The Invertible Matrix Theorem

Theorem. Let A be an $n \times n$ matrix. Then the following twelve statements are equivalent:

(a) A is an invertible matrix.

(b) A is row equivalent to the identity matrix.

(c) A has n pivot positions

(d) The equation $Ax = 0$ has no nontrivial solutions.

(e) The columns of A are linearly independent.

(f) The linear transformation $T(x) = Ax$ is one-to-one.

(g) The equation $Ax = b$ has at least one solution for each $b \in \mathbb{R}^n$.

(h) The columns of A span \mathbb{R}^n.

(i) The linear transformation $T(x) = Ax$ maps \mathbb{R}^n onto \mathbb{R}^n.

(j) There is an $n \times n$ matrix C such that $CA = I$.

(k) There is an $n \times n$ matrix D such that $AD = I$.

(l) A^T is an invertible matrix.
Computer graphics

Homogeneous coordinates are useful when we want to do computer graphics with matrices.

Definition. A point \((x, y)\) in \(\mathbb{R}^2\) can be represented by the point \((x, y, 1)\) in \(\mathbb{R}^3\). The coordinates \((x, y, 1)\) are called the homogeneous coordinates of the point \((x, y)\).

Homogeneous coordinates are useful because translation in \(\mathbb{R}^2\) can be represented by a linear transformation in \(\mathbb{R}^3\).

Fact 1. A translation by \((h, k)\) in \(\mathbb{R}^2\) can be obtained by matrix multiplication of homogeneous coordinates. That is,

\[
\begin{bmatrix}
1 & 0 & h \\
0 & 1 & k \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix} =
\begin{bmatrix}
x + h \\
y + k \\
1
\end{bmatrix}.
\]

Fact 2. Any linear transformation \(\mathbb{R}^2 \to \mathbb{R}^2\) can be represented as a transformation of homogeneous coordinates by matrix multiplication. In particular, if the transformation is represented by the matrix

\[
A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix},
\]

then the corresponding matrix for homogeneous coordinates is

\[
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

Example. What is the matrix that represents rotation by 45° in terms of homogeneous coordinates?