Symmetric matrices

Symmetric matrices arise frequently in applications. Moreover, they have a particularly nice structure that can often be used to solve the problem at hand. Today we discuss that structure.

Definition. A matrix A is symmetric if $A^T = A$.

Example. Consider

$$A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 3 \end{bmatrix}.$$

With the aid of Mathematica, we see that A has three distinct real eigenvalues, $\lambda = 7$, $\lambda = 4$, and $\lambda = 1$. We also have three eigenvectors

$$v_1 = \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, \quad \text{and} \quad v_3 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}.$$

We can diagonalize A using
Theorem. Let v_1 and v_2 be eigenvectors associated to distinct eigenvalues of a symmetric matrix A. Then $v_1 \cdot v_2 = 0$.

Theorem. (Spectral Theorem for symmetric matrices) If A is an $n \times n$ symmetric matrix, then

1. A has n real eigenvalues (counted with multiplicity),

2. the geometric multiplicity of each eigenvalue is the same as its algebraic multiplicity, and

3. distinct eigenspaces are mutually orthogonal.

Consequently, any symmetric matrix is orthogonally diagonalizable.

Note: Any matrix A that is orthogonally diagonalizable is symmetric.
Example. Consider

\[A = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 2 & -2 \\ -2 & -2 & -1 \end{bmatrix}. \]

Once again with the aid of Mathematica, we see that \(A \) has two distinct real eigenvalues, \(\lambda = 7 \) and \(\lambda = -2 \). We also have three linearly independent eigenvectors

\[\mathbf{v}_1 = \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}. \]
Suppose that we have an orthogonal diagonalization of the form \(D = P^T A P \). Then
\[
A = PDP^T
\]
yields the spectral decomposition of \(A \).

Lemma. Let
\[
A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}
\]
be two \(n \times n \) matrices. Then \(AB^T = a_1 b_1^T + a_2 b_2^T + \cdots + a_n b_n^T \).
Now apply the lemma to the product PDP^T where P is the orthogonal matrix

$$P = \begin{bmatrix} u_1 | u_2 | \ldots | u_n \end{bmatrix}.$$

Example. Let’s determine the spectral decomposition for the first example

$$A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 3 \end{bmatrix}.$$

We use the orthonormal basis of eigenvectors

$$u_1 = \begin{bmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, \quad u_2 = \begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}, \quad \text{and} \quad u_3 = \begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}.$$