MA 225 December 1, 2008

More on Green's Theorem

Green's Theorem relates line integrals of vector fields in the xy-plane to double integrals.

Theorem. (Green's Theorem) Let C be a positively-oriented, simple, closed curve in the plane and let D denote the region it encloses. Then

$$\oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA.$$

Example. Let C be the perimeter of the triangle with vertices (0,0), (1,0), and (0,1). Calculate

$$\oint_C x \, dx + xy \, dy.$$

Note: If $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ has a potential function, then

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0,$$

and we see that $\oint_C P dx + Q dy = 0$.

MA 225

Example. Compute the line integral

$$\oint -y^3 \, dx + x^3 \, dy$$

December 1, 2008

over the unit circle in the positively-oriented direction.

The curl of a planar vector field

I would like to use Green's Theorem to explain one of the basic concepts in vector analysis—the curl of a vector field—in the case where the vector field **F** is a planar vector field. It helps if you consider the vector field **F** as a velocity field of a fluid and you imagine a little "paddle wheel" suspended in the fluid (see Figure 6 on p. 963 of your text). We would like to measure how much the paddle wheel rotates as it moves through the fluid.

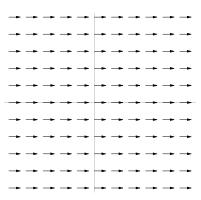
For velocity fields of fluids, the line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ is called the *circulation* of the fluid along the curve. The angular velocity of the paddle wheel at the point (x_0, y_0) is one-half of the *circulation density* of the velocity field at the point (x_0, y_0) . Circulation density is defined to be the limit

$$\lim_{r \to 0} \frac{\int_C \mathbf{F} \cdot \mathbf{T} \, ds}{\text{area inside } C}$$

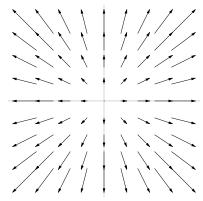
where C is a circle of radius r centered at (x_0, y_0) .

Here are five examples to illustrate this relationship.

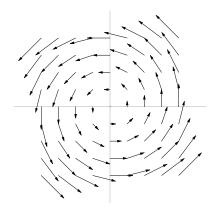
Example 1. Let F(x, y) = i.



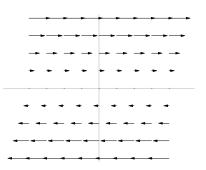
Example 2. Let $\mathbf{F}(x,y) = x\mathbf{i} + y\mathbf{j}$.



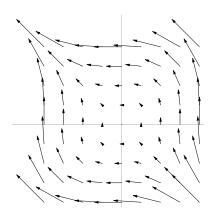
Example 3. Let $\mathbf{F}(x,y) = -y\mathbf{i} + x\mathbf{j}$.



Example 4. Let $\mathbf{F}(x, y) = y\mathbf{i}$.



Example 5. Let $\mathbf{F}(x, y) = -y^2 \mathbf{i} + x^2 \mathbf{j}$.



MA 225 December 1, 2008

Definition. For a planar vector field $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$, the curl of $\mathbf{F}(x,y)$ is the vector field

$$\operatorname{curl} \mathbf{F}(x,y) = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}.$$

To interpret the curl of **F** in this situation, we use Green's Theorem.

Theorem. (The vector form of Green's Theorem) Let C be a positively-oriented, simple, closed curve in the xy-plane and let D be the region that is enclosed by C. Then

$$\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_D (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} \, dA.$$

How does this help us interpret the curl of \mathbf{F} ?