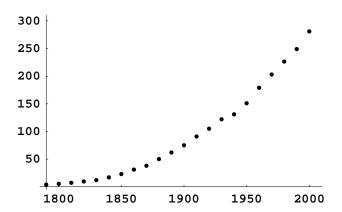
Modeling the US Population:

The data graphed as a function of time



Steps in Model Building

1. State underlying assumptions.

2. Identify the relevant variables and parameters.

3. Use the assumptions in Step #1 to formulate equations relating the variables in Step #2.

First Model: Malthusian Model

Assumption: Growth rate of the population is proportional to the population.

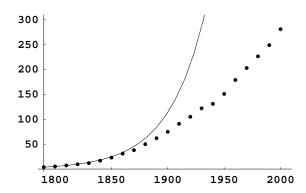
Variables:

Malthusian model is

MA 231 September 3, 2009

Analytic technique:

Here's the graph of p(t) superimposed on the data:



Second Model: Logistic Model

Assumptions:

1. If the population is small, its growth rate is proportional to the size of the population.

2. As the population increases, its relative growth rate decreases.

What is a relative growth rate?

A Qualitative Analysis of the Logistic Model

We now have

$$\frac{dp}{dt} = kp\left(1 - \frac{p}{N}\right).$$

Can we determine the long-term behavior of solutions without computing the solutions first?

A Numerical Simulation of the Logistic for the US Population

If we want to study this model numerically, we need estimates for k and N. How do we approximate the relative growth rates from the data?

Let's start by approximating the relative growth rate at 1800:

We can repeat this computation to produce approximate relative growth rates for 1800-1990:

Year	U.S. Population	Rel Growth Rate
1800	5.3	0.03113
1810	7.2	0.02986
1820	9.6	0.02500
1830	12	0.03083
1840	$\frac{17}{22}$	0.03235
1850	23	0.03043
$\frac{1860}{1870}$	31	0.02419
$\frac{1870}{1880}$	$\frac{38}{50}$	$0.02500 \\ 0.02400$
1890	62	$0.02400 \\ 0.02016$
1900	$\frac{02}{75}$	0.02010 0.01933
1910	91	0.01648
1920	$1\overline{05}$	0.01476
1930	122	0.01066
1940	131	0.01107
1950	151	0.01589
1960	179	0.01453
1970	203	0.01170
1980	$\frac{226}{240}$	0.01015
1990	249	0.01094

Here's a graph of these relative growth rates versus population:

