Existence and Uniqueness Theory

First we consider three examples to illustrate the idea of the domain of a differential equation:

Example 1.
$$\frac{dy}{dt} = y^3 + t^2$$

Example 2. $\frac{dy}{dt} = y^2$

Example 3. $\frac{dy}{dt} = \frac{y}{t}$

We start our discussion of the theory with the Existence Theorem:

Existence Theorem Suppose f(t,y) is a continuous function in a rectangle of the form

$$\{(t,y) \mid a < t < b, \ c < y < d\}$$

in the ty-plane. If (t_0, y_0) is a point in this rectangle, then there exists an $\epsilon > 0$ and a function y(t) defined for $t_0 - \epsilon < t < t_0 + \epsilon$ that solves the initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0. \quad \blacksquare$$

MA 226

What's the significance of the ϵ in the Existence Theorem?

Example.
$$\frac{dy}{dt} = 1 + y^2, \quad y(0) = 0$$

What does the Existence Theorem tell us about the initial-value problem

$$\frac{dy}{dt} = y^3 + t^2, \quad y(0) = 0?$$

The other main theoretical result in differential equations is the Uniqueness Theorem.

Uniqueness Theorem Suppose f(t, y) and $\partial f/\partial y$ are continuous functions in a rectangle of the form

$$\{(t, y) \mid a < t < b, \ c < y < d\}$$

in the ty-plane. If (t_0, y_0) is a point in this rectangle and if $y_1(t)$ and $y_2(t)$ are two functions that solve the initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0$$

for all t in the interval $t_0 - \epsilon < t < t_0 + \epsilon$ (where ϵ is some positive number), then

$$y_1(t) = y_2(t)$$

for $t_0 - \epsilon < t < t_0 + \epsilon$. That is, the solution to the initial-value problem is unique.

Here's an example that lacks uniqueness:

Example.
$$\frac{dy}{dt} = \sqrt[3]{y}$$

(More blank space and the slope field for $dy/dt = \sqrt[3]{y}$ on the top of the next page.)

MA 226 February 5, 2015

Bogus Example. The example

$$\frac{dy}{dt} = \frac{y}{t} + t\cos t$$

in FirstOrderSystems seems to violate the Uniqueness Theorem, but in fact it does not. Why?

The Uniqueness Theorem has many useful consequences. Here are three examples:

Example 1.
$$\frac{dy}{dt} = -2ty^2$$

Example 2.
$$\frac{dy}{dt} = y(1-y)$$

Example 3. $\frac{dy}{dt} = e^t \sin y$

MA 226

February 5, 2015

Autonomous Differential Equations

A first-order differential equation with independent variable t and dependent variable y is **autonomous** if

$$\frac{dy}{dt} = f(y).$$

The rate of change of y(t) depends only on the value of y.

Examples of autonomous equations: exponential growth model, radioactive decay, logistic population model

Example.
$$\frac{dv}{dt} = -kv + a\sin bt$$

This is a nonautonomous linear differential equation that is related to simple models of voltage in an electric circuit (k, a, and b) are parameters).

Comments:

- 1. Many interesting models in science and engineering are autonomous (but not every model).
- 2. Every autonomous equation is separable, but the integrals may be impossible to calculate in terms of standard functions.

Basic Fact: Given the graph of one solution to an autonomous equation, we can get the graphs of many other solutions by translating that graph left or right.

Example 1.
$$\frac{dy}{dt} = y(1-y)$$

MA 226 February 5, 2015

Example 2. $\frac{dy}{dt} = 1 + y^2$

The slope field has so much redundant information that we can replace it with the **phase** line. Here's the phase line for our standard example:

Example. $\frac{dy}{dt} = y(1-y)$

I've built an animation that illustrates how you should interpret this phase line. Also, PhaseLines in DETools helps you visualize the meaning of the phase line.