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A little more on the steady-state solution

I still owe you an explanation for why I prefer to calculate the steady-state solution using
complex numbers.

On Friday, we calculated the steady-state solution

yp(t) = −1
4
(cos 2t− sin 2t)

for the equation
d2y

dt2
+
dy

dt
+ 2y = cos 2t,

and we did so using computations that involved complex numbers. In fact, we found yp(t)
as the real part of

yc(t) = −1
4
(1 + i) e(2i)t.

The complex number
a = −1

4
(1 + i)

tells us everything we need to know about the steady-state solution.

In order to see why, we use polar coordinates in the complex plane (see pp. 745–747 in
Appendix C of the text).
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Let’s rewrite a = −1
4
(1 + i) in this polar form.

What does this polar representation of a tell us about the steady-state solution?
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Sinusoidal forcing in the absense of damping

Now consider the mass-spring system without the dashpot.

Example. Let’s find the general solution to

d2y

dt2
+ 3y = cosωt.

Note the lack of a damping term. We want to see what happens with various forcing
frequencies.

(Additional blank space on the top of the next page.)
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Unfortunately the parts of the solution that correspond to the associated homogeneous
equation do not die out. So to get some qualitative understanding in this case, we make
a simplifying assumption. We consider the solution that satisfies the initial condition
(y(0), y′(0)) = (0, 0).

On the web site, there is a Quicktime animation of the graphs of these solutions as we
vary the forcing frequency ω. We can also visualize these solutions using a parameter in
HPGSystemSolver.
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