-slices but is not difficult
if one uses z-slices.

Example.
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I also mentioned an old exam question:

Example. (Fall 2001 exam question) Consider the following region R in the zy-plane.
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It is bounded by the curves y = 22 and £ = >+ 1 and the linesy = —1, y =1, and 2 = —1.

Calculate
Z / x dA.

I subdivided the region R into two subregions R; and R,. The region R; was type 1, and
the region Ry, was type 2. Furthermore,

!/di:R/l/diJrR/z/di.

You should do both integrals using the techniques discussed last class, but don’t be surprised

when you see that
/ / xdA =0.
Ry
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Using polar coordinates to calculate double integrals

Some important double integrals involve a lot of radial symmetry. Consequently, they are
easier to evaluate if we use polar coordinates.

Two basic facts.
1
1. / V1—u?du= %
0
2. The volume of a solid sphere of radius 1 is 37.

Nonexample. Let’s try to calculate the volume of a hemisphere of radius 1 using polar
coordinates.

What’s wrong with this calculation?
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The problem with this calculation is that transforming to polar coordinates distorts area.

Recall the formula for area inside a polar curve (see the September 22 handout).

“ (r(0)?
0 2

area —

Rewriting this formula as a double integral suggests the correct approach for converting
double integrals to polar coordinates.
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Differential form for area in terms of polar coordinates

dA = rdrdf = rdfdr

Example. Let’s recalculate the volume of the hemisphere using this area adjustment factor.
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Example. Calculate the volume of the region that is inside the sphere
2y =4

and above the plane z = 1.




