1. (24 points) Note that parts c and d of this problem are on the next page. Consider the second-order equation

\[\frac{d^2 y}{dt^2} + 4 \frac{dy}{dt} + 20y = -5 \cos 5t. \]

(a) What can you say about the long-term behavior of solutions without solving for the general solution? Be as specific as possible.

The equation is damped and sinusoidally forced \(\Rightarrow \) all solutions tend to the steady-state solution. That solution has angular frequency \(\omega = 5 \) \(\Rightarrow \) period \(T = \frac{2\pi}{\omega} = \frac{2\pi}{5} \).

(b) Determine a particular solution to this differential equation.

Simplifying \(\frac{d^2 y}{dt^2} + 4 \frac{dy}{dt} + 20y = -5 e^{(5i)t} \)

Guess \(y_c(t) = a e^{(5i)t} \)

We get
\[
\begin{align*}
a((5i)^2 + 4(5i) + 20)e^{(5i)t} &= -5 e^{(5i)t} \\
a(-25+20i+20)e^{(5i)t} &= -5 e^{(5i)t}
\end{align*}
\]

\(\Rightarrow a = \frac{-5}{-5+20i} = \frac{1}{1-4i} \frac{4+4i}{17} = \frac{1+4i}{17} \)

For a solution to the original equation, we take
\[
y_p(t) = \text{Re}(a e^{(5i)t})
\]
\[
= \text{Re}(\left(\frac{1+4i}{17}\right)(\cos 5t + i \sin 5t))
\]
\[
= \left(\frac{1}{17}\right) \cos 5t - \left(\frac{4}{17}\right) \sin 5t
\]
1. (continued) Here is the differential equation from the previous page:

\[
\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 20y = -5\cos 5t.
\]

(c) Find the general solution to this differential equation.

The characteristic polynomial is \(\lambda^2 + 4\lambda + 20 \).

We get \(\lambda = -4 \pm \sqrt{16 - 80} = -2 \pm 4i \)

The general solution to the equation is

\[
y(t) = c_1 e^{-2t} \cos 4t + c_2 e^{-2t} \sin 4t \\
+ \left(\frac{1}{17} \right) \cos 5t - \left(\frac{4}{17} \right) \sin 5t
\]

(d) What can you say about the long-term behavior of the solutions given your results from parts b and c? Be as specific as possible.

The amplitude of the steady-state is

\[
|a| = \frac{1}{17} \sqrt{1 + 4^2} = \frac{\sqrt{17}}{17} = \frac{1}{\sqrt{17}}.
\]

The phase angle of the steady-state is given by \(\tan \Theta = 4 \). It is approximately 104°.

The exponential rate of approach to the steady-state is determined by the real part of the eigenvalue, which is -2.
2. (16 points) For what values of a, b, c, and d is the linear system

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mathbf{Y}$$

Hamiltonian? Calculate a Hamiltonian function for these values.

We want $H(x,y)$ such that

$$\frac{dx}{dt} = ax + by = \frac{\partial H}{\partial y}$$
$$\frac{dy}{dt} = cx + dy = -\frac{\partial H}{\partial x}$$

Therefore, we want

$$\frac{\partial}{\partial x}(ax+by) = -\frac{\partial}{\partial y}(cx+dy)$$

$$\Rightarrow a = -d$$

In this case, our system becomes

$$\frac{dx}{dt} = ax + by$$
$$\frac{dy}{dt} = cx - ay$$

To compute $H(x,y) = \int (ax+by)\,dy + \phi(x)$

$$= axy + b\frac{x^2}{2} + \phi(x)$$

Then $cx - ay = -(ay + \phi'(x)) \Rightarrow \phi'(x) = -cx$

$$\Rightarrow \phi(x) = -\frac{cx^2}{2}$$

We have $H(x,y) = \frac{by^2}{2} + axy - \frac{cx^2}{2}$.
3. (20 points) Note that part c of this problem is on the next page.

