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More on using the Laplace transform to solve certain second-order equations

Let’s solve the initial-value problem

PY W 10wy sin2(t—3), y(0) =2, y(0) = —1
— 4+4-= =10u in2(t — = =-1

Before we get too far into the messy formulas, let’s look at the graphs of the forcing
function 10us(t)sin2(¢ — 3) and the solution:

Now for the formulas:

1. Transform both sides of the equation:

2. Solve for L]y]:
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3. Calculate the inverse Laplace transform:

We calculated

2 7

Lt [L] =2 ZcosV3t+V3e Zsin V3t
$2 4454+ 7

in Example 2.

To invert the second term, we take advantage of some algebra done before class:

(a) Partial fractions decomposition:

1 1( 4s 4+ 13 45—3)

(2+4)(s>+45+7) 73\2+4s+7 s2+4

(b) Inverse related to the first term:

4 13 5vV/3
L1 [L] =4de % cos V3t + ie’% sin V31t
$24+4s+7 3

(c) Inverse related to the second term:

-1 [43 -3

3 .
52—1—4] = 4 cos 2t — §s1n2t

After we put all of this together, we get the solution

y(t)=2e *cos V3t +V3e ?sinv3t +

20
73
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——us(t) (462(t3) cos V3(t — 3) + 53£e2(t3) sin v/3(t — 3) — 4cos2(t — 3) + g sin 2(t — 3))
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Dirac Delta Function

The Dirac delta “function” J,(t) is used to model impulse forcing. In other words, suppose
we want to model a unit force that is applied instantaneously at time ¢ = a. We begin with

the function .

gar(t) = { A

0, otherwise.

ifa— 2 <t a2
if a 5 = a 5

We can write ga; in terms of the Heaviside function. We get
gaclt) = = (t_ e (t) — ., a0 (1))
At a—At at At .

Let’s calculate the Laplace transform of ga;. To do so, we’ll need the limit

e’r —1
lim
z—0 x

This limit can be calculated using L’Hospital’s Rule, using power series, or by observing that
this limit is simply f/(0) for the function f(z) = e*®

Now we calculate the Laplace transform of gas:
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We take the limit as At — 0.

Dirac Delta Function. The Dirac delta function §,(¢) is the “function” such that

L[6,] = e
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Example. Consider the initial-value problem

>y dy — =_
Sl AR a4 1 2, o L.
o + 7 + 7y =1565(t), y(0)=2, ¢'(0)

(Next page is entirely blank.)
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Here is the graph of the solution:

Here is the graph of its derivative:
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Summary of transform rules and table of standard transforms

Here are important selections from the summary on page 620 in your text.

y(t) Y(s) = Ly

y() =1 V(s) = (s> 0)
(t) = e V)= (s>0)
y(t) = ua(t) vis) =" (s> 0)
y(t) = coswt Y(s) = ﬁ (s > 0)
y(t) = sinwt Y(s) = ﬁ (s> 0)
y(t) = (1) Y(s) = e

Properties of the Laplace Transform

£ | %] = st -0

Llyy + yo] = Llw1] + L]ye]
Llay] = aL]y] for any constant «
Llua()y(t — a)] = e L[y]

Lle®y(t)] = Y (s — a) where Y = L[y]
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Some people like to memorize a few more entries such as

at B s—a
,C[e COSLL)t] = m,

d
but I prefer to use the last rule (shifting the s-axis). Also, the rule for E[d—g;] in terms of L[y]
yields

L l%l = s’L[y] —y(0)s — ¢/'(0).

Warning: Just because you can solve a linear differential equation with the Laplace trans-
form does not mean that you should forget what you learned in previous parts of the course.
The transform method is particularly well suited for differential equations with discontinuous
and impulse forcing.



