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Summary of the case of two distinct real eigenvalues

Suppose A is a matrix with two eigenvalues \; and \,. To be consistent, we will assume
that Ay < Ay, that V; is an eigenvector associated to A;, and that V, is an eigenvector
associated to \y. The general solution of

dY
= —AY
dt

is Y(t) = kle)‘ltvl + ]€2€’\th2.

Case 1: A\ < Xy < 0.
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Example. Consider
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Sketching component graphs

Once we understand the phase portrait, we should also be able to sketch the component
graphs without HPGSystemSolver.

For example, once again consider

daY -3 1
o ( 10 ) Y.
Let’s sketch the z(t)- and y(t)-graphs that correspond to the initial conditions (—3,2)
and (3,2).
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Complex eigenvalues

What happens if the eigenvalues of the system are complex numbers?

Example. Consider

dY -3 2
E‘<—1 _1)Y-

Let’s see that happens if we take a look at this system using MatrixFields and then we’ll
compute the eigenstuff for this matrix.

Eigenvalues:

Eigenvectors:
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We now have a complex-valued solution of the form

; 2
— (=240t
Y.(t)=e ( L4 ) :

There are lots of questions that come with this formula. First, what does the formula
mean? Second, what good is it given that we are interested in real-valued solutions to our
linear systems?

Once again Euler comes to the rescue: Remember the power series for the exponential
function? It is
2 3
L R
e TR

Let’s use this series where x = bs.
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We use Euler’s formula

e” = cosb + isinb

applied to the complex-valued function e(®+¥t,

But why does this help us solve our differential equation?

Theorem. Consider dY /dt = AY, where A is a matrix with real entries. If Y (¢) is a
complex-valued solution, then both

ReY,.(t) and ImY.(t)

are real-valued solutions, and they are linearly independent.
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Now we can derive the general solution to
dY -3 2
dat ( -1 -1 )Y

. 2
using the complex-valued solution Y,(t) = e(~2+9 ( L4 )
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Three examples to illustrate the geometry of complex eigenvalues:

0 -1
A= ( 0 - ) .
The characteristic polynomial of A is A2 + 1, so the eigenvalues are A = +i. One
eigenvector associated to the eigenvalue A =1 is

Y
Example 1. dd—t = AY where
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Y
Example 2. ij—t = BY where

2 =2
a-(22).
The characteristic polynomial of B is A\? + 4, so the eigenvalues are A = #2i. One
eigenvector associated to the eigenvalue A = 27 is

Y():(l;_Z)
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Y
Example 3. (fj—t = CY where

1.9 =2
o=( 3h)

The characteristic polynomial of C is A24-0.2)\+4.01, so the eigenvalues are A = —0.1421.
One eigenvector associated to the eigenvalue A = —0.1 + 21 is

T+1
Y():( 22>

10



