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Linear systems

Linear systems and second-order linear equations are the most important systems we
study in this course.

What is a linear system with two dependent variables?

What is a second-order, homogeneous, linear equation?

How do we write linear systems in vector notation?
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Recall two examples that we have already discussed.

Example 1. We have already calculated the general solution to the partially decoupled
system

dx

dt
= 2y − x

dy

dt
= y.

It is

x(t) = y0e
t + (x0 − y0)e−t

y(t) = y0e
t.
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Example 2. For the damped harmonic oscillator

d2y

dt2
+ 3

dy

dt
+ 2y = 0,

we found two (scalar) solutions

y1(t) = e−t and y2(t) = e−2t.

You should also recall that this second-order equation can be converted to a first-order
system where

dy

dt
= v

dv

dt
=−2y − 3v.
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Given a linear system
dY

dt
= AY, how do we calculate the vector in the vector field at any

given point Y0?

How do we calculate the equilibrium points of
dY

dt
= AY?

Theorem. The origin is always an equilibrium point of a linear system. It is the only
equilibrium point if and only if det A 6= 0.
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The Linearity Principle

Let’s return to Example 1. For practice, we’ll use vector notation this time:

dY

dt
=

(
−1 2

0 1

)
Y

Also consider three different initial conditions

Y1 =

(
1
0

)
Y2 =

(
1
1

)
Y3 =

(
2
1

)

They correspond to the three solutions

Y1(t) = e−t
(

1
0

)
, Y2(t) = et

(
1
1

)
, and Y3(t) =

(
et + e−t

et

)
.

Let’s see what happens when we graph these solutions.

x
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t
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t

x, y

t
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How are these three solutions related?
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Linearity Principle Suppose
dY

dt
= AY

is a linear system of differential equations.

1. If Y(t) is a solution of this system and k is any constant, then kY(t) is also a solution.

2. If Y1(t) and Y2(t) are two solutions of this system, then Y1(t)+Y2(t) is also a solution.

Example. Solve
dY

dt
=

(
−1 2

0 1

)
Y, Y(0) =

(
−1
−2

)
.
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For an arbitrary linear system dY/dt = AY, how many solutions do we need to solve
every initial-value problem?
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