Autonomous Differential Equations

A first-order differential equation with independent variable t and dependent variable y is **autonomous** if

$$\frac{dy}{dt} = f(y).$$

The rate of change of y(t) depends only on the value of y.

Examples of autonomous equations: exponential growth model, radioactive decay, logistic population model

Example.
$$\frac{dv}{dt} = -kv + a\sin bt$$

This is a nonautonomous linear differential equation that is related to simple models of voltage in an electric circuit (k, a, and b are parameters).

Comments:

- 1. Many interesting models in science and engineering are autonomous (but not every model).
- 2. Every autonomous equation is separable, but the integrals may be impossible to calculate in terms of standard functions.

Basic Fact: Given the graph of one solution to an autonomous equation, we can get the graphs of many other solutions by translating that graph left or right.

Example 1.
$$\frac{dy}{dt} = 4y(1-y)$$

Example 2.
$$\frac{dy}{dt} = 1 + y^2$$

The slope field has so much redundant information that we can replace it with the **phase** line. Here's the phase line for our standard example:

Example.
$$\frac{dy}{dt} = 4y(1-y)$$

Professor Devaney built a simple Quicktime animation that illustrates how you should interpret this phase line. There is a link to it on our course web page. Also, PhaseLines in DETools helps you visualize the meaning of the phase line.

Building phase lines

How do we go about building a phase line from a differential equation?

Example.
$$\frac{dy}{dt} = y^2 \cos y$$

Parameters, Qualitative Equivalence, and Bifurcations

Let's return to the logistic model of population growth

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right)$$

and modify this model to account for constant harvesting:

Before we tackle this modification of the logistic model, let's consider an example in which the algebra is simplier.

Example.
$$\frac{dy}{dt} = y(1-y) - a$$

There is a tool in DETools called PhaseLines, and it helps us analyze phase lines and various graphs as we vary certain parameters (the parameter a in this case).

We can summarize the behavior of this one-parameter family of differential equations using a bifurcation diagram.

Now let's sketch and interpret the bifurcation diagram for the logistic population model with constant harvesting

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - C.$$

First, let's compute the bifurcation value.

Now we sketch the bifurcation diagram.

What does this diagram say about how we must act if we want fish populations to return to sustainable levels?