Definition. Suppose that v_1, v_2, \ldots, v_p are vectors in \mathbb{R}^n. The set of all possible linear combinations of v_1, v_2, \ldots, v_p is called the

$$\text{span}\{v_1, v_2, \ldots, v_p\}.$$

Note:

1. Every scalar multiple of each v_k is in $\text{span}\{v_1, v_2, \ldots, v_p\}$.
2. The zero vector is always in the span of any set of vectors.
3. The $\text{span}\{v_1\}$ is the set of all scalar multiples of v_1.

Example. The set of all points (x_1, x_2, x_3) in \mathbb{R}^3 that satisfy the equation

$$x_1 + x_2 + x_3 = 0$$

is a plane. How can we describe this plane using the vector operations?
The matrix-vector product Ax

Let A be an $m \times n$ matrix and x be a vector in \mathbb{R}^n. We can define the product Ax as a linear combination of the vectors that come from the columns of A.

Definition. Let A be an $m \times n$ matrix

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
= \begin{bmatrix}
 A_1 \\
 A_2 \\
 \vdots \\
 A_n
\end{bmatrix},
\]

where A_k is the kth column of A. Given

\[
x = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

in \mathbb{R}^n, we define the matrix-vector product Ax to be the linear combination

\[x_1A_1 + x_2A_2 + \ldots + x_nA_n.\]

Note that Ax is a vector in \mathbb{R}^m.

Example.

\[
\begin{bmatrix}
 3 & -8 \\
 -1 & 5 \\
 2 & -3
\end{bmatrix}
\begin{bmatrix}
 -4 \\
 2
\end{bmatrix}
= -4 \begin{bmatrix}
 3 \\
 -1 \\
 2
\end{bmatrix}
+ 2 \begin{bmatrix}
 -8 \\
 5 \\
 3
\end{bmatrix}
= \begin{bmatrix}
 (-4)(3) + (2)(-8) \\
 (-4)(-1) + (2)(5) \\
 (-4)(2) + (2)(3)
\end{bmatrix}
= \begin{bmatrix}
 -28 \\
 14 \\
 -2
\end{bmatrix}
\]
Remark. Given an $m \times n$ matrix A and $x \in \mathbb{R}^n$, then the matrix equation

$$Ax = b$$

has the same solution set as the system of linear equations whose augmented matrix is

$$\left[\begin{array}{c|c|c|c} A_1 & A_2 & \ldots & A_n & b \\ \hline A & b \end{array} \right].$$

Example. Which vectors b are linear combinations of the vectors

$$A_1 = \begin{bmatrix} 1 \\ 3 \\ -5 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} -4 \\ -6 \\ 8 \end{bmatrix}?$$
Theorem. Let A be an $m \times n$ matrix. Then the following three statements are equivalent:

1. For each b in \mathbb{R}^m, the equation $Ax = b$ has at least one solution.

2. The columns of A span \mathbb{R}^m.

3. The matrix A has a pivot position in every row.

Warning: In this theorem, A is a coefficient matrix. The three statements are not equivalent if A is an augmented matrix.
Observation. Note that the kth entry in Ax is

$$a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n.$$

For example,

$$\begin{bmatrix} * & * \\ 5 & 6 \\ * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} * \\ 5x_1 + 6x_2 \\ * \end{bmatrix}.$$

The expression

$$a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n$$

is called the **dot product** of $[a_{k1} \ a_{k2} \ldots \ a_{kn}]$ and the vector x.

Theorem. Let A be an $m \times n$ matrix. Then the matrix-vector product Ax is “linear” in x. That is,

1. $A(u + v) = Au + Av$ for all u and v in \mathbb{R}^n, and

2. $A(cu) = cAu$ for all u in \mathbb{R}^n and all c in \mathbb{R}.