More on orthogonal projection
Recall the Orthogonal Decomposition Theorem from last class.

Theorem. (Orthogonal Decomposition Theorem)

1. Each vector \(\mathbf{v} \) in \(\mathbb{R}^n \) can be written uniquely as
 \[
 \mathbf{v} = \mathbf{w} + \mathbf{w}^\perp,
 \]
 where \(\mathbf{w} \) is in \(W \) and \(\mathbf{w}^\perp \) is in \(W^\perp \).

2. Given an orthogonal basis \(\{\mathbf{w}_1, \ldots, \mathbf{w}_k\} \) of \(W \), then
 \[
 \text{proj}_W \mathbf{v} \equiv \mathbf{w} = \left(\frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \right) \mathbf{w}_1 + \ldots + \left(\frac{\mathbf{v} \cdot \mathbf{w}_k}{\mathbf{w}_k \cdot \mathbf{w}_k} \right) \mathbf{w}_k
 \]
 and \(\mathbf{w}^\perp = \mathbf{v} - \mathbf{w} \).

Note: Since the two vectors \(\mathbf{w} \) and \(\mathbf{w}^\perp \) are unique, they do not depend on the orthogonal basis of \(W \) that we use to compute them.

Important consequence: If we want to find the distance of a vector \(\mathbf{v} \) to a subspace \(W \), then we compute
 \[
 ||\mathbf{w}^\perp|| = ||\mathbf{v} - \text{proj}_W \mathbf{v}||.
 \]

Example. Find the point closest to
\[
\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}
\]
in the subspace \(W \) spanned by the two vectors
\[
\mathbf{w}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{w}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}.
\]
Theorem. If \(\{u_1, \ldots, u_k\} \) is an orthonormal basis for a subspace \(W \), then

\[
\text{proj}_W v = (v \cdot u_1)u_1 + \ldots + (v \cdot u_k)u_k.
\]

If

\[
U = \begin{bmatrix}
 u_1 & u_2 & \ldots & u_k
\end{bmatrix},
\]

then \(\text{proj}_W v = UU^T v \).
Example. Let’s redo the previous example using the projection matrix. Let

\[
U = \begin{bmatrix}
-\frac{1}{\sqrt{10}} & -\frac{4}{\sqrt{26}} \\
\frac{2}{\sqrt{10}} & \frac{1}{\sqrt{26}} \\
-\frac{1}{\sqrt{10}} & 0 \\
2 & 3
\end{bmatrix}
\]
The Gram-Schmidt Process

This procedure produces an orthogonal (or orthonormal) basis from a basis \(\{x_1, \ldots, x_p\} \) of a subspace \(W \). It is an inductive procedure.

We work with the subspaces

\[S_l = \text{Span}\{x_1, \ldots, x_l\}. \]

The orthogonal basis for \(W \) based on this procedure applied to this basis is denoted \(\{v_1, \ldots, v_l\} \).

1. Let \(v_1 = x_1 \).

2. Let \(v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \).

3. Let \(v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \).

etc.
Example. Apply the Gram-Schmidt process to the basis

\[\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{x}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}. \]
Example. Let’s use these ideas to find the projection matrix P for orthogonal projection onto the plane $x_1 + x_2 - x_3 = 0$ in \mathbb{R}^3.

What are the eigenvalues and eigenspaces of P? (No computation required)