A little review of orthogonal and orthonormal sets

Definition. A set of vectors \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) is an orthogonal set if \(\mathbf{v}_i \cdot \mathbf{v}_j = 0 \) for all \(i \neq j \).

Theorem. Suppose that \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) is an orthogonal set of nonzero vectors.

1. If \(\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \), then the weights \(c_i \) are given by \(c_i = \frac{\mathbf{u} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i} \).

2. The set \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) is linearly independent.

Definition. A set of vectors \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) is orthonormal if it is orthogonal and \(\mathbf{v}_i \cdot \mathbf{v}_i = 1 \) for all \(i \).

Example. The three vectors

\[
\mathbf{v}_1 = \begin{bmatrix} \frac{2}{3} \\ \frac{-1}{3} \\ \frac{2}{3} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} \frac{-1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} \frac{2}{3} \\ \frac{-1}{3} \\ \frac{-1}{3} \end{bmatrix}
\]

form an orthonormal set in \(\mathbb{R}^3 \).

We can use matrices to express the fact that a set is orthogonal or orthonormal.
Theorem. Let A be an $n \times n$ matrix. The following three conditions are equivalent.

1. $A^T = A^{-1}$

2. The columns of A form an orthonormal basis of \mathbb{R}^n.

3. The rows of A form an orthonormal basis of \mathbb{R}^n.

Definition. Whenever a matrix satisfies the above theorem, it is said to be an orthogonal matrix.

Example. We can use the orthonormal basis of \mathbb{R}^3 given above to produce an orthogonal matrix.

Why are orthogonal matrices special?
Orthogonal projection

How do we project a vector v onto a subspace W?

Theorem. (Orthogonal Decomposition Theorem)

1. Each vector v in \mathbb{R}^n can be written uniquely as

$$v = w + w^\perp,$$

where w is in W and w^\perp is in W^\perp.

2. Given an orthogonal basis $\{w_1, \ldots, w_k\}$ of W, then

$$w = \left(\frac{v \cdot w_1}{w_1 \cdot w_1} \right) w_1 + \ldots + \left(\frac{v \cdot w_k}{w_k \cdot w_k} \right) w_k$$

and $w^\perp = v - w$.

\[
\begin{array}{c}
\text{Orthogonal projection} \\
\text{How do we project a vector } v \text{ onto a subspace } W? \\
\textbf{Theorem.} \ (\text{Orthogonal Decomposition Theorem}) \\
\text{1. Each vector } v \text{ in } \mathbb{R}^n \text{ can be written uniquely as} \\
\quad v = w + w^\perp, \\
\text{where } w \text{ is in } W \text{ and } w^\perp \text{ is in } W^\perp. \\
\text{2. Given an orthogonal basis } \{w_1, \ldots, w_k\} \text{ of } W, \text{ then} \\
\quad w = \left(\frac{v \cdot w_1}{w_1 \cdot w_1} \right) w_1 + \ldots + \left(\frac{v \cdot w_k}{w_k \cdot w_k} \right) w_k \\
\text{and } w^\perp = v - w. \\
\end{array}
\]
Why is the Orthogonal Decomposition Theorem true?
Important consequence: If we want to find the distance of a vector v to a subspace W, then we compute

$$||w^\perp|| = ||v - w||.$$

Example. Find the point closest to

$$v = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$$

in the subspace W spanned by the two vectors

$$w_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix} \quad \text{and} \quad w_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}.$$
Theorem. If \(\{u_1, \ldots, u_k\}\) is an orthonormal basis for a subspace \(W\), then

\[w = (v \cdot u_1)u_1 + \ldots + (v \cdot u_k)u_k. \]

If

\[U = \begin{bmatrix} u_1 & u_2 & \ldots & u_k \end{bmatrix}, \]

then \(w = UU^T v\).