More on undamped sinusoidal forcing

Last class we computed the general solution to

$$\frac{d^2y}{dt^2} + 3y = \cos\omega t$$

assuming $\omega^2 \neq 3$, and we got $y(t) = k_1 \cos \sqrt{3} t + k_2 \sin \sqrt{3} t + \frac{1}{3 - \omega^2} \cos \omega t$.

Then, in order to understand the behavior of the solutions, we restricted our attention to those solutions that satisfy the initial condition (y(0), y'(0)) = (0, 0). Solving for k_1 and k_2 yields

$$y(t) = \frac{1}{3 - \omega^2} (\cos \omega t - \cos \sqrt{3} t).$$

On the web site, there is a Quicktime animation of the graphs of these solutions as we vary the forcing frequency ω . The following trig identity helps us interpret what we see in the animation.

Trig identity:

$$\cos at - \cos bt = -2(\sin \alpha t)(\sin \beta t)$$

where

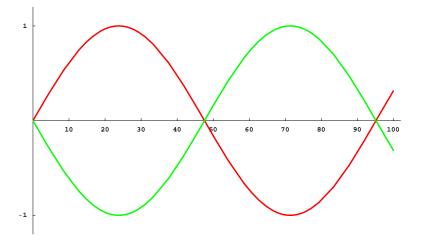
$$\alpha = \frac{a+b}{2}$$
 and $\beta = \frac{a-b}{2}$.

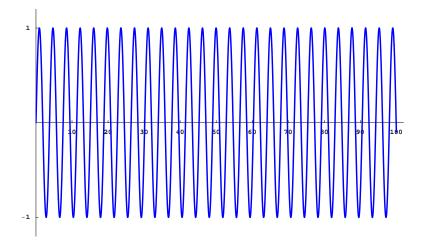
The number α is the average of a and b, and β is called the half-difference of a and b.

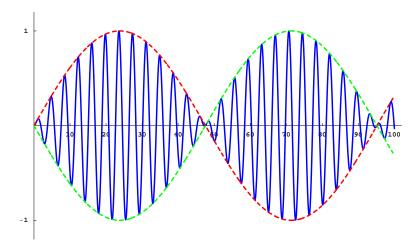
Example. Let's use this trig identity to get a rough idea of the graph of

$$\cos \omega t - \cos \sqrt{3} t$$

where $\omega = 1.6$.







Let's return to the solution to

$$\frac{d^2y}{dt^2} + 3y = \cos\omega t$$

that satisfies the initial condition (y(0),y'(0))=(0,0). If $\omega\neq\pm\sqrt{3}$, the solution is

$$y(t) = \frac{1}{3 - \omega^2} (\cos \omega t - \cos \sqrt{3} t).$$

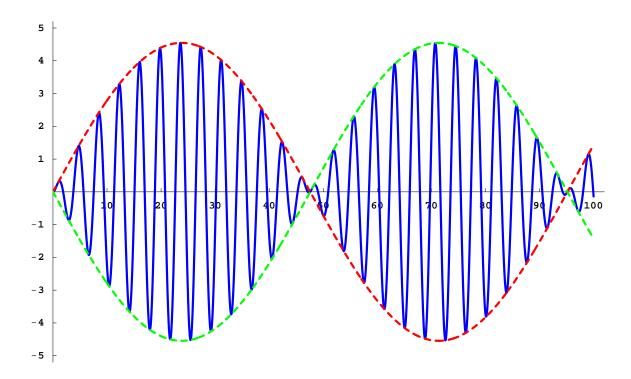
Applying the trig identity, we obtain

$$y(t) = \frac{-2}{3 - \omega^2} (\sin \alpha t) (\sin \beta t)$$

where

$$\alpha = \frac{\omega + \sqrt{3}}{2}$$
 and $\beta = \frac{\omega - \sqrt{3}}{2}$.

Here is the graph of this solution in the case where $\omega=1.6.$



What happens if $\omega = \sqrt{3}$?

Example.

$$\frac{d^2y}{dt^2} + 3y = \cos\sqrt{3}\,t$$

The complexified equation is

$$\frac{d^2y}{dt^2} + 3y = e^{i\sqrt{3}t}.$$

What guess should we use?

Here is the graph of $y_p(t)$.

