MA 231 September 24, 2009

Autonomous Differential Equations

A first-order differential equation with independent variable ¢t and dependent variable y
is autonomous if

dy
dar f(y)-
The rate of change of y(¢) depends only on the value of y.

Examples of autonomous equations: exponential growth model, radioactive decay, logistic
population model

Example. % = —kv + asinbt

This is a nonautonomous linear differential equation that is related to simple models of
voltage in an electric circuit (k, a, and b are parameters).

Comments:

1. Many interesting models in science and engineering are autonomous (but not every
model).

2. Every autonomous equation is separable, but the integrals may be impossible to cal-
culate in terms of standard functions.

Basic Fact: Given the graph of one solution to an autonomous equation, we can get the
graphs of many other solutions by translating that graph left or right.
dy

Example 1. i 4y(1 —y)
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Example 2. W_q + 42
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The slope field has so much redundant information that we can replace it with the phase
line. Here’s the phase line for our standard example:

d
Example. d—i =4y(1—y)

2
,,,,,,,,,, ]
ST S SN S S s
ST S SN S S s
1.5 1.5
<1

Professor Devaney built a simple Quicktime animation that illustrates how you should
interpret this phase line. There is a link to it on our course web page. Also, PhaseLines in
DETools helps you visualize the meaning of the phase line.
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Building phase lines

How do we go about building a phase line from a differential equation?

dy 2
— = y“cos
at Y Y

Example.
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Parameters, Qualitative Equivalence, and Bifurcations

Let’s return to the logistic model of population growth

dP P
= —rpl1= =
=+ (%)

and modify this model to account for constant harvesting:

Before we tackle this modification of the logistic model, let’s consider an example in
which the algebra is simplier.

d
Example. d—i/ =y(l—y)—a

dy
dt

There is a tool in DETools called PhaseLines, and it helps us analyze phase lines and
various graphs as we vary certain parameters (the parameter @ in this case).



MA 231

September 24, 2009

We can summarize the behavior of this one-parameter family of differential equations

using a bifurcation diagram.
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Now let’s sketch and interpret the bifurcation diagram for the logistic population model

with constant harvesting
dP P
kP (1 - —) —c.
dt N ¢
First, let’s compute the bifurcation value.

ap
dt

Now we sketch the bifurcation diagram.

P

What does this diagram say about how we must act if we want fish populations to return
to sustainable levels?



