Straight-line solutions

Last class we solved the initial-value problem

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -1 & 2\\ 0 & 1 \end{pmatrix} \mathbf{Y}, \quad \mathbf{Y}(0) = \begin{pmatrix} -1\\ -2 \end{pmatrix}$$

using a linear combination of the two solutions

$$\mathbf{Y}_1(t) = e^{-t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{Y}_2(t) = e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

We can solve any initial-value problem for this differential equation using an appropriate linear combination of $\mathbf{Y}_1(t)$ and $\mathbf{Y}_2(t)$. In other words, the general solution of this system is

$$\mathbf{Y}(t) = k_1 e^{-t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + k_2 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

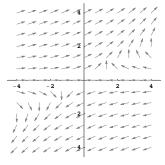
Note the difference between this version of the general solution and the general solution

$$\mathbf{Y}(t) = e^{-t} \begin{pmatrix} x_0 - y_0 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} y_0 \\ y_0 \end{pmatrix},$$

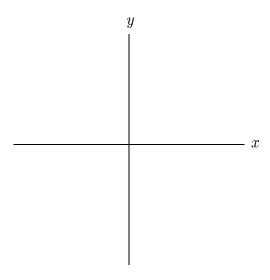
which we obtained by solving this system as a partially decoupled system.

For an arbitrary linear system $d\mathbf{Y}/dt = \mathbf{AY}$, how many solutions do we need to solve every initial-value problem?

Questions: How do we find two linearly independent solutions? Is there something special about the two solutions $\mathbf{Y}_1(t)$ and $\mathbf{Y}_2(t)$ in the example?



For a general linear system of the form $d\mathbf{Y}/dt = \mathbf{AY}$, what geometric property of the vector field guarantees the existence of these "straight-line" solutions?



"Straight-line" Solutions. Suppose that

$$\mathbf{AY}_0 = \lambda \mathbf{Y}_0$$

for some nonzero vector \mathbf{Y}_0 and some scalar λ . Then the function $\mathbf{Y}(t) = e^{\lambda t} \mathbf{Y}_0$ is a solution to the linear differential equation $d\mathbf{Y}/dt = \mathbf{AY}$.

We want nonzero initial conditions \mathbf{Y}_0 (vectors) so that

$$\mathbf{AY}_0 = \lambda \mathbf{Y}_0$$

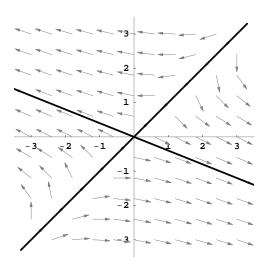
for some scalar λ .

Terminology: The scalar λ is called an *eigenvalue* of the matrix **A** and the vector \mathbf{Y}_0 is called an *eigenvector* associated to the eigenvalue λ .

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 4 & -5 \\ -2 & 1 \end{pmatrix} \mathbf{Y}.$$

First let's see what $\mathtt{MatrixFields}$ tells us about the eigenvalues and eigenvectors of the matrix \mathbf{A} .



Aside from the theory of algebraic linear equations

For what matrices \mathbf{B} does the equation $\mathbf{BY} = \mathbf{0}$ have nontrivial solutions?

Singular Matrices. The matrix equation $\mathbf{BY} = \mathbf{0}$ has nontrivial solutions \mathbf{Y} if and only if $\det \mathbf{B} = 0$.

Notes:

- 1. Most matrices are nonsingular (not singular).
- 2. We encountered a singular matrix last class when we studied the linear system that had a line of equilibrium points.

Finding eigenvalues and eigenvectors:

 $\mathbf{Example.}$ Find the general solution to

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 4 & -5 \\ -2 & 1 \end{pmatrix} \mathbf{Y}.$$