Subspaces of vector spaces

Definition. A nonempty subset \(S \) of a vector space \(V \) is a *subspace* of \(V \) if

1. the zero vector \(0 \) is in \(S \),

2. (closure under vector addition) for each \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) in \(S \), the vector sum \(\mathbf{v}_1 + \mathbf{v}_2 \) is in \(S \), and

3. (closure under scalar multiplication) for each \(r \) in \(\mathbb{R} \) and each \(\mathbf{v} \) in \(S \), the scalar multiple \(r\mathbf{v} \) is in \(S \).

Note. A subspace \(S \) of a vector space \(V \) is a vector space in its own right.

Example. Consider the line \(x_2 = 3x_1 \) in the vector space \(\mathbb{R}^2 \).

Example. Consider the line \(x_2 = x_1 + 1 \) in the vector space \(\mathbb{R}^2 \).
Example. Let \mathbb{P} represent the vector space of all polynomial functions as discussed last class. Is \mathbb{P} a subspace of the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$?

Example. Consider the subset $S = \text{Span}\{x, x^2\}$ within \mathbb{P}. Is S a subspace of \mathbb{P}?

Theorem. If v_1, v_2, \ldots, v_p are vectors in a vector space V, then $\text{Span}\{v_1, v_2, \ldots, v_p\}$ is a subspace of V.
Example. Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following subsets of V are subspaces of V?

1. The set of all constant functions.

2. The set of all functions f such that $f(2) = 1$.

3. The set of all functions f such that $f(2) = 0$.

4. The set of all polynomials of degree 3.

5. The set of all polynomials whose degree is at most 3.

6. The set of all differentiable functions.
Subspaces associated to a matrix

There are three important subspaces associated to an $m \times n$ matrix A.

The null space of A. The null space of A is the set of all vectors x in \mathbb{R}^n such that

$$Ax = 0.$$

The null space of A is denoted by $\text{Nul } A$.

Theorem. The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n.

Application. Any plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3.

Example. Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 2 & -4 & 0 & 8 & 1 \end{bmatrix}.$$

Express the null space of A as the span of as few vectors as possible.