More on subspaces related to matrices

Recall that the null space of an $m \times n$-matrix is a subspace of \mathbb{R}^n.

Application. Any plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3.

Example. Consider the matrix

$$A = \begin{bmatrix}
1 & -2 & 0 & 4 & 0 \\
0 & 0 & 1 & -9 & 0 \\
2 & -4 & 0 & 8 & 1
\end{bmatrix}.$$

Express the null space of A as the span of as few vectors as possible.
The consistency of a system of linear equations can be viewed as a statement about the column space of the coefficient matrix.

Fact. The linear system $Ax = b$ is consistent if and only if b is an element of the column space of A.
Here is how Lay (p. 232) contrasts Nul A and Col A for an $m \times n$ matrix A:

Nul A

1. Nul A is a subspace of \mathbb{R}^n.
2. Nul A is implicitly defined; that is, you are given only a condition $(Ax = 0)$ that vectors in Nul A must satisfy.
3. It takes time to find vectors in Nul A. Row operations on $[A \ 0]$ are required.
4. There is no obvious relation between Nul A and the entries in A.
5. A typical vector v in Nul A has the property that $Av = 0$.
6. Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av.
7. Nul $A = \{0\}$ if and only if the equation $Ax = 0$ has only the trivial solution.
8. Nul $A = \{0\}$ if and only if the linear transformation $x \mapsto Ax$ is one-to-one.

Col A

1. Col A is a subspace of \mathbb{R}^m.
2. Col A is explicitly defined; that is, you are told how to build vectors in Col A.
3. It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
4. There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
5. A typical vector v in Col A has the property that the equation $Ax = v$ is consistent.
6. Given a specific vector v, it may take time to tell if v is in Col A. Row operations on $[A \ v]$ are required.
7. Col $A = \mathbb{R}^m$ if and only if the equation $Ax = b$ has a solution for every b in \mathbb{R}^m.
8. Col $A = \mathbb{R}^m$ if and only if the linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^m.
Item 8 in both lists suggest two subspaces that are intimately connected with any linear transformation from one vector space to another.

Definition. A transformation \(L : V_1 \to V_2 \) from a vector space \(V_1 \) to a vector space \(V_2 \) is linear if

1. \(L(v_1 + v_2) = L(v_1) + L(v_2) \) for all vectors \(v_1 \) and \(v_2 \) in \(V_1 \), and
2. \(L(rv) = rL(v) \) for all \(v \) in \(V_1 \) and all \(r \) in \(\mathbb{R} \).

Example. Let \(V_1 \) be the vector space of all continuously differentiable functions \(f : \mathbb{R} \to \mathbb{R} \) and let \(V_2 \) be the vector space of all continuous functions \(f : \mathbb{R} \to \mathbb{R} \). The operation of differentiation is a linear transformation from \(V_1 \) to \(V_2 \). That is, the transformation \(D : V_1 \to V_2 \) given by

\[
D(f) = f'
\]

is a linear transformation.

Associated to any linear transformation are two important subspaces.

Definition. The kernel of \(L : V_1 \to V_2 \) is the subset of \(V_1 \) given by

\[
\{v_1 \mid L(v_1) = 0\}.
\]

The range of \(L \) is the subset of \(V_2 \) given by

\[
\{v_2 \mid L(v_1) = v_2 \text{ for some } v_1 \text{ in } V_1\}.
\]

Fact. Both the kernel and the range of a linear transformation are subspaces. The kernel is a subspace of \(V_1 \), and the range is a subspace of \(V_2 \).
For a matrix transformation from \mathbb{R}^n to \mathbb{R}^m determined by the matrix A, its range is $\text{Col } A$, and its kernel is $\text{Nul } A$.

Example. What are the kernel and range of the transformation $p : \mathbb{R}^3 \to \mathbb{R}^3$ determined by the matrix

$$
\frac{1}{3} \begin{bmatrix}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{bmatrix}
$$

(This example was first introduced on September 25.)
Example. What are the kernel and the range of the differentiation transformation D mentioned above?