(a) Calculate \(\mathcal{L}^{-1} \left[\frac{2s + 5}{s^2 + 2s + 3} \right] \).

\[
\frac{2s + 5}{(s + 1)^2 + 2} = \frac{2(s + 1)}{(s + 1)^2 + 2} + \frac{3}{(s + 1)^2 + 2}
\]

\[
\mathcal{L}^{-1} \left[\frac{2s + 5}{s^2 + 2s + 3} \right] = 2e^{-t} \cos \sqrt{2}t + \frac{3}{\sqrt{2}}e^{-t} \sin \sqrt{2}t
\]

(b) Calculate the Laplace transform \(\mathcal{L}[y] \) for the solution \(y(t) \) to the initial-value problem

\[
\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + 3y = \delta(t), \quad y(0) = 2, \quad y'(0) = 1.
\]

DO NOT CALCULATE A FORMULA FOR \(y(t) \) HERE.

\[
(s^2 \mathcal{L}[y] - 2s - 1) + 2(s \mathcal{L}[y] - 2) + 3 \mathcal{L}[y] = e^{-4s}
\]

\[
(s^2 + 2s + 3) \mathcal{L}[y] = 2s + 5 + e^{-4s}
\]

\[
\mathcal{L}[y] = \frac{2s + 5}{s^2 + 2s + 3} + \frac{e^{-4s}}{s^2 + 2s + 3}
\]
3. (continued)

(c) Calculate the solution $y(t)$ to the initial-value problem in part b.

\[
L^{-1}\left[\frac{1}{s^2+2s+3} \right] = L^{-1}\left[\frac{1}{(s+1)^2+2} \right] = \frac{1}{\sqrt{2}} \, e^{-t} \sin \sqrt{2}t
\]

\[
\Rightarrow
L^{-1}\left[\frac{e^{-4s}}{s^2+2s+3} \right] = \frac{1}{\sqrt{2}} \, u_4(t) \, e^{-(t-4)} \sin \sqrt{2}(t-4)
\]

We obtain the solution

\[
y(t) = 2e^{-t} \cos \sqrt{2}t + \frac{3}{\sqrt{2}} \, e^{-t} \sin \sqrt{2}t
\]

\[
+ \frac{1}{\sqrt{2}} \, u_4(t) \, e^{-(t-4)} \sin \sqrt{2}(t-4)
\]
4. (16 points) Consider the one-parameter family of linear systems

\[
\frac{dY}{dt} = \begin{pmatrix} a & 1 \\ a & a \end{pmatrix} Y.
\]

(a) Sketch the curve in the trace-determinant plane that is obtained by varying the parameter \(a\).

\[
T = \text{trace} = 2a \\
D = \text{det} = a^2 - a \\
D = \left(\frac{T}{2}\right)^2 - \frac{T}{2} \\
= \frac{T^2}{4} - \frac{T}{2} \\
= \frac{1}{4}(T^2 - 2T) \quad \text{parabola}
\]

(b) Determine all bifurcation values of \(a\) and briefly discuss the different types of phase portraits that are exhibited in this one-parameter family.

Need to determine where the two parabolas intersect.

\[
D = \frac{T^2}{4} = \frac{1}{4}(T^2 - 2T) \\
\Rightarrow T^2 = T^2 - 2T \\
\Rightarrow 0 = -2T \\
\Rightarrow T = 0
\]

For \(T = 2a\) negative, the system is a spiral sink.
For \(a = 0\), we have a bifurcation value.
For \(0 < T < 2\) (equivalently \(0 < a < 1\)),
the system is a saddle.
For \(T = 2\) (\(\Rightarrow a = 1\)), we have another bifurcation value. For \(T > 2\) (\(a > 1\)),
the system is a source with real eigenvalues.
5. (24 points) Note that part c of this problem is on the next page. Consider the system
\[
\frac{dx}{dt} = x - 3y^2 \\
\frac{dy}{dt} = x - 3y - 6.
\]
(a) Sketch the nullclines and indicate the directions in which solutions cross the nullclines.

\[
\frac{dx}{dt} = 0 \iff x = 3y^2 \\
\frac{dy}{dt} = 0 \iff 3y = x - 6 \iff y = \frac{1}{3}x - 2
\]

Nullclines intersect if
\[
3y^2 - 3y + 6 = 0 \Rightarrow y^2 - y - 2 = 0 \Rightarrow (y - 2)(y + 1) = 0 \Rightarrow y = 2 \text{ or } -1
\]

(b) Find and classify all equilibrium points.

\[
J(x, y) = \begin{pmatrix} 1 & -6y \\ 1 & -3 \end{pmatrix}
\]

\[
J(12, 2) = \begin{pmatrix} 1 & -12 \\ 1 & -3 \end{pmatrix} \Rightarrow \lambda^2 + 2\lambda + 9 = 0 \Rightarrow \lambda = -2 \pm \sqrt{4 - 36} = -2 \pm \sqrt{32}
\]

\Rightarrow (12, 2) is a spiral sink

\[
J(3, -1) = \begin{pmatrix} 1 & 6 \\ 1 & -3 \end{pmatrix}
\]

From the negative determinant, we know that (3, -1) is a saddle.
5. (continued)

(c) Sketch the phase portrait.