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More on the error in Euler’s method

Last class we analyzed the error e; involved in the first step of Euler’s method, and we
obtained the estimate
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where M; is a bound on the quantity ‘—f + (—f> f(t, y)‘ .
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The error in the second step:

Note that the analysis of the error in this step is complicated by the fact that the point
(t1,41) is not necessarily on the graph of the solution y(t).
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The error in the kth step (k > 2):

In general we obtain a recursive formula for the error e, in terms of the error e; ;. We
have
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In Exercise 11 of Section 7.1, we show that this recursive formula yields the following theorem.

Theorem. Given the bounds M; and M, as above, then the error

en < (C)(AY),
where C' is a constant that is determined by M;, Ms, and the length of the interval over
which the solution is approximated.

Note that the constant C' does not depend on the number of steps used. Another way to
write this result is as
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Euler’s method is the most basic “fixed-step-size” algorithm for numerically approxi-
mating solutions. HPGSolver also uses a fixed-step-size algorithm called the Runge-Kutta
method. The Runge-Kutta method is usually more efficient and more accurate than Euler’s
method (see Section 7.3 of our text). Unfortunately, there are differential equations that are
not amenable to fixed-step-size algorithms.

Example. Consider the initial-value problem

d
d_gt/ =efsiny, y(0)=5.

Let’s see what happens when we use Euler’s method to approximate the solution with various
step sizes 0.01 < At < 0.1.

Y

The spreadsheet for this example is also posted on the course web site.
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Existence and Uniqueness Theory

First we consider three examples to illustrate the idea of the domain of a differential equation:
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We start our discussion of the theory with the Existence Theorem:

Existence Theorem Suppose f(t,¥) is a continuous function in a rectangle of the form

{(t,y) la<t<b c<y<d}

in the ty-plane. If (t9,yo) is a point in this rectangle, then there exists an ¢ > 0 and a

function y(t) defined for
th—e<t<ityg+e

that solves the initial-value problem

dy _

dt - f(t, y)a

Yy(to) = Yo-
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What’s the significance of the € in the Existence Theorem?

d
Example. d_?i =1+ y(0)=0

What does the Existence Theorem tell us about the initial-value problem

dy 3 2
— = t 0) =07
P y(0)
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Picard iteration
How do we know that solutions exist if we cannot express them in closed form?

Consider the initial-value problem

d
S =l ) =w.

We can use the Fundamental Theorem of Calculus to rewrite this differential equation as an
integral equation.

Picard iteration: Modify this integral equation so that it produces an iterative procedure.
Start with the constant function

yo(t) = yo for all .

Then produce an infinite sequence of functions

Yes1(t) = Yo + /t: f(s,yk(s)) ds.

Does this infinite sequence converge to a limiting function?
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Example. Let’s apply this iterative procedure to the initial-value problem

dy _

= =1.
o= y(0)
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What happens if the Picard iterates converge to a function y,(¢)? In other words, suppose
that

Jim gy, (2) = y. (1)



