MA 225 October 31, 2008

A little more about double integrals over general regions

I got a couple of questions after last class, and I think that everyone could benefit from hearing the answers.

I briefly mentioned an example that is impossible to integrate using y-slices but is not difficult if one uses x-slices.

Example.

$$\int_0^1 \int_{3y}^3 e^{x^2} \, dx \, dy = \int_0^3 \int_0^{x/3} e^{x^2} \, dy \, dx$$

I also mentioned an old exam question:

**Example.** (Fall 2001 exam question) Consider the following region R in the xy-plane.



It is bounded by the curves  $y = x^2$  and  $x = y^2 + 1$  and the lines y = -1, y = 1, and x = -1. Calculate

$$\iint\limits_R x \ dA.$$

I subdivided the region R into two subregions  $R_1$  and  $R_2$ . The region  $R_1$  was type 1, and the region  $R_2$  was type 2. Furthermore,

$$\iint\limits_R x \, dA = \iint\limits_{R_1} x \, dA + \iint\limits_{R_2} x \, dA.$$

You should do both integrals using the techniques discussed last class, but don't be surprised when you see that

$$\iint\limits_{R_1} x \, dA = 0.$$

Using polar coordinates to calculate double integrals

Some important double integrals involve a lot of radial symmetry. Consequently, they are easier to evaluate if we use polar coordinates.

## Two basic facts.

1. 
$$\int_0^1 \sqrt{1 - u^2} \, du = \frac{\pi}{4}$$

2. The volume of a solid sphere of radius 1 is  $\frac{4}{3}\pi$ .

**Nonexample.** Let's try to calculate the volume of a hemisphere of radius 1 using polar coordinates.

What's wrong with this calculation?

The problem with this calculation is that transforming to polar coordinates distorts area.





Recall the formula for area inside a polar curve (see the September 22 handout).

area = 
$$\int_{\theta_1}^{\theta_2} \frac{(r(\theta))^2}{2} d\theta.$$

Rewriting this formula as a double integral suggests the correct approach for converting double integrals to polar coordinates.

MA 225 October 31, 2008

Differential form for area in terms of polar coordinates

$$dA = r dr d\theta = r d\theta dr$$

**Example.** Let's recalculate the volume of the hemisphere using this area adjustment factor.

MA 225 October 31, 2008

Example. Calculate the volume of the region that is inside the sphere

$$x^2 + y^2 + z^2 = 4$$

and above the plane z = 1.

