MA 226 April 2, 2010

Sinusoidal forcing

Today we are going to study forced equations where the forcing function is sinusoidal
(either sine or cosine). But first I want to remind you of the calculation that we did at the
end of last class. It saves a little time in these “guessing” problems.

Time saver: If we guess y(t) = ae* where a is a constant, we get

where p(\) = mA% + b\ + k is the characteristic polynomial.

Now let’s apply this guessing technique to sinusoidally forced linear equations.

Example. Let’s calculate the general solution to the equation

d*y  dy
— + — 4+ 2y = cos 2t.
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We can see the implications of this computation by entering this equation into ForcedMassSpring
on the CD.
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Here are the graphs of three solutions:
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Here is the graph of the steady-state solution:
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A little translation:

Consider the second-order linear forced equation

d2 dy
Y Ly
maE T

where m and k are positive and b > 0.

+ ky = f(t)

Engineering terminology:

forced response—any solution to the forced equation.

steady-state response—behavior of the forced response over the long term.
natural (or free) response—any solution of the associated homogeneous equation.

Why are initial conditions essentially irrelevant?
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When we guess a solution of the form y.(t) = ae®* and compute the complex number a,
we have essentially determined everything we need to know about the steady-state solution.
Euler’s formula gives us a nice way of determining the amplitude, frequency, and phase angle
of the steady-state solution immediately from a:



