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A little more on the steady-state solution

I still owe you an explanation for why I prefer to calculate the steady-state solution using
complex numbers.
On Friday, we calculated the steady-state solution

yp(t) = —(cos 2t — sin 2t)

for the equation
d’y  dy
— + — + 2y = cos 2t,
az a7
and we did so using computations that involved complex numbers. In fact, we found y,(¢)

as the real part of '
(1+4) e,

PN

yc(t) - -
The complex number
a=—1(141)

tells us everything we need to know about the steady-state solution.

In order to see why, we use polar coordinates in the complex plane (see pp. 745-747 in
Appendix C of the text).



MA 226 April 5, 2010

Let’s rewrite a = —4(1 4 ¢) in this polar form.

What does this polar representation of a tell us about the steady-state solution?



MA 226 April 5, 2010

Sinusoidal forcing in the absense of damping
Now consider the mass-spring system without the dashpot.

Example. Let’s find the general solution to

d*y
— + 3y = coswt.
az Y

Note the lack of a damping term. We want to see what happens with various forcing

frequencies.

(Additional blank space on the top of the next page.)
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Unfortunately the parts of the solution that correspond to the associated homogeneous
equation do not die out. So to get some qualitative understanding in this case, we make
a simplifying assumption. We consider the solution that satisfies the initial condition

(4(0),4'(0)) = (0,0).

On the web site, there is a Quicktime animation of the graphs of these solutions as we
vary the forcing frequency w. We can also visualize these solutions using a parameter in
HPGSystemSolver.



