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Euler’s method

On September 8 we discussed the initial-value problem

dy 3 42
— =y + 17, 0) =0.
o y(0)
Here’s the graph of its solution.
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There isn’t a nice formula for this function, so how do we obtain its graph? The answer is
that we use a numerical algorithm to obtain an approximate solution.

Today we study the numerical algorithm known as Euler’s method. It is the most basic
of all of the numerical algorithms that are used to approximate solutions to differential
equations. Let’s start with an example to get an idea of how the method works.

Example. Consider the initial-value problem

dy 2 1
: )
First, let’s see what HPGSolver produces:
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Now let’s see what happens when we use Euler’s method to approximate the solution
with a step size of At = 0.5. We’ll use the EulersMethod tool from DETools.
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Here is a general picture of the algorithm and the associated notation:
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Let’s look more closely at the kth step and the key triangle:
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These observations yield Euler’s method:

Euler’s method is easy to program—even with just a spreadsheet.
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There are two spreadsheets corresponding to this example posted on the course web
site—one that uses a lot of the defaults in Excel and one that has been customized for
the particular example we are discussing. The second spreadsheet has a slider for At that

illustrates what happens when different values of At are used.
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The Error in Euler’s method

A precise analysis of the error involved in Euler’s method is somewhat complicated, but
we can learn a lot about the method by studying an initial-value problem for which we know
the exact solution

Example. Consider the initial-value problem

dy
—_— ]_ 0 — O‘
o =yt )

By separating variables we can derive the solution

y(t) =e' — 1.

Let’s see how the error involved in the method behaves as we decrease the step size. We use
the interval 0 < ¢ < 3. Note that the exact value of the solution at t =3 is y(3) = €* — 1 ~
19.0855. In the table below, n is the number of subdivisions, and consequently At = 3/n.
The number vy, is the result of Euler’s method for ¢ = 3, and the error e, is the difference
between the actual value y(3) and the approximation y,,.

n Yn error e,
1000 | 18.9955 0.0900023
2000 | 19.0404 0.0450966
3000 | 19.0555 0.0300857
4000 | 19.0630 0.0225722
5000 | 19.0675 0.0180616
6000 | 19.0705 0.0150535

We repeat this calculation using n = 100, 200, ...,6000, and we plot the error as a
function of the number n of subdivisions on the left below. On the right we plot the same
points along with the graph of

87.6474
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To see why this result is typical, let’s carry out an analysis of the error in general. To fix
notation, we consider the initial-value problem

dy _

dt - f(ta y)’ y(tO) = Yo-

The number n is the number of subdivisions, and therefore

t —t
At ="—""9
n

The number y; is the result of Euler’s method after k steps (at t = t;).
The error in the first step:
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The error in the second step:

Note that the analysis of the error in this step is complicated by the fact that the point
(t1,y1) is not necessarily on the graph of the solution y(t).
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The error in the kth step (k > 2):

In general we obtain a recursive formula for the error e, in terms of the error e; ;. We
have

At)?
€k S (1 + MgAt)ek_l + Ml( 2) .

In Exercise 11 of Section 7.1, we show that this recursive formula yields the following theorem.

Theorem. Given the bounds M; and M, as above, then the error

en < (C)(AY),
where C' is a constant that is determined by M;, Ms, and the length of the interval over
which the solution is approximated.

Note that the constant C' does not depend on the number of steps used. Another way to
write this result is as

tn—t())_K

n n

en < (€)(20) = (0) (

Euler’s method is the most basic “fixed-step-size” algorithm for numerically approxi-
mating solutions. HPGSolver also uses a fixed-step-size algorithm called the Runge-Kutta
method. The Runge-Kutta method is usually more efficient and more accurate than Euler’s
method (see Section 7.3 of our text). Unfortunately, there are differential equations that are
not amenable to fixed-step-size algorithms.

Example. Consider the initial-value problem

d
d_gt/ =efsiny, y(0)=5.

Let’s see what happens when we use Euler’s method to approximate the solution with various
step sizes 0.01 < At < 0.1.

Y

The spreadsheet for this example is also posted on the course web site.



