Summary of the case of two distinct real eigenvalues

Suppose **A** is a matrix with two eigenvalues λ_1 and λ_2 . To be consistent, we will assume that $\lambda_1 < \lambda_2$, that \mathbf{V}_1 is an eigenvector associated to λ_1 , and that \mathbf{V}_2 is an eigenvector associated to λ_2 . The general solution of

$$\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$$

is
$$\mathbf{Y}(t) = k_1 e^{\lambda_1 t} \mathbf{V}_1 + k_2 e^{\lambda_2 t} \mathbf{V}_2$$
.

Case 1: $\lambda_1 < \lambda_2 < 0$.

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}.$$

Sketching component graphs

Once we understand the phase portrait, we should also be able to sketch the component graphs without HPGSystemSolver.

For example, once again consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}.$$

Let's sketch the x(t)- and y(t)-graphs that correspond to the initial conditions (-3,2) and (3,2).

Summary for real and distinct (nonzero) eigenvalues

Complex eigenvalues

What happens if the eigenvalues of the system are complex numbers?

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 2\\ -1 & -1 \end{pmatrix} \mathbf{Y}.$$

Let's see that happens if we take a look at this system using MatrixFields and then we'll compute the eigenstuff for this matrix.

Eigenvalues:

Eigenvectors:

We now have a complex-valued solution of the form

$$\mathbf{Y}_c(t) = e^{(-2+i)t} \begin{pmatrix} 2 \\ 1+i \end{pmatrix}.$$

There are lots of questions that come with this formula. First, what does the formula mean? Second, what good is it given that we are interested in real-valued solutions to our linear systems?

Once again Euler comes to the rescue: Remember the power series for the exponential function? It is

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Let's use this series where x = bi.

We use Euler's formula

$$e^{bi} = \cos b + i\sin b$$

applied to the complex-valued function $e^{(a+bi)t}$.

But why does this help us solve our differential equation?

Theorem. Consider $d\mathbf{Y}/dt = \mathbf{AY}$, where **A** is a matrix with real entries. If $\mathbf{Y}_c(t)$ is a complex-valued solution, then both

$$\operatorname{Re}\mathbf{Y}_{c}(t)$$
 and $\operatorname{Im}\mathbf{Y}_{c}(t)$

are real-valued solutions, and they are linearly independent.

Now we can derive the general solution to

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 2\\ -1 & -1 \end{pmatrix} \mathbf{Y}$$

using the complex-valued solution $\mathbf{Y}_c(t) = e^{(-2+i)t} \begin{pmatrix} 2 \\ 1+i \end{pmatrix}$.

Three examples to illustrate the geometry of complex eigenvalues:

Example 1. $\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$ where

$$\mathbf{A} = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right).$$

The characteristic polynomial of **A** is $\lambda^2 + 1$, so the eigenvalues are $\lambda = \pm i$. One eigenvector associated to the eigenvalue $\lambda = i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} i \\ 1 \end{array}\right).$$

Example 2. $\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y}$ where

$$\mathbf{B} = \left(\begin{array}{cc} 2 & -2 \\ 4 & -2 \end{array}\right).$$

The characteristic polynomial of **B** is $\lambda^2 + 4$, so the eigenvalues are $\lambda = \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$

Example 3. $\frac{d\mathbf{Y}}{dt} = \mathbf{C}\mathbf{Y}$ where

$$\mathbf{C} = \left(\begin{array}{cc} 1.9 & -2 \\ 4 & -2.1 \end{array} \right).$$

The characteristic polynomial of C is $\lambda^2 + 0.2\lambda + 4.01$, so the eigenvalues are $\lambda = -0.1 \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = -0.1 + 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$

