MA 231 December 1, 2009

The Laplace transform

For the remainder of the semester, we are going to take a somewhat different approach to
the solution of differential equations. We are going to study a way of transforming differential
equations into algebraic equations.

We begin with a little review of improper integrals.

Example. Consider the improper integral

/ e 2t dt.
0
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Example. Consider the improper integrals

o0
/ et dt.
0

74

Definition. The Laplace transform of the function y(¢) is the function

Y(s) = /0 T y(t) et dt.

This transform is an “operator” (a function on functions). It transforms the function y(t)
into the function Y(s).
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Notation: We often represent this operator using the script letter £. In other words,
Lyl =Y.

1

For example, L[1] = —.
s

Note that, even if y(t) is defined for all ¢, the Laplace transform Y (s) may not be defined

for all s. In fact, there are functions such as y(t) = et for which the improper integral does

not exist for any s.

Theorem. Suppose that the function y(t) has only a finite number of jump discontinuities
in any finite interval. In addition, suppose that y(¢) grows no faster than a given exponential
function. In other words, suppose that there exist constants K and M such that

ly(t)] < eM for t> K.
Then L[y] exists for s > M.

Example. Let’s compute L[e*] using the definition and the improper integrals we have
already computed:

for s> a.

Lle™] = / e*e "t dt = / e ot gt =
0

0 Ss—a

Examples. Using Mathematica to calculate the improper integrals, we see that:

Llsint] = o for s>0
3
2 _
L[e* sin 3t] = 7 15113 for s>2
24
L[t = 5 for s>0
L[sin 2t] = 24 for s>0,
2
-2
E[t COS \/it] = m for s>0
; 1
Lle™'] = — for s>0
s —iw
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Properties of the Laplace transform There are two properties of the Laplace transform
that make it well suited for solving linear differential equations:

12| %] = seu-v0)

2. L is a linear transform

Both of these properties are extremely important, but the surprising one is #1. Let’s

consider g .
dyl _ < (dy)
ﬁldt]_/o <dt>e dt.

In fact, before we consider the improper integral, let’s apply the method of integration by

parts to the indefinite integral
dy\ _g
— S dt.
/ (dt) ¢
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Now let’s see how we can use the Laplace transform to solve an initial-value problem.

Example. Solve the initial-value problem

o ~y=e’ y(0) =4

1. Transform both sides of the equation:

2. Solve for L]y]:

3. Calculate the inverse Laplace transform:

Is this the right answer? Do we need Laplace transforms to calculate it?
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Discontinuous differential equations

The Laplace transform works well on linear differential equations that are discontinuous
in one way or another.

Definition. The Heaviside function u,(t) is the function defined by

{O, ift <ag

1, ift>a.

uq(t) =

Thus u,(t) has a discontinuity at ¢ = @ where it jumps from 0 to 1. Note that the step(t)
function in DETools is the same function as ug(t).

Here’s how you can use the Heaviside function to avoid piecewise definitions:

Example. Consider g(t) = 2t + u1(¢)(2 — 2t).

g9(t)
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Laplace transforms are very convenient if we have discontinuous forcing. How do we
calculate the Laplace transform of a discontinuous function?

Example. Let’s calculate L]u,] directly from the definition of L.
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In order to calculate inverse Laplace transforms, we need another property of the trans-
form.

Rule 3: Shifting the t-axis. L[u,(t)f(t —a)] =e “L[f].

Example. Calculate L[g] where g(t) = uy(t) e 2.




